
74 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y 0 0 1 8 - 9 1 6 2 / 2 2 © 2 0 2 2 I E E E

ALGORITHMS

Elliptic Curve
Pairings
Joshua Brian Fitzgerald , Heliax AG

 Elliptic curve pairings are a powerful tool and

a popular way to construct zero-knowledge

proofs, which are beginning to be used in

blockchains as a way to provide privacy in the

transaction ledger.

A recent trend in cryptography is to leverage
zero-knowledge proof systems that allow
one party to convince another that they
have information that satisfies certain con-

ditions without revealing the information itself. This
technology is particularly useful when multiple par-
ties—who may not trust each other—nevertheless need
to coordinate to produce some useful information. For
example, the Zcash cryptocurrency uses zero-knowl-
edge cryptography to hide the amounts and recipients
in Zcash transactions while allowing an observer to ver-
ify the resulting balances have been adjusted correctly.

The heart of many of these zero-knowledge proof sys-
tems is the elliptic curve pairing, a useful function that

can test if two points on an elliptic
curve are related in the same way as
another pair of points.

 ELLIPTIC CURVES
An elliptic curve is a polynomial that
can be written as y2 = x3 + ax + b. If the
y2 on the left side were simply y, then

this would be a typical cubic polynomial, familiar from a high
school algebra class. Squaring the y on the left side turns this
cubic into an elliptic curve with a pleasing symmetry across
the x-axis.

Amazingly, the points on an elliptic curve can be used
to define an algebraic group structure. Draw a straight line
diagonally across an elliptic curve and, being cubic, it will
intersect the line at up to three points. These intersection
points “add up to zero” in the elliptic curve group struc-
ture. If P = (x1, y1), Q = (x2, y2), and R = (x3, y3), then having a
straight line y = mx + b passing through these three points
tells us that P + Q + R = 0 in the elliptic curve group. This
can be rearranged as P + Q = −R, which gives us a formula
for the sum of two points on an elliptic curve and a geo-
metric method for calculating it. To add two points: draw
a line through them and look for the third intersection
point. The inverse of this point is the desired sum.

Digital Object Identifier 10.1109/MC.2022.3146745
Date of current version: 8 April 2022

A P R I L 2 0 2 2 75

EDITOR DORON DRUSINSKY
Naval Postgraduate School; ddrusins@nps.edu

C O M P U T E R 0 0 1 8 - 9 1 6 2 / 2 1 © 2 0 2 1 I E E E O C T O B E R 2 0 2 1 95

ALGORITHMS
EDITOR DORON DRUSINSKY

Naval Postgraduate School ddrusins@nps.edu

Digital Object Identifier 10.1109/MC.2021.3099044
Date of current version: 24 September 2021

Scenario-Based
Algorithmics:
Coding Algorithms
by Automatic
Composition of
Separate Concerns
David Harel, Assaf Marron, and Raz Yerushalmi , Weizmann Institute of Science

A method for programming reactive systems,

called scenario-based algorithmics, can have several

advantages, both in programming and in computer

science education. We provide new examples,

experiments, and perspectives.

Consider the following chal-
lenge: A manager in a car
dealership wishes to rear-
range the cars in the deal-

ership’s lot according to some arbi-
trary sort key, such as window-sticker
price or engine serial number. The
lot is full, and passage lanes should
not be blocked. Can the manager give
employees simple instructions to ac-
complish an efficient in-place sorting
algorithm like Quicksort—not as a
long sequence of steps but as an unor-
dered set of rules? We argue that the
answer is positive and discuss a new
approach to specifying algorithms
that embodies this answer.

Textbook specifications of pro-
cedural code for an algorithm, such
as Quicksort, binary search, or two-
phase commit, are usually accompa-
nied by a description of the key tenets
that distinguish this algorithm from
other solutions to the problem. These
explanations are needed because the

The identity element, or zero, of the
elliptic curve group is an abstract point
at infinity. Every line can be thought
of as passing through this point as
the line heads off the page and out to
infinity. (The point at infinity can be
made explicit using a projective coor-
dinate system where it becomes a reg-
ular point with integer coordinates.)

