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Artificial intelligence (AI) and machine learning 
(ML) systems (referred to as AI systems in the 
rest of the article) continuously adapt their 
behavior by learning from the environment 

in which they operate. The depend-
ability of these systems, in part, re-
lies on quality assurance. However, 
traditional approaches to software 
tes t i ng a re l i m ited becau se t he 
logic in AI systems, unlike tradi-
tional systems, is determined by the 
data used in training them and the 
stochastic nature of the learning 
process that makes them nonde-
terministic. Repetition of training 
y ields dif ferent outcomes w it h a 
likelihood of an unintended behav-
ior that can lead to a fault or failure.1

Testing approaches for explicitly 
checking behaviors that we expect 
AI systems to follow are challenged 
by the following:1,2

› Lack of test oracles: AI systems reason probabilistically; 
hence, their outputs are learned and predicted by an 
ML model rather than one specified prior to testing.

› Large input space: It is difficult to determine a test 
data set that is representative of a voluminous and 
diverse input space.
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›› High white-box testing effort: 
Testing all possible states within 
ML models of an AI system is 
intractable.

In the absence of oracles combined 
with a large input and state space, tests 
can only detect crashes (smoke testing).

Software testing, however, is an 
important task within the software 
development lifecycle and aims at 
providing stakeholders with measur-
able indicators about the quality of the 

software product under design. Tra-
ditional software testing techniques 
and tactics could be applied to the 
development of AI systems in which 
programming languages are intrin-
sic components. Nevertheless, testing 
AI systems is not just limited to soft-
ware bugs and faults. They raise spe-
cific problems related to their quality 
and must be tested to determine their 
correctness under the assumption of 
some specific hypotheses (statisti-
cal and probabilistic) and verified to 
ensure that their outcomes fit the ex-
pected behavior.

TECHNIQUES FOR TESTING 
AI SYSTEMS
Table 1 organizes several techniques 
that have been proposed for testing AI 
systems1,3 into four distinct categories 
according to the level of granularity of 
the entity being tested within the sys-
tem. Input testing analyzes the training 
data for potential reasons that can lead 
to unsuccessful training, such as corner 
cases and for out-of-distribution or un-
derrepresented data in the initial train-
ing set.

Model testing uses measures of ac-
curacy for classifiers or mean-square 
errors for regressors to look for a sub-
optimal model architecture, its train-
ing process, and hyperparameters. 
Model testing can be used to identify 
inputs for which the model produces 
wrong predictions. Perturbing inputs 
should either have no effect (invari-
ance) or a predictable effect (direc-
tional expectation) on the model per-
formance. Input perturbations can 
also generate adversarial examples to 
test the robustness of ML models. Data 
slicing can be used for quantifying 

model performance for specific sub-
sets of the input data. Traditional tech-
niques such as equivalence class parti-
tioning and boundary value analysis 
can also be used to select inputs for 
testing a model. Similar to code cov-
erage in traditional software systems, 
model coverage has been applied to 
systematically exercise different parts 
of a model. Concolic testing has been 
used for more efficient and effective 
model coverage. Researchers have also 
experimented with mutation testing 
with some success. Metamorphic test-
ing has been used to overcome the is-
sue of lack of test oracles.

Although individual models and 
software components may behave cor-
rectly when tested in isolation, integr
ation testing exercises them together 
to uncover issues that emerge from 
their interactions during their deploy-
ment in real-world scenarios. Search-
based testing has been used in auton-
omous vehicles to detect undesirable 
feature interactions.

System testing is important to val-
idate the behavior of a complete sys-
tem in its operational environment. 
Search-based testing has been used 
for testing advanced driver assis-
tance systems and vision-based con-
trol systems. Adversaria l testing 
has been used for the evaluation of 
self-driving software in autonomous 
vehicles and driver assistance sys-
tems. Metamorphic testing has been 
used for detecting failures when mul-
tiple ML-based components interact 
with each other in activity recogni-
tion chain systems.

DESIGN TACTICS FOR 
IMPROVING THE TESTABILITY 
OF AI SYSTEMS 
Table 2 summarizes concerns from 
a software and systems engineering 
perspective that need to be addressed 
when design i ng A I s ystems. T hese  
issues have been derived from five 
research problems discussed by Amo-
dei et al.4 that highlight risks asso-
ciated with poorly designed AI sys-
tems that, if manifested, could lead 

TABLE 1. Testing at different levels of granularity.

