
C O M P U T E R 0 0 1 8 - 9 1 6 2 / 2 2 © 2 0 2 2 I E E E P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y A U G U S T 2 0 2 2 11

50 & 25
YEARS AGO

EDITOR ERICH NEUHOLD
University of Vienna
erich.neuhold@univie.ac.at

AUGUST 1972
In the early years, Computer was only published bimonthly.
Therefore, we will have to skip our interesting and/or infor-
mative extractions for August. The next one will appear in
the September 2022 issue of Computer, and we hope you will
eagerly wait for our next publication of this column.

AUGUST 1997
 https://www.computer.org/csdl/magazine/co/1997/08

 Voice-Based Interfaces Make PCs Better Listeners; John
Edwards (p. 14) “Researchers have been refining voice recog-
nition for close to 35 years. … There are two types of voice-rec-
ognition systems—command-recognition systems and voice
dictation systems.” (p. 15) “Continuous-dictation systems,
which let users speak to their computers at a normal rate
in a nonstop stream of words, take advantage of faster pro-
cessors and better speech-recognition algorithms, …” (p. 16)
“Researchers are trying to improve speech-recognition soft-
ware. As the software improves and processors get speedier,
voice-based interfaces will get faster and more accurate. They
then may become commonplace in a couple of years.” [Edi-
tor’s note: The “couple of years” actually took more like 15 to 20
years before natural speech processing became good enough for
everyday use, as, for example, with the Alexa service. Of course,
smartphones and such also were not thought of at that time.]

 Reengineering with Reflexion Models: A Case Study; Gail
C. Murphy and David Notkin (p. 29) “Reengineering large
and complex software systems is often very costly. Reflexion
models let software engineers begin with a structural high-
level model that they can selectively refine to rapidly gain
task-specific knowledge about the source code. The authors
describe how a Microsoft engineer used this technique in an
experimental reengineering of Excel.” (p. 35) “The engineer

found it useful to be able to view the system in terms of a
refined reflexion model, yet he also found it valuable to build
up an understanding of how the high-level view connected to
the source code. Consistent with previous studies on program
comprehension, he moved between these levels repeatedly.
…We provided both textual and graphical interfaces to the
reflexion model tools. Surprisingly, the engineer drove almost
all the investigation of the reflexion model and the source code
from textual information.” [Editor’s note: This very interesting
article explores the proposed tool using a software engineer and a
real-world example (Excel). With this approach, it has been possible
to verify the approach but also adopt changes to the model.]

10 Potholes in the Road to Information Quality; Diane
M. Strong et al. (p. 38) “Poor information quality can create
chaos. Unless its root cause is diagnosed, efforts to address
it are akin to patching potholes. This article describes 10 key
causes, warning signs, and typical patches. … Like potholes, IQ
problems often arise unexpectedly and cause major negative
consequences before they are resolved. … If they know what
to look for, organizations can anticipate and handle IQ prob-
lems before they trigger a crisis.” (p. 39ff) “1. Multiple sources;
2. Subjective production; 3. Production errors; 4. Too much
information; 5. Distributed Systems; 6. Nonnumeric infor-
mation; 7. Advanced analysis requirements; 8. Changing task
needs; 9. Security and privacy requirements; 10. Lack of com-
puting resources.” [Editor’s note: The article analyzes 10 informa-
tion-quality issues that frequently arise, even today, and proposes
how to better control/avoid them. A worthwhile article to read.]

Fighting Complexity in Computer Systems; Alexander
D. Stoyen (p. 47) “From the earliest hardware and software
through the latest, complexity has been something computer
engineers, scientists, and programmers have had to fight.
Important fields of research and technology have originated,
developed, or matured as side effects of this fight. … Generally
speaking, increased sophistication of hardware or low-level
software (the OS or language services) has led to an increase
in the complexity of high-level software (the application). …

Digital Object Identifier 10.1109/MC.2022.3176987
Date of current version: 2 August 2022

12	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

The three articles included in this theme issue present very
different approaches to fighting complexity.” [Editor’s note:
See the following three article extracts and my comments.]

Applying Software Product-Line Architecture; David
Dikel et al. (p. 49) “Product-line architecture not only reduces
the complexity and cost of developing and maintaining code,
but also streamlines the production of documentation, train-
ing materials, and product literature. … Only in conjunc-
tion with appropriate organizational behaviors can software
architecture effectively control project complexity.” (p. 50)
“a set of six organizational principles believed critical to the
long-term success of a software architecture: • Focusing on
simplification, minimization, and clarification. • Adapting
the architecture to future customer needs, technology, com-
petition, and business goals. • Establishing a consistent and
pervasive architectural rhythm. • Partnering and broaden-
ing relations with stake-holders. • Maintaining a clear archi-
tecture vision across the enterprise. • Proactively manag-
ing risks and opportunities.” (p. 54) “Our advisers helped us
develop six critical organizational principles, and our study of
Nortel confirmed each of them.” [Editor’s note: The analysis in
this article of these six principles clearly shows the benefit for each
of them. Unfortunately, even today many development teams only
haphazardly follow those principles.]

