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PREDICTIONS

To better understand the technical and business 
complexity of the disruption that accelerators 
are making in computer architecture and across 
industries, we welcome Steve Keckler,  vice pres-

ident of Architecture Research at NVIDIA, to this forum. 
Keckler has an architectural background including Mas-
sachusetts Institute of Technology’s (MIT’s) multithreaded 
M-Machine, the TRIPS multicore processor architecture at 
the University of Texas at Austin, and NVIDIA GPUs. We 
have asked Keckler a series of questions about the history 

of accelerators, their adoption, ben-
efits and challenges, use cases, pro-
gramming models, how they influ-
ence other architectural components, 
and about their future. We hope that 
you will enjoy Keckler’s skillful anal-
ysis of the accelerator landscape and 
learn as much as we have.

DEJAN MILOJICIC: Accelerators have 
been gaining extraordinary adoption in the last few years 
across many industries. While this technology innovation 
is relatively recent, many concepts have been developed 
over decades. Could you point out some of the key turning 
points (technical or business) in the history of computing 
that have enabled recent accelerator success?

STEVE KECKLER: Accelerators have been around for a very 
long time. You may recall that floating- point hardware was 
not originally incorporated into mass market microproces-
sors until the late 1980s; instead, a system could include 
a floating-point coprocessor (also known as accelerator) 
in a separate chip. Likewise, early PCs had a separate chip 
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Driven by artificial intelligence (AI), accelerators 

are taking away the “central” aspect of 

CPUs to become dominant processors of the 

vast amounts of generated data today. 
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to accelerate audio processing, and of 
course graphics cards to accelerate 3D 
graphics and gaming have been popu-
lar since the early 1990s. Some of these 
accelerators ultimately were absorbed 
into a PC chipset, or their algorithms 
became fast enough executing in soft-
ware on a CPU. In fact, domain-spe-
cific hardware in the 1980s and 1990s 
was fighting an uphill battle because 
Moore’s law and Dennard scaling were 
driving rapid acceleration of CPU per-
formance. Why build a special-purpose 
hardware accelerator when the CPU 
could do the job just fine in 18 months? 
Graphics was a notable outlier because 
the demand for higher performance 
by a very large gaming market far out-
stripped what could be incorporated 
into CPUs.

Now that CPU performance im-
provements are limited to a few percent 
per year, the computing ecosystem has 
sufficient motivation to develop spe-
cial-purpose accelerators for domains 
that have sufficient critical mass, such 
as machine learning. The same influ-
ence of the end of Moore’s law scaling 
is seen in systems on chip, which to-
day include CPUs, GPUs, programma-
ble digital signal processors, video 
processing accelerators, and neural 
network accelerators, as well as many 
other types of accelerators. Here the 
motivation is the greater energy effi-
ciency on well-defined tasks that a do-
main-specific accelerator can provide.

The success of graphics accelera-
tors for a wider range of applications 
came from two key factors. First was 
the desire for programmable hardware 
(rather than a fixed graphics pipeline) 
by graphics programmers, which mo-
tivated programmable shading ar-
chitectures and led to the first GPU. 
Second was the overlapping demands 
of graphics and parallel computing al-
gorithms for high compute throughput 
and memory bandwidth. The graphics 
market funded the R&D for powerful 

programmable parallel processors, 
giving general-purpose parallel com-
puting processors (for example, GPU 
computing) time to mature. The parallel 
computing world is littered with com-
panies that had good technology but 
died because they had an insufficient 
market to fund the necessary R&D.

I think it is also important to real-
ize that the landscape of computing 
systems has changed. With the advent 
of generally programmable accelera-
tors such as GPUs, these processors are 
now behaving as peers in a heteroge-
neous system rather than accelerators 
attached to CPUs. In accelerated data 
centers, far more transistor and dollar 
budgets are devoted to accelerators 
than to CPUs.

MILOJICIC:  Artificial intelligence/
machine learning/deep learning (AI/
ML/DL) drives most recent adoption 
of accelerators. AI is known to have its 
own alternating summers and winters 
of popularity and adoption. If the next 
winter arrives, how will it affect accel-
erators’ adoption? Will accelerators still 
be successful in other areas aside from 
AI/ML/DL, and what are these areas?

KECKLER:  One of my AI colleagues 
really despises the characterization 
of AI of having summers and winters. 
He argues that AI has in fact delivered 
many successes over the years, but the 
goalposts keep getting moved with 
every success, resulting in the per-
ception of the hype and failure cycle. 
I am sympathetic to this view. I would 
further argue that the confluence of 
relatively inexpensive high-perfor-
mance computing (HPC) and readily 
available large data sets has fueled 
the latest surge in neural networks to 
the extent that the technology is now 
being used commercially to solve new 
problems or solve old problems faster 
and more cheaply across many indus-
tries. So, it is hard to imagine demand 

for data-driven automated learning to 
go away.

