
10 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y 0 0 1 8 - 9 1 6 2 / 2 2 © 2 0 2 2 I E E E

50 & 25
YEARS AGO

EDITOR ERICH NEUHOLD
University of Vienna
erich.neuhold@univie.ac.at

OCTOBER 1972
In the early years, Computer was published only bimonthly.
Therefore, we will have to skip our “interesting and/or infor-
mative” extractions for the October issue. The next one will
appear in the November 2022 issue of Computer, and we hope
you will eagerly await our next publication of this column. In
some cases these needs are real, but often they are fanciful
and lack any sound rationale.

OCTOBER 1997
https://www.computer.org/csdl/magazine/co/1997/10

Will New Fiber Technology Quench the Thirst for Band-
width?; David Clark (p. 14) “Researchers say DWDM (Ed:
Dense wavelength-division multiplexing) could help quench the
world’s increasing thirst for bandwidth. … While less expen-
sive than new fiber, DWDM is still expensive to implement.”
(p. 15) “A 16-wavelength DWDM system costs just under
$1 million for each node on a network segment, or just under
$2 million for each point-to-point connection.” [Editor’s note:
All in all, as we now know, WDM, DWDM, and later, CWDM,
became successful optical transmission technologies for core and
metro networks, much as they were foreseen in this article.]

Dawn of the Internet Appliance; George Lawton (p. 16)
“Developers can now put Internet connectivity in a variety
of devices, including factory machinery, VCRs, and handheld
appliances, such as personal digital assistants. … Internet-en-
abled appliances, which began to appear in 1995, communicate
in a variety of ways, such as by using wireless or modem tech-
nology.” (p. 18) “POTENTIAL BENEFITS: Internet appliances
would create many benefits for users. … Embedded Internet
servers could then make it easy to remotely access important
information, and monitor and control devices. … POTENTIAL
PROBLEMS: Hackers could break into Internet-enabled devices
and change settings or learn private information about users. …

They could also insert programs that would display odd mes-
sages on a user’s TV or shut down an entire device. … Harmon
said the telephone may be one of the most profitable Internet
appliances, because it is used throughout the world.” [Editor’s
note: What a true prediction 25 years ago about Internet-enabled
(smart) devices and smart telephones but also about the risks that
are all too present today and will stay with us for the time being.]

Deep Blue’s Hardware-Software Synergy; Scott Hamil-
ton et al. (p. 29) “It’s true that powerful hardware forms the
basis of the chess computer’s capabilities. However, improved
software-based search techniques and innovations in parti-
tioning the problem for a multiprocessor also played import-
ant roles. … Thus it’s not sheer speed alone—it’s the ability
to manage the complexity of searching these combinations.
Deep Blue does this via an optimized game tree search tuned
with expert knowledge.” (p. 31) “In manual tuning, grand
master Joel Benjamin would play a form of take-back chess
until he felt Deep Blue had misevaluated a particular posi-
tion. … The team could then alter the parameter and change
the position to see if the evaluation also changed.” [Editor’s
note: The article analyzes the strategy that was used by the IBM
team to defeat Garry Kasparov in this 1997 game. It relies heav-
ily on adjusting the evaluation parameter with the help of Grand
Masters between the games and is mostly based on searching
strategies, not on deep learning mechanisms.]

Making the Reuse Business Work; Ivar Jacobson et al.
(p. 36) “Reuse technology is ready now. In fact, enough compa-
nies have demonstrated substantial improvement, often as much
as 90 percent reuse, to assure us that it can be achieved.” (p. 37)
“The integration that a systematic reuse program involves means
that only management can lead it, which means that the upper
management (division head and department directors) of a divi-
sion has to understand what reuse can accomplish and how to
go about it.” (p. 38) “This ever-increasing complexity is inher-
ent in large-scale reusable systems. It cannot be sidestepped.
It requires a plan. This plan is called the architecture. … When
an organization plans a family of large systems and expects

Digital Object Identifier 10.1109/MC.2022.3192699
Date of current version: 26 September 2022

