
Formal Methods in
Cyberphysical Systems

Digital Object Identifier 10.1109/MC.2021.3089267
Date of current version: 27 August 2021

COVER FEATURE GUEST EDITORS’ INTRODUCTION

James Bret Michael and Doron Drusinsky,
Naval Postgraduate School

Duminda Wijesekera,
George Mason University

To improve the state-of-the-

art practice of applying formal

methods to cyberphysical

systems, we briefly discuss

the evolution of these

methods and also summarize

four research efforts to

close the current capability

gaps in their application.

C O M P U T E R 0 0 1 8 - 9 1 6 2 / 2 1 © 2 0 2 1 I E E E P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y S E P T E M B E R 2 0 2 1 25

GUEST EDITORS’ INTRODUCTION

26 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

The integration of computer
systems into the interfaces
of physical devices and social
activities, such as the Inter-

net of Things and Facebook, has
grown by leaps and bounds and is now
pervasive. However, there are gaps in
our ability to construct cyberphysi-
cal systems (CPSs) with the built-in
design and implementation to pro-
vide the assurance that systems will
behave correctly under normal and
abnormal conditions. A fundamen-
tal gap is that the definition of correct
behavior is lacking. An exa mple of a
gap that impacts the practice of using
formal methods in the development
of CPSs is that existing methodol-
ogies and tools seem to be inade-
quate for representing and reasoning
about the correct behavior of CPSs.
Our own experience has been that
the tools can also be difficult to use
and are limited in their support for
providing assurances that a model
is not oversimplified, is consistent
with physical principles, and is imple-
mented as specified.

Formal methodologists, be they
academics or practitioners, are inter-
ested in advancing the body of knowl-
edge and practice of

 › modeling the interface between
the cyber and physical partitions
of systems

 › applying lightweight formal
methods for verification and
validation of CPSs

 › modeling uncertainty in CPSs
and the environments in which
they operate

 › managing levels of abstraction
in modeling CPSs

 › applying compositional
formal methods to composed
CPSs

 › integrating formal methods
into lifecycle processes and
toolchains

 › lowering the time to market and
cost of using formal methods in
the development of CPSs.

Formal methods entail the use of
mathematical rigor to model and rea-
son about systems. Formal methods
have been used to reason about pro-
gram correctness since the early days
of programming languages. Early
methods hierarchically decomposed
system requirements and a corre-
sponding software program into seg-
ments and collected the pre- and post-
behavior of executing each segment
into a single logic statement asserted
to be implied by one or more require-
ments. Rules from mathematical logic
or proof rules created for each con-
struct of the language are utilized to
prove such an implication.1 Hand-
proved correctness arguments were
extended to use automata–theoretic
models capable of capturing a sys-
tem’s evolution as a series of discrete
state changes and then reasoning
about those changes. Automata–the-
oretic models were extended to dis-
crete, time-dependent concurrent
systems, allowing rigorous math-
ematical proofs of properties con-
cerning concurrency and timing-re-
lated specifications.4 In addition,
modal logics, such as temporal2 and
dynamic logics,3 were introduced
to support specifications written for
shared-memory concurrent systems
and reactive systems.

During the 1980s and early 1990s,
automata–theoretic techniques were
extended to model discrete control of
systems that evolved based on contin-
uous physics-based systems. This area
of formal methods became known

as hybrid systems modeling.5 In these
formalisms, the state transitions of a
hybrid system are governed by differ-
ential equations.

