
C
O

P
Y

R
IG

H
T

 IS
T

O
C

K
P

H
O

T
O

, C
R

E
D

IT
:L

V
C

A
N

D
Y

Artificial intelligence (AI) and machine learning
(ML) systems (referred to as AI systems in the
rest of the article) continuously adapt their
behavior by learning from the environment

in which they operate. The depend-
ability of these systems, in part, re-
lies on quality assurance. However,
traditional approaches to software
tes t i ng a re l i m ited becau se t he
logic in AI systems, unlike tradi-
tional systems, is determined by the
data used in training them and the
stochastic nature of the learning
process that makes them nonde-
terministic. Repetition of training
y ields dif ferent outcomes w it h a
likelihood of an unintended behav-
ior that can lead to a fault or failure.1

Testing approaches for explicitly
checking behaviors that we expect
AI systems to follow are challenged
by the following:1,2

› Lack of test oracles: AI systems reason probabilistically;
hence, their outputs are learned and predicted by an
ML model rather than one specified prior to testing.

› Large input space: It is difficult to determine a test
data set that is representative of a voluminous and
diverse input space.

Digital Object Identifier 10.1109/MC.2021.3132710
Date of current version: 11 March 2022

On the Testability of
Artificial Intelligence
and Machine
Learning Systems
Raghvinder S. Sangwan, Youakim Badr, Satish Srinivasan,
and Partha Mukherjee , Pennsylvania State University

 This article examines current testing techniques

for the quality assurance of artificial intelligence

and machine learning systems. It organizes

them based on the granularity of testing

level and explores design tactics using these

techniques.

SOFTWARE ENGINEERING
EDITOR PHIL LAPLANTE
Penn State; plaplante@psu.edu

C O M P U T E R 0 0 1 8 - 9 1 6 2 / 2 2 © 2 0 2 2 I E E E P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y M A R C H 2 0 2 2 101

102 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

SOFTWARE ENGINEERING

 › High white-box testing effort:
Testing all possible states within
ML models of an AI system is
intractable.

In the absence of oracles combined
with a large input and state space, tests
can only detect crashes (smoke testing).

Software testing, however, is an
important task within the software
development lifecycle and aims at
providing stakeholders with measur-
able indicators about the quality of the

software product under design. Tra-
ditional software testing techniques
and tactics could be applied to the
development of AI systems in which
programming languages are intrin-
sic components. Nevertheless, testing
AI systems is not just limited to soft-
ware bugs and faults. They raise spe-
cific problems related to their quality
and must be tested to determine their
correctness under the assumption of
some specific hypotheses (statisti-
cal and probabilistic) and verified to
ensure that their outcomes fit the ex-
pected behavior.

TECHNIQUES FOR TESTING
AI SYSTEMS
Table 1 organizes several techniques
that have been proposed for testing AI
systems1,3 into four distinct categories
according to the level of granularity of
the entity being tested within the sys-
tem. Input testing analyzes the training
data for potential reasons that can lead
to unsuccessful training, such as corner
cases and for out-of-distribution or un-
derrepresented data in the initial train-
ing set.

Model testing uses measures of ac-
curacy for classifiers or mean-square
errors for regressors to look for a sub-
optimal model architecture, its train-
ing process, and hyperparameters.
Model testing can be used to identify
inputs for which the model produces
wrong predictions. Perturbing inputs
should either have no effect (invari-
ance) or a predictable effect (direc-
tional expectation) on the model per-
formance. Input perturbations can
also generate adversarial examples to
test the robustness of ML models. Data
slicing can be used for quantifying

model performance for specific sub-
sets of the input data. Traditional tech-
niques such as equivalence class parti-
tioning and boundary value analysis
can also be used to select inputs for
testing a model. Similar to code cov-
erage in traditional software systems,
model coverage has been applied to
systematically exercise different parts
of a model. Concolic testing has been
used for more efficient and effective
model coverage. Researchers have also
experimented with mutation testing
with some success. Metamorphic test-
ing has been used to overcome the is-
sue of lack of test oracles.

Although individual models and
software components may behave cor-
rectly when tested in isolation, integr-
ation testing exercises them together
to uncover issues that emerge from
their interactions during their deploy-
ment in real-world scenarios. Search-
based testing has been used in auton-
omous vehicles to detect undesirable
feature interactions.