 O C T O B E R 2 0 2 2 11

substantial software reuse, it will need component systems
reusable in dozens of systems for years to come. This requires
coming to terms with significant planning, and specifically,
with architecture.” (p. 40) “At the same time, object-oriented
ways of thinking can be a great aid to carrying through the soft-
ware engineering processes that enable reuse to take place.”
[Editor’s note: This very interesting article, taken from a book pub-
lished by the same authors, explains the need for software reuse and
then follows with many good ideas on how to modify business and
software architectures to enable wide reuse of software components.
Today of course, that is not only well established in complex system
development, but also in the many libraries that enable, via reuse, the
rapid development of apps in today’s Internet world.]

Guest Editor’s Introduction: Supporting Reuse With Object
Technology; David C. Rine (p. 43) “Is there a way to develop
software that is of higher quality and yet takes less time and
effort to produce? Many software developers believe there is,
through reusing high-quality, tested software already devel-
oped.” (p. 44) “In the past 10 years, a conjecture has taken hold
that says that object technology supports reuse. The studies
we examined now show that object technology can success-
fully support reuse in three ways: • Distributed objects support

client-server reuse, through Object Request Brokers (ORBs)—a
part of the Common Object Request Broker Architecture
(CORBA). • Object modeling is appropriate for the development
of domain models (including object-oriented frameworks and
patterns), notably via the Unified Modeling Language (UML). •
Object-based components can be made portable and interop-
erable, using Java, DCOM, and similar technologies.” [Editor’s
note: The following four articles investigate different aspects of soft-
ware reuse. All of them exploit object-oriented (OO) technology, and
I will only very briefly outline their main focus but encourage the
reader to explore the articles as they illustrate the early struggle to
reuse software. Today, it is a common technique to increase quality
of the software and efficiency of the development process.]

Object Technology and Reuse: Lessons From Early Adopters;
Robert G. Fichman et al. (p. 47) “Four longitudinal case
studies illustrate the costs and risks of early OO adoption,
including the difficulty of achieving systematic reuse in prac-
tice. The authors recommend general strategies and specific
tactics for overcoming adoption barriers.” (p. 55) “LESSONS
LEARNED: • Invest in organizational learning • Develop a
complete architecture • Hire an OO architect • Simplify archi-
tectural demands • Limit initial development • Find proven

Digital Object Identifier 10.1109/MC.2022.3193008
Date of current version: 26 September 2022

12 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

50 & 25 YEARS AGO

architectural examples • Develop missing components • View
reuse as separate.” [Editor’s note: The lessons mentioned here are
still valid today, but now, many tools help with adhering to them. It
is worth reading as many lessons are explained in detail.]

Implementing Reuse With RAD Tools’ Native Objects;
John C. Zubeck (p. 60) “Developers and project managers need
to understand how to constrain project requirements to reap the
reuse advantages that RAD (Ed: Rapid application development)
tools offer. Designing exclusively within the capabilities of RAD
Business Objects can stabilize projects, even enough to support
larger applications. …The DCI/Droege Developers’ Competition
annually showcases the phenomenon of RAD development at
its best.” (p. 61) “If a new project does not respect the standard
RAD-Business-Objects described in this table, it has failed to
reuse the objects that have been prefabricated by the RAD tool
manufacturer.” (p. 64) “Programmers need clear explanations
about how to code, set, and trigger all these ever more complex
RAD-Business-Objects.” [Editor’s note: The investigation centers on
the experience gained by four RAD tool kits: Visual Basic, Lotus Notes,
Magic, and PowerBuilder, which have all been a part of the competi-
tion. Many more such tools are now around and successfully used.]