The inverse of an elliptic curve
point is its reflection across the x-axis.
The line through these two points will
be vertical and not intersect the curve
proper in any other place. If P = (x1, y1),
then the vertical line x = x1 passing
through P will also intersect the curve
at Q = (x1, −y1). The equation represent-
ing these intersections is P + Q = 0,
which can be rearranged to show that
Q = −P. Thus, the additive inverse of a
point is its reflection across the x-axis.

Using some calculus, we can find tan-
gent lines on an elliptic curve. A line that
is tangent to a point P on the elliptic curve
can be thought of as intersecting the
curve twice at that point. There will be a
third intersection point, Q, showing that
P + P + Q = 0 or, equivalently, 2P = −Q.

Therefore, with some algebra and a
little calculus, we can add two differ-
ent points or double any single point
on an elliptic curve. This gives us an
efficient way to find an nth multi-
ple of any point on the curve using a
double-and-add style algorithm re-
quiring O(log n) steps.

ELLIPTIC CURVES IN
CRYPTOGRAPHY
An elliptic curve is often introduced us-
ing the real numbers R as the base field
for which x and y are members. But
an elliptic curve can be constructed
over any field, including finite fields,
such as the integers modulo a prime
number. When constructed over a fi-
nite field, an elliptic curve group will
have a finite number of elements, and
its group structure will be either cyclic
or a product of two cyclic groups.2

Over a finite field, each point on an
elliptic curve has finite order, so for any
point P there is some whole number r
such that rP = 0. All the points P such
that rP = 0 form a subgroup of the elliptic
curve group called the r-torsion subgroup.

Now we can see how elliptic curve
groups can be used in cryptography. Sup-
pose you have a secret number n. Take
some publicly known point P and com-
pute nP using the efficient algorithm
mentioned earlier. The point nP is just a
coordinate pair (x, y) and can be published
freely. Someone else who knows both P
and nP can discover n by naively multiply-
ing P by itself repeatedly until reaching nP,
but this will take ages if n is large. Faster
algorithms for discovering n exist, but all
are exponential in the number of digits
of n. This is the elliptic curve discrete log-
arithm problem (ECDLP) that is used as
the basis for elliptic curve cryptography.

Elliptic curve cryptography is fast
and uses smaller keys than other cryp-
tosystems, such as Rivest–Shamir–Adle-
man. For these reasons, it is the primary
public-key cryptography used to secure
Internet communication today. It is the
reason I can send my credit card num-
ber or email password over the public
Wi-Fi at a coffee shop, and no one else
in the vicinity, including the coffee shop
owner or their Internet service provider,
can snoop on it and see my information.

PAIRINGS ON
ELLIPTIC CURVES
The elliptic curve group used as the
basis for cryptography is not a general
algebraic group. Elliptic-curve-based
groups have additional structure and
particularities that are specific to el-
liptic curves. This means that elliptic
curves could have specialized attacks
that exploit their extra structure to
make the ECDLP easier to break.

One such structure is the elliptic
curve pairing. An elliptic curve pairing
is a nondegenerate bilinear map e: E[r]
× E[r] → µr, where E[r] is the r-torsion

subgroup of an elliptic curve group, and
µr is the multiplicative group of rth r oots
of unity in the field Fqk (q is the charac-
teristic of the field over which the elliptic
curve is constructed). The exponent k is
called the embedding degree and is an im-
portant security parameter for pairings.

Bilinearity means that e(nP, mQ)r =
e(P, mQ)r

n = e(nP, Q)r
m = e(P, Q)r

nm, where
the r subscript means “in µr.” Nonde-
generacy means that e(P, Q)r ≠ 1 as long
as neither P nor Q is zero (the point
at infinity).