A CPS requires physics-based mod-
els (for example, nonlinear equations
of motion to represent the motion of
a vehicle and measure the accelera-
tion of a vehicle via an accelerome-
ter’s sensed change in impedance). A
CPS converts analog sensor data into
digital data that are input to the CPS
controllers. Automata–theoretic mod-
els are needed to represent the stor-
age, transmission, and processing
of the digital sensor data by the con-
troller. The outputs of the controller
are converted back to analog signals
for use by physical components of
the CPS, such as actuators (for exam-
ple, a motor that adjusts the steering
angle of a self-driving vehicle). The
sensors and actuators have their own
faults and vulnerabilities (captured
by fault models and attack surfaces),
and actuators have natural limitations
based on their design. Some of these
faults or limitations may be based on
the operational contexts and may be
affected by naturally occurring faults
or human-created malevolent acts
(either physical or cyber). CPSs are
expected to adhere to specified behav-
ioral constraints during their evolu-
tion while satisfying specifications.
Consequently, applying formal meth-
ods to a CPS involves proving that the
system evolves and traverses a tra-
jectory that satisfies the stated con-
straints and requirements. An exam-
ple is the driving automation of an
autonomous vehicle, for which there
are constraints related to stability,
such as maintaining the vehicle’s yaw,
roll, and pitch within acceptable lim-
its. A specification, on the other hand,
would be to maintain a safe braking

 S E P T E M B E R 2 0 2 1 27

distance (which depends on the road
geometry, surface friction, and the
vehicle’s speed profile) from static (like
roadside barriers) and dynamic (like
other vehicles) obstacles.13

Naturally, CPSs have been mod-
eled as discrete, automata–theoretic,
hybrid systems and/or their commu-
nicating counterparts. Consequently,
many of the formal methods listed pre-
viously have been used to verify that
CPSs satisfy stated constraints and
formally stated requirements.

IN THIS ISSUE
We thank everyone who submitted a
manuscript for the special issue. In
this issue you will find four of the 12
submissions in addition to a virtual
roundtable on formal verification
of CPSs.

In “Interpretable Fault Diagnosis
for Cyberphysical Systems: A Learning
Perspective,” Ziquan Deng and Zha-
odan Kong use signal temporal logic
(STL)12 for representing abnormali-
ties in learned values of sensors. The
authors make a connection between
fault diagnosis systems and continu-
ous learning systems to be modeled
as timed automata. The authors use
STL,12 an extension of temporal logic,
to do so. STL extends traditional tem-
poral operators of possibility ◊ and
necessity by having real-time time
bounds and real-valued comparisons
for expressions like ◊[0,1](x > 0.4). The
intended meaning of the expression is
that within the time interval [0,1] the
value of sensor x would become larger
than 0.4. In addition, the STL formulas
also have a robustness interpretation
that measures the minimum or max-
imum deviation of the signal value
from the expected bound within the
time interval. The key contribution
here is a framework for adding details

about the environment when the
model checker finds branches that are
not closed and do not lead to a counter-
example because of the inadequacy of
the environmental details.

“ Towa rd For ma l Met hod s for
Smart Cities,” by Meiyi Ma, John Stan-
kovic, and Lu Feng, highlights some
of the challenges we face when for-
ma l ly modeling smar t cit ies. The
authors focus on formal specifica-
tions, runtime monitoring, and learn-
ing aspects of modeling smart cities.
The authors argue that STL is insuf-
ficient to express the requirements
of runtime monitoring of a state of a
city, predicting the fut ure states of a
city, and ensuring that deep learning
results satisfy the city’s requirements.
In response to these challenges, the
authors introduce spatial aggregation
signal temporal logic (SaSTL), which
extends STL by including logical opera-
tors for spatial aggregation and count-
ing. The authors demonstrate the use
of SaSTL to specify points of interest
(PoIs), the physical distance and spa-
tial relations of the PoIs and sensors,
aggregation of signals over locations,
degree/percentage of satisfaction, and
temporal elements. The authors also
introduce a runtime monitoring tool
for smart city requirements specified
in SaSTL. Their article concludes with
a discussion of how their tool can help
city managers improve a city’s livabil-
ity measures.

Smart cities have many sensors,
learning systems, and artificial intel-
ligence systems that learn and adjust
parameters in smart buildings and
smart grids to dynamically provide resi-
dent comfort, power savings, and on-de-
mand transportation, among many
other objectives. The work described in
this article extends STL to SaSTL, for-
mulates some of the learning objectives

of smart cities, and creates a monitor-
ing system for the learning systems.

