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T o ensure the wide-scale adop-
tion of intelligent algorithms, 
artificial intelligence (AI) en-
gineers must offer assurances 

that an algorithm will function as in-
tended. Providing such guarantees in-
volves quantifying capabilities and the 
associated risks across multiple dimen-
sions, including data quality, algorithm 
performance, statistical considerations, 
trustworthiness, and security as well as 
explainability. 

THE STATE OF AI ASSURANCE
In recent years, there has been a renewed 
focus on the field of AI assurance. Re-
searchers, policy makers, and business 
leaders all use the phrase AI assurance, but 
there is little consensus on what this term 
precisely means. Batarseh et al. define AI 
assurance as1

a process that is applied at all stages of 
the AI engineering lifecycle, ensuring 
that any intelligent system is producing 
outcomes that are valid, verified, data 
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driven, trustworthy, and explain-
able to a layman; ethical in the con-
text of its deployment; unbiased in 
its learning; and fair to its users.

As nations race to develop AI, a lack 
of attention to assurance is giving rise 
to some serious concerns. Given the 
availability of technology and poten-
tially massive economic benefits, prog-
ress in AI will inevitably bring about a 
race to AI assurance. It is thus critical to 
define a consensus-based path forward.

The European Commission (EC) of 
the European Union recently proposed 
rules and actions for excellence and 
trust in AI systems across the conti-
nent.2 The new AI legal framework 
aims to ensure that Europeans can 
trust AI systems across all domains, 
and address the specific risks posed by 
AI systems. Achieving trust and con-
fidence in AI systems will require an 
international consensus. This article 
aims to raise issues and promote dis-
cussion in this critical area.

The need for an AI-assurance 
discipline
The assurance of AI systems has been 
an Achilles’ heel up until now. A paral-
lel was witnessed in general consumer 
software, where systematic and mea-
surable testing throughout the lifecy-
cle was often an afterthought. Learn-
ing from that experience, we should 
not t reat a ssu ra nce a s a sepa rate 
component. Rather, assurance should 
be a part of the incremental learning 
process of any intelligent agent, algo-
rithm, or environment. In AI devel-
opment, however, a significant gap is 
observed, one that exists between AI 
systems’ abilities to generalize from 
their learning domains (namely, data), 
to their ability to create a credible view 
of the world (that is, their operating 
environment). If a model learns from 
features unique to the training do-
main but not observed in the broader 

world, it creates patterns that are not 
an assured reflection of their context. 
This leads to the AI system losing its 
ability to make accurate predictions, 
recommendations, or classifications, 
especially in a new environment. Ac-
cordingly, data assurance (of the in-
put data used in training and testing) 
and algorithmic assurance are both 
equally critical to the adoption of 
AI systems.

Key aspects of AI assurance
AI systems differ from conventional 
software in many ways. In the follow-
ing sections, we discuss the different 
approaches required for assurance.

Verification and validation of AI. 
Software-testing activities involve 
two main aspects: verification and 

validation (V&V). Verification checks 
whether the system is being built 
right, namely, without errors or de-
fects, while validation means provid-
ing the desired system to the user, that 
is, building the right system. Like con-
ventional software, assuring AI mod-
els requires performing V&V activi-
ties, but it expands beyond those limits 
toward the evaluation of learning, 
inputs to the algorithms, data quality, 
and other environmental aspects that 
play a major role (such as fairness, con-
text, and ethics). One of AI assurance’s 
aspects that is fairly novel (and is only 
relevant to AI) is explainable AI (XAI).3

Understanding and interpreting AI al-
gorithms (albeit a difficult task) is crit-
ical to their adoption.

AI system development and de-
ployment. Intelligent systems are 
being deployed everywhere, but every 

domain has unique considerations 
in defining their scope. A system de-
ployed at a hospital, for instance, re-
quires a different type of assurance 
than an intelligent system flying a 
fighter jet. Moreover, the increasing 
use of learning algorithms in cy-
berphysical systems (such as smart 
grids, autonomous transportation, 
and smart farming) has pushed the 
need for ongoing security and safety 
check s. T he deployed A I s ystem 
hence requires a structured sequence 
of tests across the development and 
deployment lifecycles, coupled with 
statistical analyses of the data and 
the models’ outcomes. These tests in-
clude the selection of test data sets to 
test the AI algorithm itself and tests 
of the deployed AI-enabled system in 
the deployed environment.4

Transparency. The users of AI sys-
tems have a right to have outputs and 
decisions affecting them explained 
in an understandable way, preferably 
using domain-specific terms and for-
mats. Besides increasing their trust 
in the system, this allows domain ex-
perts, as well as regular users, to in-
spect the system’s processes and man-
age its goals.

