
Generative modeling is an artificial intelli-
gence (AI) technique that generates synthetic 
artifacts by analyzing training examples; 
learning their patterns and distribution; and 

then creating realistic facsimiles. Generative AI (GAI) 
uses generative modeling and advances in deep learning 
(DL) to produce diverse content at scale by utilizing ex-
isting media such as text, graphics, audio, and video.1,2 
While mainly used in research settings, GAI is entering 
various domains and everyday scenarios. This article 
sheds light on the unique practical opportunities and 
challenges GAI brings.

GAI TECHNIQUES
Although there are many forms of GAI, 
we will look at four of the most com-
mon techniques being leveraged today.

Generative adversarial networks
Generative adversarial networks (GANs)  
are the most prevalent GAI technique 
being used today.3 A GAN uses a pair 
of neural networks. One, known as the 
generator, synthesizes the content (for 
example, an image of a human face). 
The second, known as the discriminator, 

evaluates the authenticity of the generator’s content, (that 
is, whether the face is natural or fake). The networks re-
peat this generate/discriminate cycle until the generator 
produces content that the discriminator cannot discern 
between real and synthetic.

Generative Pre-trained Transformer 
Generative Pre-trained Transformer (GPT) models gen-
erate text in different languages and can create hu-
man-sounding words, sentences, and paragraphs on al-
most any topic and writing style—from convincing news 
articles and essays to conversations in customer-service 
chatbots or characters in video games.4 These have ma-
tured over several generations, each with an increased 
parameter set trained on a more extensive online textual 
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corpus than the previous. One recent 
example is OpenAI’s GPT-3, which 
stunned the AI world by writing, with-
out human assistance, a convincing 
article about scientists discovering a 
herd of unicorns in the Andes.5

The generative diffusion model
The generative diffusion model (GDM) 
synthesizes content by taking a train-
ing data distribution, gradually adding 

noise, and learning how to recover the 
data as a reversal of the noise addition 
process.6 This way, data are generated 
from randomly sampled noise through 
the learned denoising process.

Geometric DL 
Geometric DL (GDL) attempts to un-
derstand, interpret, and describe AI 
models in terms of geometric prin-
ciples. These principles have already 
been extensively studied over domains 
such as grids; transformations in ho-
mogeneous spaces; graphs; and vector 
bundles.7 Petar Veličković,8,9 a staff 
research scientist at DeepMind and 
Affiliated Lecturer at the University of 
Cambridge, describes it as

“…building machine learning (ML) 
models that respect variances and 
symmetries inside data. For exam-
ple, if you know your data lives on 
a grid and it should be translation 
symmetric, you should end up 
driving something like a convolu-
tional neural network [CNN]. So, 
our blueprint that consists of the 
chosen data domain and symme-
try group you want to be resistant 
can guide different ML architec-
tures such as CNNs, GNNs, trans-
formers, or recurrent models. For 
example, transformers are a special 
case of attentional graph neural 
networks over the complete graph.”

USING GAI
These and other GAI techniques are 
being used in a host of applications, in-
cluding the following.

Natural language and music
GPTs can be readily applied to natural 
language (NL) text generation. GPT-3,4 
mentioned previously, has been success-
fully scaled to 175 billion learnable pa-
rameters and trained on global-scale 

corpora of textual exemplars. Aside 
from showing high performance on a 
variety of NL processing (NLP) tasks, 
such as translation and question an-
swering, it is also a competent text gen-
erator producing eerily human-like 
textual content.10

For exa mple, a GP T-3 prog ra m 
wrote an entire student essay from 
a simple prompt (“The construct of 
‘learning styles’ is problematic be-
cause…”).11 The narrative flowed as if 
it was written by a human—plagia-
rism software did not detect copying, 
and a Google search showed that each 
sentence was original. The authors 
highlighted several potential uses of 
GAI tools in education, such as facil-
itating creative writing (for example, 
students and AI write paragraphs in-
termittently to explore alternatives 
and overcome writer’s block) or devel-
oping a critical analysis of academic 
writing (for example, AI generates 
texts on a topic, and students critique 
and revise them).