The existence of a pairing on an el-
liptic curve means that one can check
to see if two pairs of points are related in
the same way. Suppose we have a secret
number n, and we also have four ellip-
tic curve points: P, nP, Q, and nQ. Using
a pairing, we can test to see if nP is the
same multiple of P as nQ is of Q by check-
ing the following pairing equation:

e(P, nQ)r = e(nP, Q)r.

Checking this equation involves
computing the resulting root of unity
on each side and comparing the re-
sults. At no point do we discover n, but
we can tell that both nP and nQ are nth
multiples of P and Q. This leaks a little
bit of information about these points
that somewhat weakens security.

This difference in security can be for-
malized using computational hardness
assumptions. Some relevant hardness
assumptions for elliptic curve pairings
are the computational Diffie–Helman
(CDH) problem and the decisional Diffie–
Hellman (DDH) problem as well as the
discrete logarithm problem discussed
earlier.3 The CDH problem asks whether
it is feasible to compute nmP only given
P, nP, and mP. The CDH problem is
infeasible for carefully chosen elliptic
curves. (Notice that the CDH problem
would be feasible if the discrete loga-
rithm were also feasible to compute.)

T h e D D H p ro b l e m d o e s n’ t a s k
that nmP be computed, only that it be

76	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

ALGORITHMS

recognizable. That is, given only P, nP, mP,
and Q, decide whether Q is actually equal
to nmP. This is easy to do with a pairing by
checking this pairing equation:

e(nP, mP)r = e(P, Q)r.

COMPUTING A PAIRING
A few different definitions of pairings
exist, but the most commonly used
pairings are based on Tate’s definition,
which allows several optimizations.
Tate’s pairing is defined as follows1:

=
−

e P Q f Q(,) () .r r p

q
r

,

k 1

In this formula, r (on the right-hand
side) is the order of an r-torsion group
to which P must belong, q is the char-
acteristic of the field over which the el-
liptic curve is constructed, and k is the
embedding degree discussed in the
section “Pairings on Elliptic Curves.”

Computing the pairing has two
major phases: the Miller loop, where
function fr, P(Q) is computed using a
double-and-add style algorithm, and
then the final exponentiation, in which
fr, P(Q) is taken to the power of (qk−1)/r.

MILLER’S ALGORITHM
Function fr, P is a rational function in
x and y with a zero of multiplicity r at
P (meaning rP = 0) and a pole of mul-
tiplicity r at the point at infinity. This
function can be constructed iteratively
out of linear factors. At each point in
this process, we need to know how many
zeros and poles our function has and at
which places. A divisor is the mathemat-
ical construction that takes care of this
bookkeeping for us. Divisors are out of
the scope of this article but are implicitly
used in this section for counting multi-
plicities of zeros and poles.

Suppose, for some n, the line ax + by + c =
0 passes through points P and nP. Because
of the group law on elliptic curves, this
same line will also pass through −(n + 1)P.
This line will have a zero of order 1 at each
of P, nP, and −(n + 1)P as well as a pole of
order 3 at the point at infinity. We will de-
note this line through P and nP as lP, nP.

Suppose we also find the vertical
line x + d = 0 passing through nP and
−nP. This line has zeros of order 1 at
both nP and –nP and a pole of order 2
at the point at infinity. We will denote
the vertical line through nP as vnP.

Dividing these gives us a rational
function

= =
+ +
+g x y

l

v
ax by c

x d(,)n P
P nP

nP
,

,

which will have zeros of order 1 at P and
nP but poles of order 1 at (n + 1)P and the
point at infinity. We can compute these
functions for each n from 1 to r. When
multiplied together, these functions have
a telescoping-like behavior, where the lin-
ear factor in the numerator of gn,P creating
a zero at nP cancels out the linear factor in
the denominator of the previous func-
tion gn−1,P that had created a pole at nP.

