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 Elliptic curve pairings are a powerful tool and 

a popular way to construct zero-knowledge 

proofs, which are beginning to be used in 

blockchains as a way to provide privacy in the 

transaction ledger. 

A recent trend in cryptography is to leverage 
zero-knowledge proof systems that allow 
one party to convince another that they 
have information that satisfies certain con-

ditions without revealing the information itself. This 
technology is particularly useful when multiple par-
ties—who may not trust each other—nevertheless need 
to coordinate to produce some useful information. For 
example, the Zcash cryptocurrency uses zero-knowl-
edge cryptography to hide the amounts and recipients 
in Zcash transactions while allowing an observer to ver-
ify the resulting balances have been adjusted correctly.

The heart of many of these zero-knowledge proof sys-
tems is the elliptic curve pairing, a useful function that 

can test if two points on an elliptic 
curve are related in the same way as 
another pair of points.

 ELLIPTIC CURVES
An elliptic curve is a polynomial that 
can be written as y2 = x3 + ax + b. If the 
y2 on the left side were simply y, then 

this would be a typical cubic polynomial, familiar from a high 
school algebra class. Squaring the y on the left side turns this 
cubic into an elliptic curve with a pleasing symmetry across 
the x-axis.

Amazingly, the points on an elliptic curve can be used 
to define an algebraic group structure. Draw a straight line 
diagonally across an elliptic curve and, being cubic, it will 
intersect the line at up to three points. These intersection 
points “add up to zero” in the elliptic curve group struc-
ture. If P = (x1, y1), Q = (x2, y2), and R = (x3, y3), then having a 
straight line y = mx + b passing through these three points 
tells us that P + Q + R = 0 in the elliptic curve group. This 
can be rearranged as P + Q = −R, which gives us a formula 
for the sum of two points on an elliptic curve and a geo-
metric method for calculating it. To add two points: draw 
a line through them and look for the third intersection 
point. The inverse of this point is the desired sum.
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Scenario-Based 
Algorithmics: 
Coding Algorithms 
by Automatic 
Composition of 
Separate Concerns
David Harel, Assaf Marron, and Raz Yerushalmi , Weizmann Institute of Science

A method for programming reactive systems, 

called scenario-based algorithmics, can have several 

advantages, both in programming and in computer 

science education. We provide new examples, 

experiments, and perspectives.

Consider the following chal-
lenge: A manager in a car 
dealership wishes to rear-
range the cars in the deal-

ership’s lot according to some arbi-
trary sort key, such as window-sticker 
price or engine serial number. The 
lot is full, and passage lanes should 
not be blocked. Can the manager give 
employees simple instructions to ac-
complish an efficient in-place sorting 
algorithm like Quicksort—not as a 
long sequence of steps but as an unor-
dered set of rules? We argue that the 
answer is positive and discuss a new 
approach to specifying algorithms 
that embodies this answer.

Textbook specifications of pro-
cedural code for an algorithm, such 
as Quicksort, binary search, or two-
phase commit, are usually accompa-
nied by a description of the key tenets 
that distinguish this algorithm from 
other solutions to the problem. These 
explanations are needed because the 

The identity element, or zero, of the 
elliptic curve group is an abstract point 
at infinity. Every line can be thought 
of as passing through this point as 
the line heads off the page and out to 
infinity. (The point at infinity can be 
made explicit using a projective coor-
dinate system where it becomes a reg-
ular point with integer coordinates.)

The inverse of an elliptic curve 
point is its reflection across the x-axis. 
The line through these two points will 
be vertical and not intersect the curve 
proper in any other place. If P = (x1, y1), 
then the vertical line x = x1 passing 
through P will also intersect the curve 
at Q = (x1, −y1). The equation represent-
ing these intersections is P + Q = 0, 
which can be rearranged to show that 
Q = −P. Thus, the additive inverse of a 
point is its reflection across the x-axis.

Using some calculus, we can find tan-
gent lines on an elliptic curve. A line that 
is tangent to a point P on the elliptic curve 
can be thought of as intersecting the 
curve twice at that point. There will be a 
third intersection point, Q, showing that 
P + P + Q = 0 or, equivalently, 2P = −Q.

Therefore, with some algebra and a 
little calculus, we can add two differ-
ent points or double any single point 
on an elliptic curve. This gives us an 
efficient way to find an nth multi-
ple of any point on the curve using a 
double-and-add style algorithm re-
quiring O(log n) steps.