Input testing Model testing
Integration 
testing System testing

• � Corner-case 
analysis 

• � Out-of- 
distribution or 
underrepresented 
input 

• � Input perturbation 
• � Adversarial testing
• � Data slicing 
• � Equivalence class 

partitioning
• � Boundary value 

analysis 
• � Model coverage 
• � Concolic testing 
• � Mutation testing 
• � Metamorphic 

testing 

• � Search-based 
testing 

• � Search-based 
testing 

• � Adversarial 
testing 

• � Metamorphic 
testing 

Repetition of training yields different outcomes  
with a likelihood of an unintended behavior that  

can lead to a fault or failure.
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to undesirable outcomes, including 
accident s that result in loss of life 
or property.

These concerns have been i l lus-
trated4 using the example of a clean-
ing robot. A robot should not knock off 
items that it should not disturb while 
cleaning the room (avoiding a negative 
side effect); it should not compromise 
its vision system so it does not have to 
clean when it can’t see the mess (avoid-
i ng rewa rd h ack i ng); it  shou ld not  
throw away valuable items, such as a 
cell phone on the floor, because it has 
limited information on what consti-
tutes trash (scalable supervision con-
cern); while deciding to mop a room it 
should not put a mop in an electrical 
outlet (safe exploration concern); and 
it should be able to adapt its cleaning 
strategies learned in an office to clean-
ing a factory floor (showing robustness 
to distributed shift). Testing strategies 
need to be in place to ensure that an AI 
system is not vulnerable to these risks, 
and that it behaves as intended.

Using this software and systems 
engineering perspective, we are me-
thodically exploring and addressing 
the design concerns listed in Table 2 
using design tactics for testability.5 As 
shown in Figure 1, the goal of these tac-
tics is to allow ease of testing by con-
trolling and observing the behavior of 
an AI system.

The input into an AI system, its 
output, and its internal state are mon-
itored through a test monitor that 
uses them to validate the system’s be-
havior. At the time of this writing, we 
have begun to examine the scalable 
supervision concern associated with 
the objective function evaluation cat-
egory as well as the safe exploration 
and robustness to distributional shift 
concerns associated with the behavior 
during learning process category (see 
Table 2). As an illustrative example, we 
will use a predictive analytics system 
for adjudicating loans to applicants 
while minimizing the risk of losing 
money to demonstrate the use of de-
sign tactics for testability to address 
these concerns.

Figure 2 shows the different ele-
ments of the predictive analytics sys-
tem used in our example. A web-based 
loan app takes a loan request from a 
bank customer. It sends the request to a 

predictive analysis ML model through 
the StreamLit framework. The ML 
model makes a prediction and sends 
its response back to the user through 
the StreamLit framework. The frame-
work also forwards the original user 
request to a test monitor. The moni-
tor uses its monitor behavior compo-
nent to validate the runtime behavior 
of the ML model and also writes the 
user request (input data) along with 

the model prediction (output data) to 
a logger, which saves these data to a 
persistent store. The monitor also has 
a monitor drift component, which is 
scheduled to run periodically on the 

aggregated user input data for that pe-
riod to see if the model performance 
has drifted to a level where it may need 
retraining. Additionally, the monitor’s 
run self-diagnostics component per-
forms diagnostics on the ML model on 
a periodic schedule to ensure that the 
retrained model continues to operate 
as expected.

The ML model is continuously 
validated at runtime by the monitor 

Receive Input
AI System

Monitor Output

Monitor Internal State

Monitor Input

Test
Monitor

Validate Behavior

FIGURE 1. The use of a test monitor for improving testability in an AI system.

TABLE 2. Design concerns for AI systems.

Category Concern Description

Objective 
function

Avoid negative side 
effects

An objective function must not focus only 
on accomplishing some specific task in 
the environment but should also take into 
account other variables in the (potentially 
very large) environment, ignoring of which 
might actually be harmful

Avoid reward 
hacking

Prevent gaming of the objective function

Objective 
function 
evaluation

Scalable supervision Avoid harmful behavior due to bad 
extrapolations from limited samples 
intended to avoid the cost of evaluating an 
expensive objective function 

Behavior 
during learning 
process

Safe exploration Learn new behavior with no undesirable 
consequences

Robustness to 
distributional shift

Continue to operate as intended in an 
environment 

Similar to code coverage in traditional software 
systems, model coverage has been applied to 

systematically exercise different parts of a model.
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behavior component using metamor-
phic testing, a software testing tech-
nique that uses metamorphic relations 
to address the test oracle problem dis-
cussed earlier. It verifies and validates 
the “expected” relationships between 
inputs and outputs across multiple ex-
ecutions of the loan app. For instance, 
given a certain income level, years of 
employment, and debt-to-income ra-
tio as input, there is a high probability 
that the loan app will approve the loan. 
If this relationship is violated across 
multiple executions of the system, 
then that indicates a fault.