The target function can be found
by taking the product of these rational
functions like so:

∏=
=

f x y g x y(,) (,),r P i P
i

r

, ,
1

where gi,P(x, y) is the rational function
whose numerator is a l ine passing
through P and iP, and whose denomi-
nator is a vertical line through iP, as
described previously.

This suggests an algorithm for
computing fr,P(Q) by successively eval-
uating gi,P at Q and accumulating the
results by multiplying the current
state by gi,P(Q) for each i up to r. This al-
gorithm’s runtime complexity is O(r),
and so it is not suitable for our pur-
poses where large r will be used.

However, we can make this into an
O(log r) algorithm by using a double-
and-add style approach. The preceding
product formula suggests this iterative
formula for computing fm + 1,P from fm,P:

= ⋅
+

f f
l

v .m P m P
P nP

nP
1, ,

,

Similarly, we can also get a crucial
formula for f2m,P from fm,P:

= ⋅f f
l

v() .m P m P
nP nP

mP
2 , ,

2 ,

2

Combining these gives us a double-
and-add method for computing fr,P that
runs in O(log r) time.

THE FINAL EXPONENTIATION
The only remaining piece of the pair-
ing formula left to compute is the final
exponentiation, in which the result of
fr,P(Q) is taken to the power (qk−1)/r. In
practice, the characteristic of the field
q is very large, say 256 bits, and the
embedding degree k is greater than 1.
(Two commonly used elliptic curve
families, Barreto–Naehrig (BN) and
Barreto–Lynn–Scott, use k = 12 and k =
24, respectively.1) A greater k increases
security but makes the final exponent
much greater and harder to compute.
To make things even worse, a large k
also means the field elements we are
working with are members of a kth-de-
gree extension field, where multiplica-
tion is more difficult than in the base
field. “Pairing-friendly” curves have an
embedding degree that is large enough
to provide security but not too large
that efficiency is compromised.

Thankfully, a few optimizations
can help. For BN elliptic curves, the
embedding degree will always be 12.
Then, (q12 − 1)/r can be factored as
(q6 − 1) (q2 + 1) ((q4 − q2 + 1)/r). The two
binomial factors can be computed eas-
ily with the Frobenius operation, leav-
ing the remaining (q4 − q2 + 1)/r part
with a much lower exponent.

Si nc e t he e x p one n t (qk−1)/ r i s
based on the parameters of an elliptic
curve and known well in advance, pre-
computation can speed up the final
exponentiation process.4

Furthermore, occasionally multiple
pairing values are computed and mul-
tiplied together according to some for-
mula. The Miller loop portion of each
pairing can be computed first, these
results multiplied together using the
formula, and then the final exponen-
tiation can be applied once at the very
end of the process.

	 A P R I L 2 0 2 2 � 77

APPLYING PAIRINGS TO A
ZERO-KNOWLEDGE PROOF
IN A CRYPTOCURRENCY
BLOCKCHAIN
Suppose there is a public ledger that re-
cords every transaction of a new crypto-
currency. A transaction would include
a sender address, recipient address, and
the amount being transferred:

T = (S, R, a).

Miners or validators of this crypto-
currency can compute the balance b
in any account by adding up all of the
amounts sent to that account num-
ber and subtracting the amounts sent
from that account number. To check
that the sender has enough funds to
make the transaction, the validators
check the following inequality:

b − a ≥ 0.

Each transaction in this new cryp-
tocurrency is public, so the amounts
being transferred are viewable, and all
account balances can be easily com-
puted from the ledger.

However, using an elliptic curve
pairing, we can transform this simple
public ledger into a private one, where
all amounts are encrypted, and balances
cannot be computed from the informa-
tion in the ledger. (The simple protocol
that follows was chosen to illustrate the
usefulness of an elliptic curve pairing
in a blockchain environment, not for
its security. This protocol suffers from
a few security flaws that would need
to be carefully addressed before imple-
menting it safely.)