Language Model for Dialogue Appli-
cations (LaMDA) is another example. 
This generative, textual conversational 
agent mimics human conversations,12 
but unlike GPT models trained on text 
corpora, it is trained on dialog corpora. 
Objective-Reinforced GAN (ORGAN) is 
another example that produces time 
series artifacts in sequential media 
such as music.13

Computer graphics
AlphaFold is a neural network that cre-
ates highly accurate 3D protein struc-
tures14 by modeling and predicting 
protein structures as a graph inference 
problem in 3D space where nearby res-
idues define the edges of the graph. 
The pair representation is encoded as 
a directed edge in a graph (that is, the 
connection between the residues). The 
NVIDIA Canvas application GauGAN 
transforms a textual phrase like “ocean 
waves hitting rocks on the beach” into 
virtual landscape images in real time. 
When adding adjectives like “sunset at 
a rocky beach” or swapping “sunset” for 
“afternoon” or “rainy day,” the model 
modifies the picture instantly.15 Sim-
ilarly, DALL•E is a compiled version of 
GPT-3 that produces images from text 
descriptions for concepts expressed in 
NL, taking text/image pairs as input.16 
The latest GDM-based approaches for 
text-to-image generation are DALL•E 
216,17 and Imagen,18 capable of produc-
ing diverse, high-quality artistic and 
realistic images, respectively. 3D-GAN 
creates 3D shapes19 that can be manip-
ulated in 3D spaces (geometric trans-
formation) and then scaled down to 2 D 
image representations.

Computer vision
Using semantic label maps as an input, 
conditional GANs (CGANs) can produce 
images of high-fidelity urban scenes 
containing objects. Changing labels 
modifies scenes concerning individual 
objects, such as replacing trees with 
buildings or changing colors or tex-
tures.20 TediGAN (Text-Guided Diverse 
Face Image Generation and Manipu-
lation) creates human portrait draw-
ings from facial photos with random 
changes to facial attributes.21 SinGAN22 
is a single-image generative model that 
synthesizes realistic textures of arbi-
trary size and aspect ratio with signifi-
cant variability.

Motion and Content decomposed 
GAN (MoCoGAN)23 conducts video 
synthesis with two modalities separated. 
The content can have different move-
ments. Conversely, it can apply the same 

While mainly used in research settings, GAI is 
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action to varying content. Enhanced Su-
per-Resolution GAN (ESRGAN) improves 
the quality of the media through super-
resolution, a group of ML methods that 
upscale low-resolution image or video 
media to a higher resolution.24

Figure 1 illustrates the accuracy/
complexity tradeoff for some typical 
GAI products. The accuracy refers to 
the intended performance of synthe-
sized artifacts, while the complexity de-
notes their richness in media content 
and structure.

EVALUATION
Metrics to verify the GAI efficiency and 
effectiveness of a generation task 
can reuse current objective ML model 
evaluation techniques.1,2 For instance, 
GANs’ functional quality metrics fo-
cus on their inner workings by evalu-
ating outputs such as image quality; 

resolution; inception score (that is, 
the realism of generated images); and 
training time reduction.25 Nonfunc-
tional evaluation, privacy, and secu-
rity are also significant concerns for 
GANs.26 Some GAI evaluations, like a 
personal rating of the output for util-
ity, aesthetics, clarity, or similarity to 
real-world content, are inherently sub-
jective and difficult to evaluate.

Currently, there are no standard 
means to determine if a GAI is as realis-
tic to a user as a non-GAI application. Re-
spectively, reliable and consistent mea-
surements of the effects of GANs are still 
undetermined. Relatedly, Veličković9 
notes the following:

“Geometric approaches are going 
to be very important for genera-
tive modeling because the data 
you are generating will need to 

respect some kind of geometry 
if you want your solutions to 
be well constrained. Therefore, 
models that are mindful of ge-
ometry are, in my opinion, more 
likely to succeed in the long run.”

EXPECTATIONS
Along with algorithmic improve-
ments,25,26 future GAI solutions must 
meet the following expectations to 
gain user trust and adoption.