We also use the test monitor to ob-
serve the effect when input data are 
changed in known ways (a perturb 
input tactic). For instance, whenever 
a new loan application is submitted by 
the user, the monitor behavior compo-
nent may invoke the ML model after 
transformation on one or more pre-
dictor variables (such as gender, age, 
or i ncome). T he d i f ferences i n t he  
prediction on the original input and 
the transformed input are observed 
to see if there is no effect on the model 
prediction (the ML model is invariant 
to the change) or a predictable effect 

(the ML model responds to the change 
in known ways). For example, simply 
changing the gender of a loan appli-
cant should have no effect, but chang-
ing the income level should have a 
predictable effect on the approval of 
the loan.

Periodically, the monitor drift com-
ponent analyzes the input data from 
the user logged by the test monitor to 
check whether the model performance 
has degraded over time because of 
any changes in the environment 
that violate the model assumptions 
(a measure model accuracy tactic). 
For instance, the model performance 
is believed to degrade when the dis-
tribution of the input data set is dif-
ferent from the distribution of the 
training data set. If the model is deter-
mined to be drifting over the period, 
then model retraining needs to be 
performed. To ensure that the train-
ing and input data sets have the same 
distribution, we employ the Kolmog-
orov–Smirnov (K–S) testing tactic. 

In addition to monitoring the dis-
tribution of the predictors and the 
response variable, the monitor drift 
component also performs pairwise 
correlation between the features in 
these data sets. Here, we use the ad-
justed r-squared values as indicators 
for the pairwise correlation between 
the features. To determine whether 
the test and the training data sets are 
from the same or different distribu-
tions, we compute the cosine simi-
larity index on the obtained adjusted 
r-squared values.

The run self-diagnostics compo-
nent periodically performs testing 
using equivalence class partitioning, 
boundary value analysis, and data 
slicing. For instance, the aggregated 
user input data can be partitioned into 
different equivalence classes. Each 
class basically consists of instances 
that have a similar categorical type 
value for a given predictor. For exam-
ple, a partition class would include all 
input instances where the gender is 
“male,” the employment duration is 
“long,” and the income level is “high.” 

Testability of AI Systems

Scalable
Supervision Safe

Exploration

Robustness to
Distributional Shift

• Monitor Behavior
• Metamorphic Testing
• Perturb Input

• Run Self-Diagnostics
• Equivalence Class Partitioning
• Boundary Value Analysis
• Data Slicing

• Monitor Drift
• K–S Testing
• Measure Model Accuracy
• Retrain Model

FIGURE 3. A testability design tactics catalog for AI systems.

Loan App

StreamLit Framework

ML Model

Logger

Test Monitor

Monitor Behavior

Monitor Drift

Run Self-Diagnostics

Test

Write

Analyze

Froward Request

Request/
Response

Request/
Response

FIGURE 2. A predictive analytics system used for adjudicating loan applications.
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Knowing the test oracle for each class, 
the run self-diagnostics component 
can execute the ML model on any ran-
dom sample from a given equivalence 

class or on samples at the boundary of 
a class. These types of tests can be per-
formed on any input data slice or sub-
set as well.

We conducted several experiments 
during runtime to test the performance 
of the ML model. Whenever a new user 
input (new test data) comes into the 
system, the monitor behavior compo-
nent performs a metamorphic test-
ing or testing on perturbed input, as 
discussed earlier. In all of the experi-
ments, the monitor drift component 
was instructed to keep monitoring 
the p value of the K–S test and the cosine 
similarity index. Any indication that 
the p value is less than 0.05 and the 
cosine similarity index is closer to 0 
prompts the test monitor to invoke 
the model retraining step. Retrain-
ing is also necessary when the model 
accuracy drops. The run self-diag-
nostics component ensures that the 
model (original or retrained) will con-
tinue to behave as expected by self-di-
agnosing itself against known classes 
or slices of data.

T h i s  m o t i v a t ion a l  e x a m ple 
demonstrates how testability 
design tactics can be used for 

controlling and observing the behav-
ior of an AI system at runtime to mon-
itor the effectiveness of the system 

once it has been deployed. We have 
begun organizing these tactics into a 
testability design tactics catalog, as 
shown in Figure 3.

The root of this hierarchy is the 
testability of AI systems, and the inter-
mediate nodes represent categories of 
concerns related to this testability that 
the tactics at the leaf level address. Not 
all testability design concerns (such as 
those enumerated in Table 2) have been 
addressed in the catalog at this time. It 
is the intent of the authors to continue 
to broaden this catalog with additional 
design tactics as they are discovered. 
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The run self-diagnostics component ensures that 
the model (original or retrained) will continue 

to behave as expected by self-diagnosing itself 
against known classes or slices of data.