Using Genetic Algorithms to Design Mesh Networks;
King-Tim Ko et al. (p. 56) “Designing mesh communication

networks is a complex, multiconstraint optimization problem.
The design of a network connecting 10 Chinese cities demon-
strates the elegance and simplicity that genetic algorithms offer
in handling such problems.” … To formulate a genetic algo-
rithm method for mesh communication networks, we needed
to define the essential network architecture and the design
parameters. We based our design on a well-known problem for-
mation for packet-switched communications networks.” (p. 59)
“Our approach breaks the problem of network design into three
optimization processes—for topology, routing, and capacity—
and applied the genetic algorithm technique to each.” [Editor’s
note: Through this detailed analysis, the authors show that using
genetic algorithms leads to better results than using other known
algorithms. Looking at the literature, they are not the only ones, but
clearly early ones, to use the genetic algorithm approach.]

Object Structures for Real-Time Systems and Simula-
tors; K.H. (Kane) Kim (p. 62) “The ideal representation (or
modeling) scheme should be effective not only for abstract-
ing system designs but also for representing the application
environment. It should also be capable of manipulating log-
ical values and temporal characteristics at varying degrees
of accuracy. … The object structure, which evolved out of the
abstract concept formulated by Hermann Kopetz and myself,
has a concrete syntax structure and execution semantics. It is
called TMO (time-triggered message-triggered object; formerly
called RTO.k). TMO promotes the uniform, integrated design
of real time, distributed systems and the real time simulators

Digital Object Identifier 10.1109/MC.2022.3176992
Date of current version: 2 August 2022

of their application environments.” [Editor’s note: Using an
extensive example of a military command and control system
(CAMIN), the author shows the applicability and advantage of
the TMO approach. TMO is still around, and over the years it has
been shown to be a useful tool for real-time system design using
object-oriented technology.]

Could LDAP Be the Next Killer DAP?; Charles Severance
(p. 88) “LDAP (Ed: Lightweight Directory Access Protocol) is a
protocol that allows a program such as a browser or an e-mail
package to perform directory lookups across a wide variety of
directories, even if they run on different operating systems
and directory environments.” [Editor’s note: The author argues
that LDAP will be the “Rosetta Stone” for directory access. It may
not have been the Rosetta Stone, but it undeniably is still around
and in use today.]

Good Enough Quality: Beyond the Buzzword; James Bach
(p. 96) “In this article, I’d like to examine one actual prac-
tice that is finally emerging as a describable method: Good
Enough Software.” (p. 97) “One reason why Good Enough is
not better described may be that it is so much a part of our
experience that it seems too obvious to mention. Only when
contrasted with idealistic, normative models of software
engineering does Good Enough stand out as a separate para-
digm” (p. 98) “I hope the framework makes it clear that Good

Enough has nothing to do with mediocrity. It has to do with
rational choices, as opposed to compulsive behavior. If some-
thing really is good enough, in terms of this framework, then
further improvement means making an investment that has
an inadequate return.” [Editor’s note: A very interesting article
that rationalizes the “Good Enough” idea as something that is
based on our knowledge that software systems will contain bugs
and that we have to live with them.]

The Allegory of the Humidifier: ROI for Systems Engi-
neering; Mark E. Sampson (p. 104) Systems engineering
makes sense, but its financial benefits are often hard to pin
down. Although many high-cost, project runaways stem
from mistakes in requirements definition, accountants and
managers continue to balk at investing in cost avoidance, risk
reduction, and customer understanding. They prefer making
decisions based on hard-to-peg return-on-investment (ROI)
numbers. Put another way, systems engineers want to avoid
risk (future costs), while accountants want to save money
today. What follows is a true story that represents a sim-
ple but poignant example of the hidden costs of not doing
systems engineering.” [Editor’s note: The example concerns
humidifiers bought at Sears instead of professional equipment
needed for a static plotter room. The follow-up costs far out-
weighed the cost of a professional solution. This short allegory is
well worth reading.]

Write for the IEEE Computer
Society’s authoritative
computing publications
and conferences.

IEEE COMPUTER SOCIETY

Call for Papers

GET PUBLISHED
www.computer.org/cfp

Digital Object Identifier 10.1109/MC.2022.3188066