System testing is important to val-
idate the behavior of a complete sys-
tem in its operational environment.
Search-based testing has been used
for testing advanced driver assis-
tance systems and vision-based con-
trol systems. Adversaria l testing
has been used for the evaluation of
self-driving software in autonomous
vehicles and driver assistance sys-
tems. Metamorphic testing has been
used for detecting failures when mul-
tiple ML-based components interact
with each other in activity recogni-
tion chain systems.

DESIGN TACTICS FOR
IMPROVING THE TESTABILITY
OF AI SYSTEMS
Table 2 summarizes concerns from
a software and systems engineering
perspective that need to be addressed
when design i ng A I s ystems. T hese
issues have been derived from five
research problems discussed by Amo-
dei et al.4 that highlight risks asso-
ciated with poorly designed AI sys-
tems that, if manifested, could lead

TABLE 1. Testing at different levels of granularity.

Input testing Model testing
Integration
testing System testing

• Corner-case
analysis

• Out-of-
distribution or
underrepresented
input

• Input perturbation
• Adversarial testing
• Data slicing
• Equivalence class

partitioning
• Boundary value

analysis
• Model coverage
• Concolic testing
• Mutation testing
• Metamorphic

testing

• Search-based
testing

• Search-based
testing

• Adversarial
testing

• Metamorphic
testing

Repetition of training yields different outcomes
with a likelihood of an unintended behavior that

can lead to a fault or failure.

 M A R C H 2 0 2 2 103

to undesirable outcomes, including
accident s that result in loss of life
or property.

These concerns have been i l lus-
trated4 using the example of a clean-
ing robot. A robot should not knock off
items that it should not disturb while
cleaning the room (avoiding a negative
side effect); it should not compromise
its vision system so it does not have to
clean when it can’t see the mess (avoid-
i ng rewa rd h ack i ng); it shou ld not
throw away valuable items, such as a
cell phone on the floor, because it has
limited information on what consti-
tutes trash (scalable supervision con-
cern); while deciding to mop a room it
should not put a mop in an electrical
outlet (safe exploration concern); and
it should be able to adapt its cleaning
strategies learned in an office to clean-
ing a factory floor (showing robustness
to distributed shift). Testing strategies
need to be in place to ensure that an AI
system is not vulnerable to these risks,
and that it behaves as intended.

Using this software and systems
engineering perspective, we are me-
thodically exploring and addressing
the design concerns listed in Table 2
using design tactics for testability.5 As
shown in Figure 1, the goal of these tac-
tics is to allow ease of testing by con-
trolling and observing the behavior of
an AI system.

The input into an AI system, its
output, and its internal state are mon-
itored through a test monitor that
uses them to validate the system’s be-
havior. At the time of this writing, we
have begun to examine the scalable
supervision concern associated with
the objective function evaluation cat-
egory as well as the safe exploration
and robustness to distributional shift
concerns associated with the behavior
during learning process category (see
Table 2). As an illustrative example, we
will use a predictive analytics system
for adjudicating loans to applicants
while minimizing the risk of losing
money to demonstrate the use of de-
sign tactics for testability to address
these concerns.

Figure 2 shows the different ele-
ments of the predictive analytics sys-
tem used in our example. A web-based
loan app takes a loan request from a
bank customer. It sends the request to a

predictive analysis ML model through
the StreamLit framework. The ML
model makes a prediction and sends
its response back to the user through
the StreamLit framework. The frame-
work also forwards the original user
request to a test monitor. The moni-
tor uses its monitor behavior compo-
nent to validate the runtime behavior
of the ML model and also writes the
user request (input data) along with

the model prediction (output data) to
a logger, which saves these data to a
persistent store. The monitor also has
a monitor drift component, which is
scheduled to run periodically on the

aggregated user input data for that pe-
riod to see if the model performance
has drifted to a level where it may need
retraining. Additionally, the monitor’s
run self-diagnostics component per-
forms diagnostics on the ML model on
a periodic schedule to ensure that the
retrained model continues to operate
as expected.