Bias. Bias can be statistical (namely, 
detectable through overfitting and un-
derfitting measures) or due to issues 
such as skew or incomplete data in the 
environment. Bias can be investigated 
and mitigated through data collection 
best practices; the analysis of contex-
tual awareness; statistical measures 
(for example, Q-values); an anal-
ysis of variance methods, including 
lack-of-fit analysis; and outlier detec-
tion methods such as isolation forests, 

Achieving trust and confidence in AI systems will 
require an international consensus.
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causal inference, and other similar-
ity matrices. Other data engineering 
practices affect bias, for example, data 
collection ambiguities, data imbal-
ance and availability, and the lack of 
domain information.

Context. Often referred to as situa-
tional awareness, context across do-
mains can change drastically. An AI 
agent for online misinformation detec-
tion aims to ensure fairness and trust-
worthiness values, while an AI agent 
regulating a nuclear reactor prioritizes 
safety and security. Contextual mod-
eling is a difficult problem; to capture 

context, knowledge elicitation is per-
formed (a derivative of requirements 
engineering) as well as the scoping 
and collection of dark data (data that 
could be available but are not clearly 
correlated with the domain5), and le-
veraging data fusion to unify data sets 
from multiple sources. The difference 
in goals across domains is addressed 
through capturing and modeling con-
text and context-based reasoning. 
From a theoretical and a practical per-
spective, the key aspects mentioned 
in this section are essential to the ac-
complishment of AI-assurance goals, 
which are introduced next.

AI-ASSURANCE GOALS
Users often do not trust, adopt, or use 
algorithmic systems if they do not 
understand how they work. Studies 
suggest that scientists (and the pub-
lic) would be much more willing to 
accept algorithmic decision support 
if explainability, trustworthiness, and 
other assurance measures are provided.6 
Accordingly, we make the case that assur-
ance is required to enable the adoption 
of AI—and the overall avoidance of 
an AI bubble burst. However, similar 

to any other engineering discipline, 
analyzing tradeoffs between engi-
neering goals is both an art and a sci-
ence. Due to the recent emergence of 
big data, AI assurance has manifested 
itself in different forms, limited not 
only to the V&V of the algorithm, but 
also to the quality of data as well as 
philosophical challenges like dark 
data, causality, and bias. Accordingly, 
issues such as a breach of ethics by 
AI systems lead to the need for load-
ing goals into the system to allow it 
to learn things correctly, creating a 
challenge in formulating qualita-
tive measures (such as ethics) into 

an AI  system. Based on the survey 
conducted by Batarseh et al.,1 the fol-
lowing six goals are extracted from the 
literature as the main goals relevant to 
AI assurance: 1) XAI, 2) safe AI, 3) se-
cure AI, 4) trustworthy AI, 5) ethical 
AI, and 6) fair AI. All of these goals are 
challenges that require a dedicated set 
of solutions and methods by domain 
and AI approach, although model- 
and domain-agnostic-assurance ap-
proaches are also viable potentials.

AI is often assessed by its ability to 
consistently deliver accurate predic-
tions of behavior in a system. A critical, 
often overlooked, aspect of develop-
ing AI algorithms is that performance 
is a function of the task to which the 
algorithm is assigned, the domain 
over which the algorithm is intended to 
operate, and the changes to these ele-
ments over time. These parameters and 
their constituent parts form the basis 
over which assuring AI becomes a chal-
lenge. Algorithms need to be character-
ized by understanding the factors that 
contribute to stable performance across 
an operational environment.

To accurately and consistently pre-
dict outputs or behaviors, AI-enabled 

systems require data for training and 
testing as well as validating predic-
tions. The iterative process of improv-
ing accuracy and precision in devel-
oped models involves tradeoffs in 
performance, data quality, and other 
environmental factors. AI’s predic-
tive power can be impacted through 
changes in the training or test data, the 
model, and environment. In this sec-
tion, we discuss sources of change cap-
tured within the operational envelope 
of an AI system’s execution, which is 
often attributed to its inconsistencies. 
Model and data changes have been dis-
cussed in the literature around concept 
drift and are examples of how these in-
consistencies could be measured.

Even for conventional software, 
assurance is difficult to quantify, and 
often the best measures that can be 
provided involve levels of structural 
coverage. For example, life-critical 
aviation software must pass require-
ments-based tests that provide 100% 
modified condition decision coverage 
(MCDC). But structural coverage cri-
teria such as MCDC or branch cover-
age do not apply to neural networks 
or other AI approaches, which are 
often programmed through inputs. 
That is, the accuracy of the AI model 
is almost completely dependent on 
the data set used in training. The key 
question, then, is whether the train-
ing inputs represent the real world 
in sufficient depth; and we want to 
quantify this assurance.

One approach for quantifying input 
model adequacy for deep learning 
algorithms is to evaluate neuron cov-
erage, that is, the fraction of neurons 
exercised during training and testing. 
However, empirical data on the effec-
tiveness of this metric suggest only weak 
correlations with test effectiveness.7 
More recently, we have investigated 
combinatorial coverage measure-
ment and differencing. This method 
computes the fraction of t-way combi-
nations of parameter values included 
in inputs. The intuition is that combi-
nations of inputs are essential to accu-
racy in AI algorithms, so measuring 

AI’s predictive power can be impacted through 
changes in the training or test data,  

the model, and environment.
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thoroughness of combination cover-
age provides valuable information on 
input or training data adequacy. Ini-
tial evidence has shown this method to 
be effective for evaluating the quality 
of input models and transfer learning  
data models.8 These concepts are 
applicable to other AI approaches 
such as reinforcement learning and 
genetic algorithms.