Even without ML, no one who has 
predicted that a plateau in the demand 
for computational performance has ever 
been right. I believe that society has an 
insatiable demand for computation, 
and without a new type of Moore’s law 
there will be a need for domain-specific 
acceleration. At NVIDIA, we recently 
added hardware support to accelerate 
ray-tracing algorithms to produce even 
better images (and of course interactive 
and immersive visual effects). We have 
barely scratched the surface of the capa-
bilities of virtual and augmented reality. 
Scientific discoveries that transform 
our world are driven by simulation and 
modeling made possible by HPC. While 
ML is being applied to these domains, 
if better algorithms or approaches 
emerge, there will be a demand for hard-
ware to process them more quickly and 
more efficiently.

MILOJICIC: The wide proliferation of 
GPUs has resulted in many competitors 
attempting to replicate this success. As 
a result, we have ended up with a lot of 
heterogeneity. There are good sides of 
heterogeneity and challenging sides. 
Heterogeneity enables optimization of 
hardware to specific needs to provide 
more performance at less power. At the 
same time, it could be challenging to 
system designers, systems integrators, 
programmers, and users. How can we 
amplify benefits and minimize chal-
lenges of heterogeneity?

KECKLER: I believe that system de-
signers and programmers should em-
brace heterogeneity, recognizing that 
different types of processors are suited 
to different types of tasks. For exam-
ple, CPUs excel at single-threaded 
latency-sensitive code, while GPUs 
excel at parallel throughput-oriented 
code. Because applications consist of 
both types of code, a GPU-accelerated 
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program employs both types of pro-
cessors for the tasks at which each are 
best. The key to exploiting this type of 
heterogeneity is a programming model 
that enables a programmer to express 
both the serial and parallel portions 
of an algorithm. While programming 
languages like CUDA and OpenCL help 
a programmer to specify explicitly the 
serial and parallel portions of a pro-
gram, there is a lot of innovation in pro-
gramming systems that employ higher 
levels of abstraction. Such systems 
enable a programmer to describe the 
algorithm and then employ compiler 
and/or runtime-system software to 
partition and schedule the work. MIT’s 
Tensor Algebra Compiler is an exam-
ple of such a system in the domain of 
sparse and dense tensor algebra. There 
are other examples in the domains of 
image processing and graph analytics.

MILOJICIC: Many use cases today are 
the result of the creation, collection, 
and processing of massive amounts of 
data. As a result, terms such as mem-
ory-driven architectures have been 
introduced. Accelerators have proven 
to be extremely efficient in comput-
ing of data. Can accelerators also be 
effective in serving data, for example, 
in data-driven operations such as data 
stores, databases, and file systems?

KECKLER: Accelerators can absolutely 
be designed to serve data. We already 
see the demand for this today with 
programmable processors connected 
directly to storage devices such as 
nonvolatile memory to perform tasks 
such as compression and encryption. 
Likewise, software-defined network-
ing is driving greater compute capa-
bility into network controllers and 
ultimately switches. NVIDIA’s Blue-
Field line of networking products [data 
processing units (DPUs)] serve the 
high-performance networking space 
with capabilities for compression, data 
de-duplication, and security applica-
tions, among others. The BlueField-3 
DPU includes up to 16 Arm cores, a pro-
grammable datapath accelerator, and 

hardware accelerators for encryption, 
compression, and network processing. 
Broadly speaking, providing accelera-
tion throughout the system requires a 
decentralization of not just the hard-
ware but also the software, and to date 
legacy operating system designs are 
holding back innovation because they 
are not ready for such decentralization. 
Reinventing operating system services 
in a decentralized manner to match 
the underlying system hardware archi-
tecture is going to be a huge challenge 
over the next decade.

MILOJICIC: How are accelerators in-
fluencing interconnects and memory 
designs? Traditionally, designs of in-
terconnects were influenced by CPUs 
within coherency domains and then 
by performance requirements (band-
width, latency, tail-latency) in larger 
domains. Are accelerator interconnect 
requirements any different than CPU 
requirements, and how? Similarly, 
hierarchies of caches and memory de-
signs were influenced by CPUs. How is 
it different for accelerators?