The ML model is continuously
validated at runtime by the monitor

Receive Input
AI System

Monitor Output

Monitor Internal State

Monitor Input

Test
Monitor

Validate Behavior

FIGURE 1. The use of a test monitor for improving testability in an AI system.

TABLE 2. Design concerns for AI systems.

Category Concern Description

Objective
function

Avoid negative side
effects

An objective function must not focus only
on accomplishing some specific task in
the environment but should also take into
account other variables in the (potentially
very large) environment, ignoring of which
might actually be harmful

Avoid reward
hacking

Prevent gaming of the objective function

Objective
function
evaluation

Scalable supervision Avoid harmful behavior due to bad
extrapolations from limited samples
intended to avoid the cost of evaluating an
expensive objective function

Behavior
during learning
process

Safe exploration Learn new behavior with no undesirable
consequences

Robustness to
distributional shift

Continue to operate as intended in an
environment

Similar to code coverage in traditional software
systems, model coverage has been applied to

systematically exercise different parts of a model.

104 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

SOFTWARE ENGINEERING

behavior component using metamor-
phic testing, a software testing tech-
nique that uses metamorphic relations
to address the test oracle problem dis-
cussed earlier. It verifies and validates
the “expected” relationships between
inputs and outputs across multiple ex-
ecutions of the loan app. For instance,
given a certain income level, years of
employment, and debt-to-income ra-
tio as input, there is a high probability
that the loan app will approve the loan.
If this relationship is violated across
multiple executions of the system,
then that indicates a fault.

We also use the test monitor to ob-
serve the effect when input data are
changed in known ways (a perturb
input tactic). For instance, whenever
a new loan application is submitted by
the user, the monitor behavior compo-
nent may invoke the ML model after
transformation on one or more pre-
dictor variables (such as gender, age,
or i ncome). T he d i f ferences i n t he
prediction on the original input and
the transformed input are observed
to see if there is no effect on the model
prediction (the ML model is invariant
to the change) or a predictable effect

(the ML model responds to the change
in known ways). For example, simply
changing the gender of a loan appli-
cant should have no effect, but chang-
ing the income level should have a
predictable effect on the approval of
the loan.

Periodically, the monitor drift com-
ponent analyzes the input data from
the user logged by the test monitor to
check whether the model performance
has degraded over time because of
any changes in the environment
that violate the model assumptions
(a measure model accuracy tactic).
For instance, the model performance
is believed to degrade when the dis-
tribution of the input data set is dif-
ferent from the distribution of the
training data set. If the model is deter-
mined to be drifting over the period,
then model retraining needs to be
performed. To ensure that the train-
ing and input data sets have the same
distribution, we employ the Kolmog-
orov–Smirnov (K–S) testing tactic.

In addition to monitoring the dis-
tribution of the predictors and the
response variable, the monitor drift
component also performs pairwise
correlation between the features in
these data sets. Here, we use the ad-
justed r-squared values as indicators
for the pairwise correlation between
the features. To determine whether
the test and the training data sets are
from the same or different distribu-
tions, we compute the cosine simi-
larity index on the obtained adjusted
r-squared values.

The run self-diagnostics compo-
nent periodically performs testing
using equivalence class partitioning,
boundary value analysis, and data
slicing. For instance, the aggregated
user input data can be partitioned into
different equivalence classes. Each
class basically consists of instances
that have a similar categorical type
value for a given predictor. For exam-
ple, a partition class would include all
input instances where the gender is
“male,” the employment duration is
“long,” and the income level is “high.”

Testability of AI Systems

Scalable
Supervision Safe

Exploration

Robustness to
Distributional Shift

• Monitor Behavior
• Metamorphic Testing
• Perturb Input

• Run Self-Diagnostics
• Equivalence Class Partitioning
• Boundary Value Analysis
• Data Slicing

• Monitor Drift
• K–S Testing
• Measure Model Accuracy
• Retrain Model

FIGURE 3. A testability design tactics catalog for AI systems.

Loan App

StreamLit Framework

ML Model

Logger

Test Monitor

Monitor Behavior

Monitor Drift

Run Self-Diagnostics

Test

Write

Analyze

Froward Request

Request/
Response

Request/
Response

FIGURE 2. A predictive analytics system used for adjudicating loan applications.

