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Abstract—With cycling moving from being a pastime and sport to a mainstream form of mobility
and transport, bike sharing systems (BSS) are increasingly being deployed in many cities.
Analysis of the BSS usage data can provide insights into factors that shape the patterns of trips,
uncovering latent city dynamics. A Poisson mixture model is proposed to cluster the stations
according to their usage profiles and reveal latent links between the social and economic
activities of BSS station neighbourhood type and the generated mobility patterns. It reveals the
varying functions of different urban areas that induce specific bike trip patterns. Pairwise
clustering of bike station with appreciable trip activity between them further advance the
understanding of urban neighbourhoods with the strongest mobility patterns. The results are
showcased through an analysis of 15 million bike journeys of the London Santander Cycles BSS
over a 3-year period.

INCREASING environmental pressures and
limited urban resources such as roads and public
transport call for the development of more sus-
tainable urban mobility strategies [1]. To lessen
the soaring impacts of urban mobility demands,
public bike sharing systems (BSS) have been
implemented in more than 450 cities worldwide

[2]. BSS are characterised by short term bike
rentals available through a network of unattended
bike docking stations. With a dense deployment
of BSS stations that offer seamless connectivity
with existing public transport infrastructure such
as bus stops, tube and train stations, BSS offer a
softer public transport alternative which is more
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affordable, healthy and less polluting, and good
opportunities for meeting the last mile commuting
challenge [2], [3].

With the 2021 ITS Congress [4] identifying
sustainability and a modal shift in transport as
priorities to meet the challenge of reducing CO2

emissions, bike sharing forms a part of the so-
lution for smart and zero emission mobility in
cities. For decision makers in city municipalities
to implement BSS in their urban policy plans, it
has been recognised that in addition to the BSS
infrastructure provision, a step change is needed.
This means the provision of software, platforms
and applications for managing and analysing the
bike fleets, e.g. cyclists and BSS traffic flows in
various city regions [4].

As cities continue to grow with sustained mi-
gration, connections between different neighbour-
hoods become more complex by the vast array of
transport options available to the public in large
cities such as London [1]. Finding functional
areas in a city through mobility data mining can
help in understanding these connections, as well
as giving urban planners insights into the urban
infrastructure.

Mobility mining for discovering urban areas
and their functions has been explored in the lit-
erature through taxi trips data [5], social network
posts [6] and GPS call data records (CDRs) [7].
However, development of new techniques more
suitable for the BSS transport data that is mainly
about short-distance trips is needed. The spatio-
temporal nature of the correlations of the BSS
data with the neighbourhoods also needs to be
considered [8]. It has been recognised that the
clustering of BSS stations is tied to their different
functions that are in turn linked to the city’s
activities, e.g. residential, leisure, employment
[2].

For this, we present a method for BSS sta-
tion clustering using the expectation maximisa-
tion (EM) generative mixture model and Poisson
distribution in its construction to better reflect the
event-based nature of bike check-ins at stations.
The method can uncover spatio-temporal trends in
terms of bike arrivals and departures, with distinct
temporal usage in each cluster, owing to their
spatial distribution and demographic characteris-
tics. Additionally, we derive station-pair clusters
to find the strongest pairwise flow movement

patterns between stations, that are in turn related
to different social activities such as commuting
or going out for lunch. We validate the model
on data collected from the London public BSS,
named Santander Cycles1.

In contrast to existing work on BSS cluster-
ing that uses station occupancy data [9], [10],
our method uses departure/arrival count series
which are more detailed and able to distinguish
periods of high and low (or no) activities. The
proposed mixture model also directly handles
the differences in weekday/weekend behaviour,
rather than through data pre-processing or feature
construction.

The remainder of this paper is organised as
follows: we begin with a survey of related work.
Then we present our proposed model based on
count series clustering. This is followed by a
description of the London BSS dataset. Imple-
mentation details of the clustering model and
BSS station clustering results are presented next,
followed by the station pair clustering approach
and corresponding results. The paper concludes
with a discussion of the achieved results, limita-
tions of the modelling approach and the potential
applications of this research.

RELATED WORK
Monitoring of long-term trends in personal

mobility patterns has traditionally been achieved
through annual household surveys, such as the
National Travel Survey (NTS) in England2. The
growth of the urban computing paradigm, that
uses statistical and machine learning techniques
for deriving patterns in large-scale urban datasets,
has led to mining of mobility patterns from
taxi trips data [5], location-based social network
data [6] and mobile CDRs [7]. Though the NTS
informs policy on personal transport, such tar-
geted surveys are reliant on user participation.
The short-distance (also short-duration) nature of
bike trips requires the development of techniques
that take into account the specific event-based
nature of bike rentals/returns from stations as well
as their spatio-temporal correlation with the bike
station neighbourhood [2].

1https://tfl.gov.uk/modes/cycling/santander-cycles
2https://www.gov.uk/government/collections/national-travel-

survey-statistics
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Research using BSSs has employed either
clustering methods to find bike station partitions
that have similar usage, or prediction techniques
for forecasting the occupancy of stations and sta-
tion traffic towards bike rebalancing and schedul-
ing optimisation.

Initial studies on temporal pattern mining
from bike usage data consider statistical features
such as historical average/trend with Bayesian
networks [9] or time series analysis [10], with
the most salient feature derived being the re-
peating three-pronged spike corresponding to the
morning, lunch and evening commutes across
all weekdays. The BSS data elements in these
studies are the station location, the number of
available cycles and the number of vacant parking
slots. In contrast to these studies that use station
occupancy data, our method uses departure/arrival
count series which are more detailed and able to
distinguish periods of high and low (or no) activ-
ities. Additionally, we consider trip data, rather
than station occupancy, ensuring that the derived
trends relate to actual bike journeys rather than
the BSS load balancing measures via trucks [9].