The article “Environment Mod-
eling During Model Checking of
Cyberphysical Systems,” by Guang-
yao Chen and Zhihao Jiang, addresses
the issue of modeling environments
and model checking of CPS require-
ments. They propose a domain-inde-
pendent framework for environment
model abstraction and refinement
to provide interpretable counterex-
amples while ensuring coverage of
environment behaviors. Their CPSs
and environments are modeled using
timed automata.4 They provide a
closed-loop method of creating a CPS
model-checking system. At the first
stage, they model an environment
and the chosen system’s specification
as a temporal logic formula on timed
automata, and they use the Uppaal
model checker to find counterexam-
ples or proofs. In real-world settings,
the environment models that are cho-
sen may not sufficiently capture all
of the details needed to expose ways
in which requirements can be vio-
lated. The proposed framework cap-
tures this situation by using a nonleaf
node that has counterexamples while
its children do not. At this stage, the
framework proposed by the authors
allows more details to be added to the
base model and the abstraction tree,
which are refinements of the model
providing counterexamples.

In “A Case Study in the Formal Model-
ing of Safe and Secure Manufacturing
Automation,” Matthew Jablonski, Bo

Yu, Gabriela Ciocarlie, and Paulo Costa
formally specify a manufacturing sys-
tem for producing aluminum cans.
They use temporal logic to specify the
usage scenarios of the factory workflow

GUEST EDITORS’ INTRODUCTION

28 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

process. They use the Architecture Anal-
ysis and Design Language (AADL) to
specify architectural elements and their
potential faults and attacks. The authors
use model checkers to show potential
attack paths and faulty scenarios. AADL
provides a complete modeling system of
the software, hardware, and their com-
munication systems. AADL has tool
support for modeling fault analysis and
real-time constraint violations. The air-
line ind ustry has used AADL to analyze
and simulate aircraft control designs
for many years. AADL can also be used
to analyze the performance of distrib-
uted tightly synchronized industrial
control systems (ICSs), with the aim of
determining whether the ICS satisfies
system constraints and specifications.
The article by Jablonski et al. provides a
first attempt at doing so. The described

work shows that a tightly synchronized
distributed manufacturing plant has
many stations that work in synchrony
to ensure that the individual plants sat-
isfy their strict real-time deadlines and
have sufficient built-in fault handling.
In addition, each manufacturing station
is built on many layers, where the higher
layers of the system design depend on
the lower layers being able to satisfy
their own fault handling and providing
this information to adjacent stations
and human operators, with the goals of
minimizing energy and material wast-
age and delivering manufactured prod-
ucts on time.

These selected articles provide
a glimpse at the breadth and
depth of formal methods in

CPS-related topics. Given our obvious
space limitations, we could only select
a few of the larger plurality of papers.

REFERENCES
1. E. W. Dijkstra, “Notes on structured

programming,” Technological Univ.
Eindhoven, The Netherlands, T.
H.-Rep. 70-WSK-03, Apr. 1970.

2. “Temporal logic,” Stanford Encyclo-
pedia of Philosophy, First published
Nov. 29, 1999; substantive revision
Feb. 7, 2020. Accessed: June 3, 2021.
[Online]. Available: https://plato
.stanford.edu/entries/logic
-temporal

3. D. Harel, D. Kozen, and J. Tiuryn,
Dynamic Logic. Cambridge, MA: MIT
Press, 2000.

4. R. Alur and D. L. Dill, “A theory of
timed automata,” Theor. Comput. Sci.,
vol. 126, no. 2, pp. 183–235, 1994. doi:
10.1016/0304-3975(94)90010-8.

5. J. Raskin, “An introduction to hybrid
automata,” in Handbook of Networked
and Embedded Control Systems,
D. Hristu-Varsakelis and W. S. Levine,
Eds. Boston: Birhäusser, 2005,
pp. 491–518.

