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To improve the state-of-the-

art practice of applying formal 

methods to cyberphysical 

systems, we briefly discuss 

the evolution of these 

methods and also summarize 

four research efforts to 

close the current capability 

gaps in their application.  
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The integration of computer 
systems into the interfaces 
of physical devices and social 
activities, such as the Inter-

net of Things and Facebook, has 
grown by leaps and bounds and is now 
pervasive. However, there are gaps in 
our ability to construct cyberphysi-
cal systems (CPSs) with the built-in 
design and implementation to pro-
vide the assurance that systems will 
behave correctly under normal and 
abnormal conditions. A fundamen-
tal gap is that the definition of correct 
behavior is lacking. An exa mple of a 
gap that impacts the practice of using 
formal methods in the development 
of CPSs is that existing methodol-
ogies and tools seem to be inade-
quate for representing and reasoning 
about the correct behavior of CPSs. 
Our own experience has been that 
the tools can also be difficult to use 
and are limited in their support for 
providing assurances that a model 
is not oversimplified, is consistent 
with physical principles, and is imple-
mented as specified.

Formal methodologists, be they 
academics or practitioners, are inter-
ested in advancing the body of knowl-
edge and practice of

 › modeling the interface between 
the cyber and physical partitions 
of systems

 › applying lightweight formal 
methods for verification and 
validation of CPSs

 › modeling uncertainty in CPSs 
and the environments in which 
they operate

 › managing levels of abstraction 
in modeling CPSs

 › applying compositional  
formal methods to composed 
CPSs

 › integrating formal methods 
into lifecycle processes and 
toolchains

 › lowering the time to market and 
cost of using formal methods in 
the development of CPSs.

Formal methods entail the use of 
mathematical rigor to model and rea-
son about systems. Formal methods 
have been used to reason about pro-
gram correctness since the early days 
of programming languages. Early 
methods hierarchically decomposed 
system requirements and a corre-
sponding software program into seg-
ments and collected the pre- and post-
behavior of executing each segment 
into a single logic statement asserted 
to be implied by one or more require-
ments. Rules from mathematical logic 
or proof rules created for each con-
struct of the language are utilized to 
prove such an implication.1 Hand-
proved correctness arguments were 
extended to use automata–theoretic 
models capable of capturing a sys-
tem’s evolution as a series of discrete 
state changes and then reasoning 
about those changes. Automata–the-
oretic models were extended to dis-
crete, time-dependent concurrent 
systems, allowing rigorous math-
ematical proofs of properties con-
cerning concurrency and timing-re-
lated specifications.4 In addition, 
modal logics, such as temporal2 and 
dynamic logics,3 were introduced 
to support specifications written for 
shared-memory concurrent systems 
and reactive systems.

During the 1980s and early 1990s, 
automata–theoretic techniques were 
extended to model discrete control of 
systems that evolved based on contin-
uous physics-based systems. This area 
of formal methods became known 

as hybrid systems modeling.5 In these 
formalisms, the state transitions of a 
hybrid system are governed by differ-
ential equations. 

A CPS requires physics-based mod-
els (for example, nonlinear equations 
of motion to represent the motion of 
a vehicle and measure the accelera-
tion of a vehicle via an accelerome-
ter’s sensed change in impedance). A 
CPS converts analog sensor data into 
digital data that are input to the CPS 
controllers. Automata–theoretic mod-
els are needed to represent the stor-
age, transmission, and processing 
of the digital sensor data by the con-
troller. The outputs of the controller 
are converted back to analog signals 
for use by physical components of 
the CPS, such as actuators (for exam-
ple, a motor that adjusts the steering 
angle of a self-driving vehicle). The 
sensors and actuators have their own 
faults and vulnerabilities (captured 
by fault models and attack surfaces), 
and actuators have natural limitations 
based on their design. Some of these 
faults or limitations may be based on 
the operational contexts and may be 
affected by naturally occurring faults 
or human-created malevolent acts 
(either physical or cyber). CPSs are 
expected to adhere to specified behav-
ioral constraints during their evolu-
tion while satisfying specifications. 
Consequently, applying formal meth-
ods to a CPS involves proving that the 
system evolves and traverses a tra-
jectory that satisfies the stated con-
straints and requirements. An exam-
ple is the driving automation of an 
autonomous vehicle, for which there 
are constraints related to stability, 
such as maintaining the vehicle’s yaw, 
roll, and pitch within acceptable lim-
its. A specification, on the other hand, 
would be to maintain a safe braking 
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distance (which depends on the road 
geometry, surface friction, and the 
vehicle’s speed profile) from static (like 
roadside barriers) and dynamic (like 
other vehicles) obstacles.13

Naturally, CPSs have been mod-
eled as discrete, automata–theoretic, 
hybrid systems and/or their commu-
nicating counterparts. Consequently, 
many of the formal methods listed pre-
viously have been used to verify that 
CPSs satisfy stated constraints and 
formally stated requirements.

IN THIS ISSUE
We thank everyone who submitted a 
manuscript for the special issue. In 
this issue you will find four of the 12 
submissions in addition to a virtual 
roundtable on formal verification 
of CPSs.