ELLIPTIC CURVES IN 
CRYPTOGRAPHY
An elliptic curve  is often introduced us-
ing the real numbers R as the base field 
for which x  and y  are members. But 
an elliptic curve can be constructed 
over any field, including finite fields, 
such as the integers modulo a prime 
number. When constructed over a fi-
nite field, an elliptic curve group will 
have a finite number of elements, and 
its group structure will be either cyclic 
or a product of two cyclic groups.2

Over a finite field, each point on an 
elliptic curve has finite order, so for any 
point P there is some whole number r
such that rP = 0. All the points P such 
that rP = 0 form a subgroup of the elliptic 
curve group called the r-torsion subgroup.

Now we can see how elliptic curve 
groups can be used in cryptography. Sup-
pose you have a secret number n. Take 
some publicly known point P and com-
pute nP using the efficient algorithm 
mentioned earlier. The point nP is just a 
coordinate pair (x, y) and can be published 
freely. Someone else who knows both P
and nP can discover n by naively multiply-
ing P by itself repeatedly until reaching nP, 
but this will take ages if n is large. Faster 
algorithms for discovering n exist, but all 
are exponential in the number of digits 
of n. This is the elliptic curve discrete log-
arithm problem (ECDLP) that is used as 
the basis for elliptic curve cryptography.

Elliptic curve cryptography is fast 
and uses smaller keys than other cryp-
tosystems, such as Rivest–Shamir–Adle-
man. For these reasons, it is the primary 
public-key cryptography used to secure 
Internet communication today. It is the 
reason I can send my credit card num-
ber or email password over the public 
Wi-Fi at a coffee shop, and no one else 
in the vicinity, including the coffee shop 
owner or their Internet service provider, 
can snoop on it and see my information.

PAIRINGS ON 
ELLIPTIC CURVES
The elliptic curve group used as the 
basis for cryptography is not  a general 
algebraic group. Elliptic-curve-based 
groups have additional structure and 
particularities that are specific to el-
liptic curves. This means that elliptic 
curves could have specialized attacks 
that exploit their extra structure to 
make the ECDLP easier to break.

One such structure is the elliptic 
curve pairing. An elliptic curve pairing 
is a nondegenerate bilinear map e: E[r] 
× E[r] → µr, where E[r] is the r-torsion 

subgroup of an elliptic curve group, and 
µr is the multiplicative group of rth r oots 
of unity in the field Fqk (q is the charac-
teristic of the field over which the elliptic 
curve is constructed). The exponent k is 
called the embedding degree and is an im-
portant security parameter for pairings.

Bilinearity means that e(nP, mQ)r = 
e(P, mQ)r

n = e(nP, Q)r
m = e(P, Q)r

nm, where 
the r subscript means “in µr.” Nonde-
generacy means that e(P, Q)r ≠ 1 as long 
as neither P nor Q is zero (the point 
at infinity).

The existence of a pairing on an el-
liptic curve means that one can check 
to see if two pairs of points are related in 
the same way. Suppose we have a secret 
number n, and we also have four ellip-
tic curve points: P, nP, Q, and nQ. Using 
a pairing, we can test to see if nP is the 
same multiple of P as nQ is of Q by check-
ing the following pairing equation:

e(P, nQ)r = e(nP, Q)r.

Checking this equation involves 
computing the resulting root of unity 
on each side and comparing the re-
sults. At no point do we discover n, but 
we can tell that both nP and nQ are nth 
multiples of P and Q. This leaks a little 
bit of information about these points 
that somewhat weakens security.

This difference in security can be for-
malized using computational hardness 
assumptions. Some relevant hardness 
assumptions for elliptic curve pairings 
are the computational Diffie–Helman 
(CDH) problem and the decisional Diffie–
Hellman (DDH) problem as well as the 
discrete logarithm problem discussed 
earlier.3 The CDH problem asks whether 
it is feasible to compute nmP only given 
P, nP, and mP. The CDH problem is 
infeasible for carefully chosen elliptic 
curves. (Notice that the CDH problem 
would be feasible if the discrete loga-
rithm were also feasible to compute.)

T h e  D D H  p ro b l e m  d o e s n’ t  a s k 
that nmP be computed, only that it be 
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recognizable. That is, given only P, nP, mP, 
and Q, decide whether Q is actually equal 
to nmP. This is easy to do with a pairing by 
checking this pairing equation:

e(nP, mP)r = e(P, Q)r.