6. D. Prawits, Natural Deduction: A
Proof-Theoretical Study. New York:
Dover Publications, 1961.

7. A. Nanevski, and A. Banerjee, and
D. Garg, “Dependent type theory
for verification of information
flow and access control policies,”
ACM Trans. Program. Lang. Syst.,
vol. 35, no. 2, pp. 1–41, 2013. doi:
10.1145/2491522.2491523.

8. R. Constable et al., Implementing
Mathematics With the Nuprl Proof
Development System. Upper Saddle
River, NJ, Prentice Hall, 1986.

9. L. Bachmair and H. Ganzinger,
“Resolution theorem proving,” in
Handbook of Automated Reasoning,
vol. 1, A. Robinson and A. Voronkov,

ABOUT THE AUTHORS

JAMES BRET MICHAEL is a professor in the Naval Postgraduate School’s
Department of Computer Science and Department of Electrical and Computer
Engineering, Monterey, California, 93943, USA. Michael received a Ph.D. in
information technology from George Mason University. He is an associate edi-
tor in chief of Computer and the magazine’s column editor for “Cybertrust.” He
is a Senior Member of IEEE. Contact him at bmichael@nps.edu.

DORON DRUSINSKY is a professor in the Naval Postgraduate School’s
Department of Computer Science, Monterey, California, 93943, USA. Druinsky
received a Ph.D. in computer science from the Weizmann Institute of Science,
Rehovat, Israel. He is Computer’s column editor for “Algorithms.” Contact him
at ddrusins@nps.edu.

DUMINDA WIJESEKERA is a professor in the Department of Computer Science
and chair of the Cyber Security Engineering Department at George Mason Uni-
versity, Fairfax, Virginia, 22030, USA. Wijesekera received a Ph.D. in computer
science from the University of Minnesota and in mathematical logic from Cornell
University. He is a Senior Member of IEEE. Contact him at dwijesek@gmu.edu.

 S E P T E M B E R 2 0 2 1 29

Eds. Amsterdam: Elsevier Science,
2001, pp. 19–99.

10. E. M. Clarke Jr., O. Grumberg, D. Kro-
ening, D. Peled, and H. Veith, Model
Checking, 2nd ed. Cambridge, MA:
MIT Press, 2018.

11. “Architecture analysis and design
language.” Carnegie Mellon
Univ. https://www.sei.cmu
.edu/our-work/projects/display

.cfm?customel_datapageid_4050=
191439&customel_datapageid
_4050=191439 (accessed
June 10, 2021).

12. O. Maler and D. Nickovic, “Mon-
itoring temporal properties of
continuous signals,” in Formal
Techniques, Modelling and Analysis
of Timed and Fault-Tolerant Systems,
vol. 3253, Y. Lakhnech and S. Yovine,

Eds. Berlin, Heidelberg: Spring-
er-Verlag, 2004, pp. 152–166. doi:
10.1007/978-3-540-30206-3_12.

13. J. B. Michael, D. N. Godbole, J.
Lygeros, and R. Sengupta, “Capac-
ity analysis of traffic flow over a
single-lane automated highway
system,” Intell. Transp. Syst. J., vol.
4, nos. 1–2, pp. 49–80, 1997. doi:
10.1080/10248079808903736.

IEEE Pervasive Computing

seeks accessible, useful papers on the latest

peer-reviewed developments in pervasive,

mobile, and ubiquitous computing. Topics

include hardware technology, software

infrastructure, real-world sensing and

interaction, human-computer interaction,

and systems considerations, including

deployment, scalability, security, and privacy.

 Call
 for Articles

Author guidelines:

www.computer.org/mc/

pervasive/author.htm

Further details:

pervasive@computer.org

www.com
puter.o

rg/perv
asive

Digital Object Identifier 10.1109/MC.2021.3102342