KECKLER: The extremely high com-
putational throughput of accelerators 
has demanded innovations in memory 
and interconnect designs. For exam-
ple, GPUs have driven high-bandwidth 
memory through the generations of 
graphics double data rate dynamic ran-
dom-access memory and more recently 
on-package high-bandwidth memory. 
Because traditional CPU networks were 
not suited to the bandwidth demands 
of GPUs, NVIDIA developed NVLink 
and NVSwitch architectures to provide 
a dedicated high-bandwidth network 
to connect many GPUs. Likewise, Goo-
gle’s TPU architecture deploys a cus-
tom network aimed to meet the needs 
of their applications and compute hard-
ware. As GPUs have become more gen-
eral purpose and deployed in scalable 
multi-GPU systems, a formal memory 
model has been developed to describe 
the memory semantics. The GPU mem-
ory consistency model is intention-
ally weak, allowing programmers the 

freedom to exploit massive parallelism 
without unnecessary synchronization. 
Other loosely coupled accelerators are 
likely to require a weak memory model 
for the same reason: to deliver sys-
temwide performance. Because there 
is currently no systemwide memory 
model for GPUs and CPUs, let alone a 
system with a wider range of accelera-
tors, there is an opportunity for innova-
tive research to fill this gap.

MILOJICIC: Programming models have 
been instrumental in driving the de-
sign of CPU-based systems, for example, 
shared memory or message passing in 
HPC and traditional distributed sys-
tems. How are programming models 
influencing accelerators? Are there 
new features or even types of acceler-
ators that may result in new pro-
gramming models?

KECKLER: If we look narrowly at the 
ML accelerator domain, frameworks 
such as PyTorch, TensorFlow, Caffe, and 
ONNX were developed to provide porta-
ble programming interfaces to different 
types of hardware. These frameworks 
are effectively domain-specific lan-
guages for ML, which can then target 
CPUs, GPUs, or more specialized accel-
erators. More broadly, new program-
ming models and languages such as 
CUDA and OpenCL were developed for 
general-purpose programmable accel-
erators such as GPUs. These languages 
have flourished because they provided a 
relatively simple method of expressing 
data parallelism so that it can be easily 
exploited by data parallel hardware.

I would argue that programming 
models and accelerators are best code-
signed, which is true for both GPUs 
and ML accelerators and their pro-
gramming models. In the future, I 
expect that we will see 1) a continued 
evolution of programming models 
for general-purpose accelerator ar-
chitectures and 2) new programming 
models and mechanisms for emerging 
algorithmic domains. We will also see 
capabilities incorporated into existing 
programming models to better enable 
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programmers to exploit accelerators. 
One example of this is NVIDIA’s Leg-
ate, which is a programming system 
that allows NumPy programs to seam-
lessly exploit scalable multiple-GPU 
systems by translating the NumPy ap-
plication interface into the Legion dis-
tributed programming model.

MILOJICIC: The availability and ma-
turity of tools are frequently essential 
for the adoption of technologies. Is the 
same true for accelerators, and can you 
provide some examples?

KECKLER: I would argue that ML ac-
celerators, for example, have been 
catalyzed by ML frameworks. Without 
these tools, many more programmers 
would have spent many more hours 
working unnecessarily close to the 
metal. More general-purpose acceler-
ators such as GPUs have full software 
stacks with compilers, profiling tools, 
debuggers, and a whole host of appli-
cation acceleration libraries such as 
cuBLAS, cuSPARSE, and cuDNN. With-
out these types of tools, such accelera-
tor systems would be far less attractive 
to program and far less popular with 
application developers. I think you can 
see this effect in the published MLPerf 
benchmark results, in which very few 
of the ML startups have submitted any 
data. Developing a software ecosys-
tem for an accelerator is difficult and 
requires a substantial investment in 
both money and time. Only those com-
panies that provide robust hardware 
and software will have their products 
accepted in the marketplace.

MILOJICIC: The security of CPUs and 
CPU-based systems has always been 
an important topic, and it is ever more 
so nowadays. Accelerators took a back 
seat in security in the past. As acceler-
ators are increasingly becoming first-
class processing elements and not just 
CPU-attached subsidiary processors, 
security will become equally import-
ant for accelerators. Is security any dif-
ferent for accelerators than for CPUs? 
A similar question can be applied to 

failure tolerance. For example, could 
CPU techniques for preventing prop-
agation of memory failures across the 
system be applied to accelerators?