Efficiency
Training and deploying GAI models 
leave a significant carbon footprint and 
high computation costs. For example, 
GDMs naturally lag in sampling speed.27 
Creating a fine-tuned, downsized model 
for input data and parameter space is a 
cost-efficient approach for researchers 
and practitioners.
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FIGURE 1. The GAI landscape: generative models and artifacts.
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Explainability 
Explaining the mechanisms of a deep 
neural network involves analyzing 
the input data properties (also known 
as features) to determine which affect 
the outcomes and infer what happens 
inside the black box. However, deter-
mining which neurons affected the 
synthesis of which output objects re-
mains problematic today. Moreover, 
in the case of GANs, quantifying the 
mutual behavior of a pair of networks 

is currently an intractable problem. A 
deeper understanding of GAI models’ 
inner workings and explanations tai-
lored to specific user groups are both 
still missing. Accordingly, Veličković9 
notes the following:

“Explainability will be very, very 
important for generative mod-
eling. In our recent research,28 
mathematician collaborators 
took the explanations produced 
by our models and tried to prove 
a mathematical theory based on 
these explanations, which is sig-
nificantly more rigorous than the 
original explainer’s output. What 
came out from these models was, 
to us, quite unintelligible. The 
mathematicians were able to 
spot the signal hidden inside the 
tons of noise after looking at sent 
explanations for two weeks. So, 
explainability methods are rudi-
mentary, and if we truly want to 
make it accessible to everyone, 
we really need explainability 

techniques that have a far better 
signal-to-noise ratio.” 

Fairness
Although generative language mod-
els such as GPTs offer marked im-
provements over various NLP tasks, 
they require massive amounts of un-
filtered online text. Consequently, 
they can generate synthetic language 
with bias, stereotypes, and harmful 
content.29 To manage these risks, 

GAI providers should offer tools for 
preprocessing and curating training 
data; monitoring and moderating the 
media generation processes; and de-
veloping guidelines for responsible 
deployment models.

Ethics
GAI models can immediately synthe-
size artifacts at scale for many differ-
ent contexts, from education to medi-
cal decision making. However, before 
diving into production deployment, 
model creators should clearly define 
their goals; identify beneficiaries; and 
confirm usage scenarios with target 
users to prevent unintended unethical 
product behavior. This requires that all 
affected stakeholders—GAI scientists, 
AI engineers, domain experts, regula-
tory authorities, and target users—are 
identified and actively participate.

Accountability 
Prospective users must weigh GAI prod-
ucts’ benefits against their risks. Organi-
zations that are creating, training, and 

deploying GAI systems must diligently 
strive to reduce model behavior risks. 
This requires teams to be thorough, 
transparent, and proactive in commu-
nicating identified threats, blind spots, 
and areas where risks are unknown 
when highlighting GAI system benefits.

GAI WORKFLOW
To address these challenges, we envi-
sion a future GAI deployment work-
flow as in Figure 2. This proposed 
workflow can provide benefits beyond 
GAI models. Because synthetic data 
creation increases the data set size for 
a particular GAI model, it can become 
part of the model’s iterative and incre-
mental development and deployment 
cycle to continually improve perfor-
mance. Specifically, if a GAI model 
works well overall but performs poorly 
on certain features, more data can be 
generated for those critical categories 
to help detect and correct errors.

Moreover, traditional ML workflows 
take good testing results on used data 
sets as an indicator of modeling input 
data distribution. However, physical- and 
digital-world data sets collected over 
several model generations will change 
their class structure and internal con-
nections. Newly synthesized objects 
or artifacts, such as a language, an 
environment, or a (human) being, are 
examples of the data sets. When ob-
serving and evaluating such changes 
in deployment, the straightforward 
way to expand generative capacity is to 
retrain the model with modified class 
structure data.

GAI has become a key technology 
in synthesized new virtual artifacts 
or enhanced semisynthesized aug-
mented artifacts. GAI’s achievements 
in many fields are paving the way for 
synthetic sciences to combine AI with 
basic disciplines such as engineering, 
biology, medicine, and environmental 
science. Although current advance-
ments within a discipline are seldom 
connected with developments in oth-
ers due to various sociotechnical fac-
tors like communication norms, cul-
tural differences, AI models, data, and 
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FIGURE 2. The future GAI model deployment workflow as a closed system with a 
feedback loop.
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procedures, the metaverse is a promis-
ing global, interdisciplinary testbed for 
resolving these obstacles. GAI would 
diminish the distinction between real 
and virtual artifacts to meld human 
experience and behavior across the vir-
tual and physical worlds.

GAI models and the synthetic 
artifacts they create are ever 
increasing in prevalence, adoption, 

and sophistication. As verification, 
risk mitigation, and cross-disciplinary 
deployment techniques evolve, GAI 
solutions will become a foundational 
feature of any data architecture. Chal-
lenges like model explainability, cul-
tural acceptance, and sociotechnical 
issues remain but will be surmounted 
as GAI applications evolve into an es-
calating arena of deployment. 
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