 M A R C H 2 0 2 2 105

Knowing the test oracle for each class,
the run self-diagnostics component
can execute the ML model on any ran-
dom sample from a given equivalence

class or on samples at the boundary of
a class. These types of tests can be per-
formed on any input data slice or sub-
set as well.

We conducted several experiments
during runtime to test the performance
of the ML model. Whenever a new user
input (new test data) comes into the
system, the monitor behavior compo-
nent performs a metamorphic test-
ing or testing on perturbed input, as
discussed earlier. In all of the experi-
ments, the monitor drift component
was instructed to keep monitoring
the p value of the K–S test and the cosine
similarity index. Any indication that
the p value is less than 0.05 and the
cosine similarity index is closer to 0
prompts the test monitor to invoke
the model retraining step. Retrain-
ing is also necessary when the model
accuracy drops. The run self-diag-
nostics component ensures that the
model (original or retrained) will con-
tinue to behave as expected by self-di-
agnosing itself against known classes
or slices of data.

T h i s m o t i v a t ion a l e x a m ple
demonstrates how testability
design tactics can be used for

controlling and observing the behav-
ior of an AI system at runtime to mon-
itor the effectiveness of the system

once it has been deployed. We have
begun organizing these tactics into a
testability design tactics catalog, as
shown in Figure 3.

The root of this hierarchy is the
testability of AI systems, and the inter-
mediate nodes represent categories of
concerns related to this testability that
the tactics at the leaf level address. Not
all testability design concerns (such as
those enumerated in Table 2) have been
addressed in the catalog at this time. It
is the intent of the authors to continue
to broaden this catalog with additional
design tactics as they are discovered.

ACKNOWLEDGMENT
This material is based upon work
funded and supported by the 2020 In-
dustryXchange Multidisciplinary Re-
search Seed Grant from Pennsylvania
State University.

REFERENCES
1. V. Riccio, G. Jahangirova, A.

Stocco, N. Humbatova, M. Weiss,
and P. Tonella, “Testing ma-
chine learning based systems: A
systematic mapping,” Empirical
Softw. Eng., vol. 25, no. 6, pp.
5193–5254, 2020, doi: 10.1007/
s10664-020-09881-0.

2. D. Marijan, A. Gotlieb, and M.
Kumar Ahuja, “Challenges of testing
machine learning based systems,”
in Proc. 2019 IEEE Int. Conf. Artif.
Intell. Testing (AITest), Newark,
CA, USA, pp. 101–102, doi: 10.1109/
AITest.2019.00010.

3. J. M. Zhang, M. Harman, L. Ma,
and Y. Liu, “Machine learning
testing: Survey, landscapes and
horizons,” IEEE Trans. Softw. Eng.,
early access, Feb. 2020, doi: 10.1109/
TSE.2019.2962027.

4. D. Amodei, C. Olah, J. Steinhardt,
P. Christiano, J. Schulman, and D.
Mane, “Concrete problems in AI
safety,” 2016, arXiv:1606.06565.

5. L. Bass, P. Clements, and R. Kazman,
Software Architecture in Practice, 3rd
ed. Reading, MA, USA: Addison-Wes-
ley, 2012.

RAGHVINDER S. SANGWAN is an
associate professor of software en-
gineering in the School of Graduate
Professional Studies, Pennsylvania
State University, Malvern,
Pennsylvania, 19355, USA. Contact
him at rsangwan@psu.edu.

YOUAKIM BADR is an associate
professor of data analytics in the
School of Graduate Professional
Studies, Pennsylvania State
University, Malvern, Pennsylvania,
19355, USA. Contact him at yzb61
@psu.edu.

SATISH SRINIVASAN is an associate
professor of information science in
the School of Graduate Professional
Studies, Pennsylvania State
University, Malvern, Pennsylvania,
19355, USA. Contact him at sus64
@psu.edu.

PARTHA MUKHERJEE is an assis-
tant professor of data analytics in
the School of Graduate Professional
Studies, Pennsylvania State
University, Malvern, Pennsylvania,
19355, USA. Contact him at
pom5109@psu.edu.

The run self-diagnostics component ensures that
the model (original or retrained) will continue

to behave as expected by self-diagnosing itself
against known classes or slices of data.