KECKLER: You draw an important dis-
tinction here between first-class pro-
grammable accelerators and subsidiary 
accelerators. The security requirements 
for the former are similar to those of 
CPUs, although the vulnerability surface 
may be different. For example, as accel-
erators generally do not employ specula-
tive execution, they are not subject to the 
types of attacks exemplified by Spectre 
and Meltdown. Accelerators may also be 
able to be provisioned with more inher-
ent isolation than a multitasking CPU. For 
example, NVIDIA’s multi-instance GPU 
(MIG) subdivides a single GPU into multi-
ple isolated sub-GPUs, each of which can 
be allocated to a different process. None-
theless, the security aspects and require-
ments for confidentiality, integrity, and 
availability are effectively the same. The 
methods of meeting those requirements 
such as encryption, isolation, and attesta-
tion are generally similar across CPUs and 
first-class accelerators. The same logic ap-
plies to fault tolerance, where principles 
of error coding and redundancy are used 
in both CPUs and first-class accelerators. 
How CPUs and accelerators actually de-
ploy these principles may differ due to the 
nature of the processors.

MILOJICIC: Over the decades, we have 
learned how to package and scale CPU-
based systems. Is scaling of GPUs any 
different at the rack level, cluster level, 
or even larger scales?

KECKLER: To address this question, 
I would point to Selene, which is an 
NVIDIA supercomputer, currently num-
ber six on the Top 500 list of the most 
powerful supercomputers. Selene con-
sists of 560 NVIDIA A100 DGX Servers 
(eight GPUs each) for a total of nearly 
4,500 GPUs, connected using 850 In-
finiband switches. Broadly speaking, 
Selene is similar in design to other 
rack-based supercomputers or data-
center computers, although its design 

is highly modular, facilitating fast sys-
tem assembly. While GPUs consume 
more power than CPUs, they are more 
efficient at converting their power 
into performance. Selene is number 11 
on the Green 500 list—and nine of the 
top 10 systems on the Green 500 list 
are powered by NVIDIA A100 GPUs. 
The result is the potential for higher 
power density in a datacenter and a 
potential demand for more power per 
rack. Looking forward, new technol-
ogies must be applied to skirt the end 
of semiconductor processor scaling, 
including packaging innovations such 
large multichip modules and tight 
integration of high-bandwidth and 
low-energy interconnect such as sili-
con photonics.

MILOJICIC: Standards and open source 
communities are an important factor 
in technology development and adop-
tion. Are accelerators any different? 
There are some de facto standards, 
and then there are also entirely closed 
designs, such as those being developed 
by hyperscalers to sit behind a cloud 
delivery model. What is the right bal-
ance between openness and closed/
proprietary designs?

KECKLER: I do not see a need for stan-
dardization of accelerator hardware. 
In fact, it is precisely the opportunity 
to innovate by tailoring the hardware 
to specific applications that delivers 
the performance and power efficiency 
of accelerators. Instead, standards are 
better applied at interfaces above the 
hardware. ML frameworks are a good 
example, as they allow a developer to 
employ the capabilities available in the 
framework, potentially coupled with a 
compilation and optimization process, 
to map a workflow to different ML 
accelerator architectures. Likewise, 
standard programming languages 
that incorporate mechanisms to ex-
press and exploit massive parallelism 
(such as OpenMP or the evolving C++ 
standards) enable programmers to 
employ programmable accelerator 
hardware. It will be incumbent on the 
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accelerator hardware developers to 
provide easy on-ramps for application 
developers. The wise ones will support 
a wide range of methods including 
support for many frameworks and pro-
gramming languages.

MILOJICIC: Do you have any closing 
thoughts on the future of accelerators?

KECKLER: I am quite bullish on the 
future of accelerators in the comput-
ing ecosystem. I believe that, in gen-
eral, we will see accelerators being 
tailored to more application domains. 
I expect that we will see such acceler-
ation hardware manifest in a range 
of deployments including 1) tightly 
coupled instruction-based accelera-
tors such as NVIDIA’s Tensor Cores, 2) 

loosely coupled on-chip accelerators 
such as NVIDIA’s ray-tracing and DL 
hardware, and 3) independent or peer 
accelerators in a heterogeneous sys-
tem such as networked GPUs and CPUs 
in a data center. We will certainly see 
an expansion of hardware designs 
when new hot areas emerge (such as 
ML) and a consolidation when an area 
becomes overly saturated (as ML hard-
ware accelerators are likely to experi-
ence). Regardless, the opportunities 
are immense but will require greater 
degrees of algorithm and hardware 
codesign than has typically been ap-
plied to traditional processor design. 
Furthermore, the greater proliferation 
of accelerators will naturally require 
them to become first-class citizens in 
a system with direct access to network 

and storage resources without re-
quiring mediation by a CPU. CPUs 
will of course remain a vital compo-
nent in a system, but we are likely to 
think of them as accelerators for sin-
gle-threaded code rather than the cen-
ter of the system. 
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