Automatically Identifying Reusable OO Legacy Code;
Letha H. Etzkorn et al. (p. 66) “Much object-oriented code has
been written without reuse in mind, making identification of
useful components difficult. The Patricia system automatically
identifies these components through understanding comments
and identifiers.” (p. 68) “The module of the Patricia system that
handles program understanding and information extraction is
called Chris (Conceptual Hierarchy for Reuse Including Seman-
tics). In the case of comments, Chris first completely parses a
sentence using a simple natural language parser, then uses its
inference engine to semantically process the various parses.
In the case of identifiers, Chris uses empirical information on
common formats for variable and function identifiers to syntac-
tically tag subkeywords.” [Editor’s note: The article shows how the
“semantic” of an OO piece of code can be detected. That would then
enable a human to insert the code for reuse into a class library.]

A Descriptor-Based Approach to OO Code Reuse; Ernesto
Damiani (p. 73) “The COOR environment exploits the advan-
tages of OO code to promote software reuse, performing classifi-
cation and analysis using a Software Descriptor method based on
a fuzzy query language for component retrieval. Fuzzy weight-
ing mechanisms highlight relevant features of components for
reuse in specific industrial application domains.” (p. 74) “In our
approach, a human expert, or application engineer, maintains
the system for an audience of users, or application developers.
COOR provides tools for the AE and AD to classify components
and search for reuse candidates.” (p. 78) “Code search for reuse
consists of locating and selecting software components stored
in the Object Base and represented in the Descriptor Base; by
exploiting SD features and terms of the controlled vocabulary

the ADs can investigate component behavior.” [Editor’s note:
With the help of the application engineer (AE) and application
developers (ADs), objects are classified into a library, and Classifi-
cation of Object-Oriented Code for Reuse (COOR) then provides a
search-and-retrieval facility to find OO components for reuse.]

Software Engineering Code of Ethics, Version 3.0; Don
Gotterbarn et al. (p. 88) “By January of 1994, both societies (Ed:
IEEE-CS, ACM) formed a joint steering committee “To establish
the appropriate set(s) of standards for professional practice of
Software Engineering upon which industrial decisions, profes-
sional certification, and educational curricula can be based.”
… To ensure, as much as possible, that this power will be used
for good, software engineers must commit themselves to mak-
ing the design and development of software a beneficial and
respected profession. In accordance with that commitment,
software engineers shall adhere to the following Code of Ethics.
The Code contains eight Principles related to the behavior of and
decisions made by professional software engineers, be they prac-
titioners, educators, managers and supervisors, or policymakers,
as well as trainees and students of the profession.” [Editor’s note:
This preliminary version, jointly developed by the IEEE Computer
Society and the Association for Computing Machinery (ACM), was
published for discussion in 1997 and adopted by IEEE CS and ACM in
1999 (https://www.computer.org/education/code-of-ethics). In 2018,
ACM adopted a new version of the Code of Ethics (https://www.acm.
org/code-of-ethics), and in 2020, IEEE adopted a much shorter code for
all of its Societies (https://www.ieee.org/about/corporate/governance/
p7-8.html). It is quite interesting to compare this preliminary version
with the one from 1999, but also with the new formulation found at
ACM. In my mind, the much shorter 2020 version from IEEE suffi-
ciently specifies the ethical behavior of scientists, engineers, managers,
educators, and even the general public. Unfortunately, all of them are
only applied sparingly when money or power are at stake.]

The Interplay of Art and Science in Software; Terry
Bollinger (p. 128) “Rigorous science provides a frame-work
and a solid basis for further analysis. It prevents you from
following a hunch into untestable speculation or, worse, into
superstitious reliance on factors that are provably irrelevant
or that even oppose the hypothesis. The artistic part of this
process lets science move unexpectedly into new cur-rents
and previously unmapped under-standing. What is most
striking about the biographies of truly great physicists such
as Albert Einstein and Richard Feynman is how consistently
their greatest theories stemmed from pursuing seemingly
minor or even irrelevant issues. … . To a software developer
who operates in the same way as a physicist, the goal is to
collect the most powerful and carefully generalized set of
software “theorems” (modules or subsystems) possible for
use in constructing still more powerful theorems.” [Editor’s
note: This is a very interesting article that establishes the need
for human ingenuity in some stages of the software development
cycle. Methodology and models alone are not the answer.]