Our new private cryptocurrency
will use elliptic curve cryptography to
hide the amount of each transaction.
The designers of this private protocol
will choose a pairing-friendly elliptic
curve E and a point P on the curve that
generates a large prime-order subgroup.
Then, when the sender wants to send the
amount a in a transaction, it includes aP
in the amount field rather than a. Now,
the amount of the transaction, a, can-
not be computed from the information
in the transaction because of the ECDLP.
Since elliptic curve arithmetic respects

addition, an encrypted version of the
balance, bP, can be computed by adding
all of the encrypted amounts together
just as before.

But how can we check that the sender
has enough funds in the account to com-
plete the transaction? Because of the
ECDLP, no validator can check directly
that the sender’s balance exceeds the
transaction amount. But if the sender
includes some extra information, it
ought to be able to convince a validator
that the balance is high enough.

The sender chooses some point
Q on the curve which it keeps to it-
self. It then computes b' = b − a, the
new balance after the transaction is
complete, and computes its bit de-
composition (b'0, b'1, …, b'n). The sender
includes (b'0Q, b'1Q, …, bnQ') in the
transaction data.

From this encrypted bit decomposi-
tion, a validator can compute b’Q using
the equation:

b'Q = b0' Q + 2b1'Q + 4b2' Q + … + 2nbn' Q.

By providing a bit decomposition of
b', the sender can show that b' is posi-
tive by the simple fact that there ar-
en’t enough bits to overflow the order
of the elliptic curve subgroup we are
working in.

Next, the validator chooses a ran-
dom number k and sends it to the
sender. The sender computes kQ and
sends this back to the validator. The
validator uses this elliptic curve pair-
ing equation to check that the two
versions of the balance are consistent
with each other:

e(kP, b'Q) = e(bP, kQ).

Because of the bilinearity of the
pairing, this equation shows that b'k
= bk in the order-r target group for the
pairing. With no foreknowledge of k, it
is extremely unlikely that the sender
can choose a bit decomposition that
satisfies the pairing equation that is
not the true decomposition.

Now that we’ve verified that the
sender has enough to complete the
transaction, t he transaction data
T = (S, R, aP, (b'0Q, b'1Q, …, b'nQ), k, kQ) are

appended to the ledger, and the trans-
action is complete.

This protocol is easily checkable
with pairing equations because of the
highly arithmetical nature of the state-
ment we are checking. Elliptic curve
pairings can be used to check more
complicated statements than this,
however. Using a much more complex
construction called a zk-SNARK, a few
pairing equations can check any state-
ment in NP.

One major flaw in the proto-
col described previously is
that the sender’s and recip-

ient’s addresses are public, and any-
one reading the ledger can see that
the two parties are transacting, even
if they can’t tell how much is being
transferred. In Zcash, the sender and
recipient addresses are also hidden,
and a zk-SNARK is used to verify the
addresses and link the amounts to the
correct accounts without revealing
the addresses.

REFERENCES
1.	 C. Costello, Pairings for Beginners.

2012. [Online]. Available: https://
www.craigcostello.com.au

2.	 J. H. Silverman, The Arithmetic of
Elliptic Curves, 2nd ed. New York,
NY, USA: Springer-Verlag, 2009.

3.	 M. Bellare and P. Rogaway, Introduc-
tion to Modern Cryptography. Boca
Raton, FL, USA: CRC Press, 2020.

4.	 T. Kim, S. Kim, and J. H. Cheon, “Ac-
celerating the final exponentiation in
the computation of the Tate pairings,”
Cryptology ePrint Archive, Rep.
2012/119, Mar. 2012. [Online]. Avail-
able: https://eprint.iacr.org/2012/119

JOSHUA BRIAN FITZGERALD
is a cryptographer and protocol
developer for Heliax AG, Zug 6300,
Switzerland. Contact him at joshuab
fitzgerald@gmail.com.