In “Interpretable Fault Diagnosis 
for Cyberphysical Systems: A Learning 
Perspective,” Ziquan Deng and Zha-
odan Kong use signal temporal logic 
(STL)12 for representing abnormali-
ties in learned values of sensors. The 
authors make a connection between 
fault diagnosis systems and continu-
ous learning systems to be modeled 
as timed automata. The authors use 
STL,12 an extension of temporal logic, 
to do so. STL extends traditional tem-
poral operators of possibility ◊ and 
necessity  by having real-time time 
bounds and real-valued comparisons 
for expressions like ◊[0,1](x > 0.4). The 
intended meaning of the expression is 
that within the time interval [0,1] the 
value of sensor x would become larger 
than 0.4. In addition, the STL formulas 
also have a robustness interpretation 
that measures the minimum or max-
imum deviation of the signal value 
from the expected bound within the 
time interval. The key contribution 
here is a framework for adding details 

about the environment when the 
model checker finds branches that are 
not closed and do not lead to a counter-
example because of the inadequacy of 
the environmental details.

“ Towa rd For ma l Met hod s for 
Smart Cities,” by Meiyi Ma, John Stan-
kovic, and Lu Feng, highlights some 
of the challenges we face when for-
ma l ly modeling smar t cit ies. The 
authors focus on formal specifica-
tions, runtime monitoring, and learn-
ing aspects of modeling smart cities. 
The authors argue that STL is insuf-
ficient to express the requirements 
of runtime monitoring of a state of a 
city, predicting the fut ure states of a 
city, and ensuring that deep learning 
results satisfy the city’s requirements. 
In response to these challenges, the 
authors introduce spatial aggregation 
signal temporal logic (SaSTL), which 
extends STL by including logical opera-
tors for spatial aggregation and count-
ing. The authors demonstrate the use 
of SaSTL to specify points of interest 
(PoIs), the physical distance and spa-
tial relations of the PoIs and sensors, 
aggregation of signals over locations, 
degree/percentage of satisfaction, and 
temporal elements. The authors also 
introduce a runtime monitoring tool 
for smart city requirements specified 
in SaSTL. Their article concludes with 
a discussion of how their tool can help 
city managers improve a city’s livabil-
ity measures.

Smart cities have many sensors, 
learning systems, and artificial intel-
ligence systems that learn and adjust 
parameters in smart buildings and 
smart grids to dynamically provide resi-
dent comfort, power savings, and on-de-
mand transportation, among many 
other objectives. The work described in 
this article extends STL to SaSTL, for-
mulates some of the learning objectives 

of smart cities, and creates a monitor-
ing system for the learning systems.

The article “Environment Mod-
eling During Model Checking of 
Cyberphysical Systems,” by Guang-
yao Chen and Zhihao Jiang, addresses 
the issue of modeling environments 
and model checking of CPS require-
ments. They propose a domain-inde-
pendent framework for environment 
model abstraction and refinement 
to provide interpretable counterex-
amples while ensuring coverage of 
environment behaviors. Their CPSs 
and environments are modeled using 
timed automata.4 They provide a 
closed-loop method of creating a CPS 
model-checking system. At the first 
stage, they model an environment 
and the chosen system’s specification 
as a temporal logic formula on timed 
automata, and they use the Uppaal 
model checker to find counterexam-
ples or proofs. In real-world settings, 
the environment models that are cho-
sen may not sufficiently capture all 
of the details needed to expose ways 
in which requirements can be vio-
lated. The proposed framework cap-
tures this situation by using a nonleaf 
node that has counterexamples while 
its children do not. At this stage, the 
framework proposed by the authors 
allows more details to be added to the 
base model and the abstraction tree, 
which are refinements of the model 
providing counterexamples. 

In “A Case Study in the Formal Model-
ing of Safe and Secure Manufacturing 
Automation,” Matthew Jablonski, Bo 

Yu, Gabriela Ciocarlie, and Paulo Costa 
formally specify a manufacturing sys-
tem for producing aluminum cans. 
They use temporal logic to specify the 
usage scenarios of the factory workflow 
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process. They use the Architecture Anal-
ysis and Design Language (AADL) to 
specify architectural elements and their 
potential faults and attacks. The authors 
use model checkers to show potential 
attack paths and faulty scenarios. AADL 
provides a complete modeling system of 
the software, hardware, and their com-
munication systems. AADL has tool 
support for modeling fault analysis and 
real-time constraint violations. The air-
line ind ustry has used AADL to analyze 
and simulate aircraft control designs 
for many years. AADL can also be used 
to analyze the performance of distrib-
uted tightly synchronized industrial 
control systems (ICSs), with the aim of 
determining whether the ICS satisfies 
system constraints and specifications. 
The article by Jablonski et al. provides a 
first attempt at doing so. The described 

work shows that a tightly synchronized 
distributed manufacturing plant has 
many stations that work in synchrony 
to ensure that the individual plants sat-
isfy their strict real-time deadlines and 
have sufficient built-in fault handling. 
In addition, each manufacturing station 
is built on many layers, where the higher 
layers of the system design depend on 
the lower layers being able to satisfy 
their own fault handling and providing 
this information to adjacent stations 
and human operators, with the goals of 
minimizing energy and material wast-
age and delivering manufactured prod-
ucts on time. 

These selected articles provide 
a glimpse at the breadth and 
depth of formal methods in 

CPS-related topics. Given our obvious 
space limitations, we could only select 
a few of the larger plurality of papers. 
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