ACHIEVING AI ASSURANCE
To accomplish the six assurance goals, 
along with other recommendations, a 
foundational consensus for defining 
and measuring the dependability of 
AI systems is needed. In the following 
sections, we discuss these consensus 
objectives in greater detail. 

A community consensus for AI
AI systems developed and deployed 
by different researchers, organiza-
tions, and government agencies are 
likely to have a wide range of maturity 
in terms of providing assurance. A 
well-articulated process and a clearly 
defined set of metrics used to catego-
rize and evaluate these systems could 
go a long way in establishing a com-
mon understanding of these systems’ 
dependability. The advantage of such 
a consensus evaluation model is that 
it encourages all stakeholders to agree 
on a set of metrics and processes to 
measure the quality of the AI systems 
being produced and deployed. It also 
shows the path to achieve a gradually 
higher level of assurance following a 
consensus set of criteria. We believe 
that community agreement on a sim-
ilar set of metrics and processes will 
not only streamline AI systems’ de-
velopment efforts, it will also foster 

the sharing of implementation experi-
ences and best practices.

One motivation for consensus ap-
proaches is the need for context- and 
domain-specific assessments. The EC 
recently drafted the first-ever legal 
framework on AI: the Artificial Intel-
ligence Act. This AI act (draft) has the 
potential to foster a community con-
sensus because it advocates for harmo-
nized rules and a tailorable, risk-based 
framework. This tailoring depends 
on the application and its associated 
risks.2 Additionally, “Tools for Trust-
worthy AI” notes the need for compar-
ing tools and practices for achieving 
trustworthy AI in the context of its 
application.9 The consensus methods 
provide a tailorable methodology that 
can accommodate a context-specific 
application of AI.

AI strategy has become an inter-
national priority, which adds another 
layer of context. Countries including 
the United States, Japan, the United 
Kingdom, Russia, Germany, and China 
are just a few of the dozens of coun-
tries that have issued national strat-
egies around AI.10,11 Each country is 
identifying the specific priorities that 
need to be factored into the AI-as-
surance process. As organizations are 
evaluating the use of AI, they have 
developed different implementation 
strategies, guiding principles, and 
ethics statements. The U.S. AI Initia-
tive summarized American AI values in 
four different aspects: understandable 
and trustworthy AI, robust and safe AI, 
workforce impact, and international 
leadership. All of these aspects are well 
grounded in assurance. Similarly, mul-
tiple research projects are underway 
at the National Institute of Standards 
and Technology (NIST), directly and in-
directly shaping the different aspects 
of AI assurance. Many researchers at 
NIST are actively working on develop-
ing metrics, measurements, and tools 
for building and analyzing AI systems 
that are accurate, reliable, safe, secure, 
robust, explainable, privacy preserv-
ing, and free from bias. A community 
consensus for evaluating AI systems 

would be a vehicle to accomplish the 
aforementioned goals.

Discussions and future goals
As we contemplate the success of 
learning algorithms, it is clear that 
extrapolating general intelligence or 
wide-scale AI adoption will require a 
consensus on the rules governing it as 
well as its overall assurance. For that, 
we present the following conceptual 
considerations:

1. Assurance should not be an 
afterthought; rather, it should 
be embedded into the lifecycle 
of development and learning in 
all AI systems. Recent devel-
opments such as surrogate 
models constitute a positive 
development toward achieving 
incremental assurance.

2. Current AI models are almost 
exclusively statistical, that is, 
they don’t have the ability to 
grasp or represent context. We 
deem this aspect critical to the 
future of AI and its assurance.

3. Consider counterfactual 
scenarios for AI algorithms: 
at the end of the day, if AI 
algorithms cannot explain 
cause and effect, they may be 
rendered obsolete by the next 
big technology.

4. It has been suggested that a 
system validating a learning 
algorithm will be as complex 
as the learning system. The 
R&D of AI-assurance ap-
proaches thus needs to receive 
attention comparable to AI 
applications research.

The future of AI is certainly prom-
ising yet likely to be different 
from its recent past. Notions 

such as contextual adaptations and XAI 
will become more evident and domi-
nant. Nonetheless, one aspect that all 
phases of AI require is assurance. For AI 
to reach its scientific and practical goals, 
and for humans to reap its benefits, AI 

DISCLAIMER
The views expressed in this article 
are not official statements from 
NIST’s AI program, where extensive 
work in the area of trustworthy AI 
is being conducted by multiple 
research groups.
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researchers, practitioners, and inves-
tors need to be on a mission to display 
the virtuous goodness of a fair, safe, 
secure, explainable, trustworthy, and 
ethical AI. 
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