COMPUTING A PAIRING
A few different definitions of pairings 
exist, but the most commonly used 
pairings are based on Tate’s definition, 
which allows several optimizations. 
Tate’s pairing is defined as follows1:

=
−

e P Q f Q( , ) ( ) .r r p

q
r

,

k 1

In this formula, r (on the right-hand 
side) is the order of an r-torsion group 
to which P must belong, q is the char-
acteristic of the field over which the el-
liptic curve is constructed, and k is the 
embedding degree discussed in the 
section “Pairings on Elliptic Curves.”

Computing the pairing has two 
major phases: the Miller loop, where 
function fr, P(Q) is computed using a 
double-and-add style algorithm, and 
then the final exponentiation, in which 
fr, P(Q) is taken to the power of (qk−1)/r.

MILLER’S ALGORITHM
Function fr, P is a rational function in 
x and y with a zero of multiplicity r at 
P (meaning rP = 0) and a pole of mul-
tiplicity r at the point at infinity. This 
function can be constructed iteratively 
out of linear factors. At each point in 
this process, we need to know how many 
zeros and poles our function has and at 
which places. A divisor is the mathemat-
ical construction that takes care of this 
bookkeeping for us. Divisors are out of 
the scope of this article but are implicitly 
used in this section for counting multi-
plicities of zeros and poles.

Suppose, for some n, the line ax + by + c = 
0 passes through points P and nP. Because 
of the group law on elliptic curves, this 
same line will also pass through −(n + 1)P. 
This line will have a zero of order 1 at each 
of P, nP, and −(n + 1)P as well as a pole of 
order 3 at the point at infinity. We will de-
note this line through P and nP as lP, nP.

Suppose we also find the vertical 
line x + d = 0 passing through nP and  
−nP. This line has zeros of order 1 at 
both nP and –nP and a pole of order 2 
at the point at infinity. We will denote 
the vertical line through nP as vnP.

Dividing these gives us a rational 
function 
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which will have zeros of order 1 at P and 
nP but poles of order 1 at (n + 1)P and the 
point at infinity. We can compute these 
functions for each n from 1 to r. When 
multiplied together, these functions have 
a telescoping-like behavior, where the lin-
ear factor in the numerator of gn,P creating 
a zero at nP cancels out the linear factor in 
the denominator of the previous func-
tion gn−1,P that had created a pole at nP.

The target function can be found 
by taking the product of these rational 
functions like so: 

∏=
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where gi,P(x, y) is the rational function 
whose numerator is a l ine passing 
through P and iP, and whose denomi-
nator is a vertical line through iP, as 
described previously.

This suggests an algorithm for 
computing fr,P(Q) by successively eval-
uating gi,P at Q and accumulating the 
results by multiplying the current 
state by gi,P(Q) for each i up to r. This al-
gorithm’s runtime complexity is O(r), 
and so it is not suitable for our pur-
poses where large r will be used.

However, we can make this into an 
O(log r) algorithm by using a double- 
and-add style approach. The preceding 
product formula suggests this iterative 
formula for computing fm + 1,P from fm,P:
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Similarly, we can also get a crucial 
formula for f2m,P from fm,P:
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Combining these gives us a double- 
and-add method for computing fr,P that 
runs in O(log r) time.

THE FINAL EXPONENTIATION
The only remaining piece of the pair-
ing formula left to compute is the final 
exponentiation, in which the result of 
fr,P(Q) is taken to the power (qk−1)/r. In 
practice, the characteristic of the field 
q is very large, say 256 bits, and the 
embedding degree k is greater than 1. 
(Two commonly used elliptic curve 
families, Barreto–Naehrig (BN) and 
Barreto–Lynn–Scott, use k = 12 and k = 
24, respectively.1) A greater k increases 
security but makes the final exponent 
much greater and harder to compute. 
To make things even worse, a large k 
also means the field elements we are 
working with are members of a kth-de-
gree extension field, where multiplica-
tion is more difficult than in the base 
field. “Pairing-friendly” curves have an 
embedding degree that is large enough 
to provide security but not too large 
that efficiency is compromised.

Thankfully, a few optimizations 
can help. For BN elliptic curves, the 
embedding degree will always be 12. 
Then, (q12 − 1)/r can be factored as  
(q6 − 1) (q2 + 1) ((q4 − q2 + 1)/r). The two 
binomial factors can be computed eas-
ily with the Frobenius operation, leav-
ing the remaining (q4 − q2 + 1)/r part 
with a much lower exponent.

Si nc e t he e x p one n t (qk−1)/ r  i s 
based on the parameters of an elliptic 
curve and known well in advance, pre-
computation can speed up the final 
exponentiation process.4

Furthermore, occasionally multiple 
pairing values are computed and mul-
tiplied together according to some for-
mula. The Miller loop portion of each 
pairing can be computed first, these 
results multiplied together using the 
formula, and then the final exponen-
tiation can be applied once at the very 
end of the process.
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APPLYING PAIRINGS TO A 
ZERO-KNOWLEDGE PROOF 
IN A CRYPTOCURRENCY 
BLOCKCHAIN
Suppose there is a public ledger that re-
cords every transaction of a new crypto-
currency. A transaction would include 
a sender address, recipient address, and 
the amount being transferred:

T = (S, R, a).

Miners or validators of this crypto-
currency can compute the balance b 
in any account by adding up all of the 
amounts sent to that account num-
ber and subtracting the amounts sent 
from that account number. To check 
that the sender has enough funds to 
make the transaction, the validators 
check the following inequality:

b − a ≥ 0.

Each transaction in this new cryp-
tocurrency is public, so the amounts 
being transferred are viewable, and all 
account balances can be easily com-
puted from the ledger.

However, using an elliptic curve 
pairing, we can transform this simple 
public ledger into a private one, where 
all amounts are encrypted, and balances 
cannot be computed from the informa-
tion in the ledger. (The simple protocol 
that follows was chosen to illustrate the 
usefulness of an elliptic curve pairing 
in a blockchain environment, not for 
its security. This protocol suffers from 
a few security flaws that would need 
to be carefully addressed before imple-
menting it safely.)

Our new private cryptocurrency 
will use elliptic curve cryptography to 
hide the amount of each transaction. 
The designers of this private protocol 
will choose a pairing-friendly elliptic 
curve E and a point P on the curve that 
generates a large prime-order subgroup. 
Then, when the sender wants to send the 
amount a in a transaction, it includes aP 
in the amount field rather than a. Now, 
the amount of the transaction, a, can-
not be computed from the information 
in the transaction because of the ECDLP. 
Since elliptic curve arithmetic respects 

addition, an encrypted version of the 
balance, bP, can be computed by adding 
all of the encrypted amounts together 
just as before.

But how can we check that the sender 
has enough funds in the account to com-
plete the transaction? Because of the 
ECDLP, no validator can check directly 
that the sender’s balance exceeds the 
transaction amount. But if the sender 
includes some extra information, it 
ought to be able to convince a validator 
that the balance is high enough.

The sender chooses some point 
Q on the curve which it keeps to it-
self. It then computes b' = b − a, the 
new balance after the transaction is 
complete, and computes its bit de-
composition (b'0, b'1, …, b'n). The sender 
includes (b'0Q, b'1Q, …, bnQ') in the 
transaction data.

From this encrypted bit decomposi-
tion, a validator can compute b’Q using 
the equation:

b'Q = b0' Q + 2b1'Q + 4b2' Q + … + 2nbn' Q.

By providing a bit decomposition of 
b', the sender can show that b' is posi-
tive by the simple fact that there ar-
en’t enough bits to overflow the order 
of the elliptic curve subgroup we are 
working in.

Next, the validator chooses a ran-
dom number k and sends it to the 
sender. The sender computes kQ and 
sends this back to the validator. The 
validator uses this elliptic curve pair-
ing equation to check that the two 
versions of the balance are consistent 
with each other:

e(kP, b'Q) = e(bP, kQ).

Because of the bilinearity of the 
pairing, this equation shows that b'k 
= bk in the order-r target group for the 
pairing. With no foreknowledge of k, it 
is extremely unlikely that the sender 
can choose a bit decomposition that 
satisfies the pairing equation that is 
not the true decomposition.

Now that we’ve verified that the 
sender has enough to complete the 
transaction, t he transaction data  
T = (S, R, aP, (b'0Q, b'1Q, …, b'nQ), k, kQ) are 

appended to the ledger, and the trans-
action is complete.

This protocol is easily checkable 
with pairing equations because of the 
highly arithmetical nature of the state-
ment we are checking. Elliptic curve 
pairings can be used to check more 
complicated statements than this, 
however. Using a much more complex 
construction called a zk-SNARK, a few 
pairing equations can check any state-
ment in NP.

One major flaw in the proto-
col described previously is 
that the sender’s and recip-

ient’s addresses are public, and any-
one reading the ledger can see that 
the two parties are transacting, even 
if they can’t tell how much is being 
transferred. In Zcash, the sender and 
recipient addresses are also hidden, 
and a zk-SNARK is used to verify the 
addresses and link the amounts to the 
correct accounts without revealing 
the addresses. 
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