Subsequent works involving bike trip data
(similar to our approach) include the research by
Etienne et al. [3] that proposed a count series
model to predict hidden station clusters. The
resulting clusters include those that are related to
commuting (i.e. stations located close to public
transport and mostly active during the morning
and evening on weekdays). Another BSS mo-
bility study [11] investigates the spatial analy-
sis of bike trips by visualising the activity in
each station separately and then identifying the
main characteristics of the flow between stations.
Our model is motivated by these works that
consider bike trips as count series - we further
extend the clustering of stations according to their
temporal usage profiles as conducted in these
studies to pairwise traffic flows between stations
that correlate the cycle journeys to work/social
travel patterns. Another approach whose objec-
tive is close to the one proposed here, looks
at station function discovery [2] by modelling a
station as a document in a Latent Dirichlet Al-
location (LDA) algorithm, with station functions
derived as the topics of a document. Other studies
utilise spatio-temporal features, such as impact of
points-of-interest (POI) [12], [13], POI categories

[8] or weather conditions [14] on station-level
traffic prediction. In contrast to these studies,
our proposed method encodes the differences
in weekday/weekend behaviour directly into the
mixture model parameters, rather than through
pre-processing or feature engineering methods.
Moreover, our model encodes the trip data for
each available day over a long period, rather
than a summary of the statistics, which takes into
account factors of seasonality.

Different clustering approaches applied to
BSS data include studies for traffic prediction that
involve a clustering step at city, cluster or station-
level (e.g. bipartite clustering [15], Xgboost [16],
Gaussian mixture model (GMM) [17] or hier-
archical clustering [18]) to divide bike stations
into groups and counteract traffic fluctuations
at individual stations. While different clustering
methods offer different performance benefits, our
proposed model considers the specific count-
based nature of the data, whereas previous so-
lutions do not use this particularity.

COUNT SERIES CLUSTERING
MODEL
Mixture Model

Observed data can be utilised to infer under-
lying unseen probability density distribution. The
activity behaviour of bike stations is modelled
through a statistical approach that describes bike
station usage in terms of arrival and departure
count statistics.

The underlying mixture model, f , is a mix-
ture of K component distributions, P1, P2, ...Pk,
where each component is a Poisson distribution
to match the count series data, based upon mixing
weights πk.

The mixture model has the general form:

f(x) =
K∑

k=1

πkPk(x) (1)

with K representing the number of station clus-
ters that need to be obtained, being latent (i.e. not
directly observed) in the observed bike trip data.

Notation: in this section, we employ lower-
case letters for variables and its corresponding
uppercase equivalent for the overall summation
value for the variable. For instance, k represents a
station cluster and K represents the total number
of station clusters, i.e. k ∈ {1, ....,K}.
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The observed data for a station s can be
represented by a count series of the number of
departures, Xout

s , and arrivals X in
s , at a given

hour h ∈ {1, 2, ...24} on a given day d ∈
{1, ...D}. The quantisation of 1-hour is deemed
as a good trade-off between data resolution and
fluctuations in departure/arrival counts, in line
with existing literature on bike usage modelling
[11], [3]. These arrival and departure count series
are concatenated to Xsd, denoting the arrival and
departure activity of a station s on day d.

All the bike check-in data can be represented
as a 3-dimensional tensor X of size S ×D× T ,
where S is the total number of stations, D is the
total number of days available in the dataset (cor-
responding to the data collection period: January
2015 – May 2017), and T is 48, since the arrival
and departure counts in a day are computed in 1-
hour non-overlapping windows (i.e., 24×2). The
parameters for the model are arranged as arrays of
varying dimensions and represent the probability
that a given station belongs to a particular cluster.
An intermediary parameter m of size S×K, (K
as specified in Equation 1) is used to calculate
these parameters.

Although the most popular distribution to use
in the construction of mixture models is the
Gaussian distribution, the Poisson distribution is
used in this work. This is because the Poisson
distribution fits the count nature of the observa-
tions. The discrete Poisson distribution expresses
the probability of a number of events occurring
in a given time period based on a mean. In this
work, the bike check-ins in a given hour on a
day are the events and we model their probability
distribution in order to cluster them.

In addition to using Poisson mixture to build
the generative model, two indicator variables are
defined. The first, Wdl, is used to take into
account the difference in the bike stations usage
on weekdays and weekends, as these present very
different usage profiles, with Wd0 = 1 indicating
that the day d is a weekend and Wd1 = 1
indicates a weekday, i.e. l denotes the day (week-
day/weekend) cluster membership of the station.
Dl =

∑
d Wdl denotes the number of days in

day cluster l. The second indicator variable πk

encodes the cluster membership of a station, with
K denoting the number of station clusters and
applied as a component of the model as specified

in Equation 1.
A scaling factor αs, specific to each station

s, is used to represent the global activity (total
volume of arrival/departure counts) at a station.
It is used to distinguish between stations that
may have a common usage profile but show wide
differences in activity (arrival/departure) volume,
and is calculated as below:

αs =
1

DT

∑
d,t

Xsdt (2)

where Xsdt represents the arrival and depar-
ture activity of a station s on day d and time
frame t, D and T are as explained previously
in this section. As seen in Equation 2, αs of a
station s is calculated as the average of its activity
vectors along all the time frames and days.

Consideration is also made for the variation in
activity at different times during the day and the
difference in activity in different clusters is mod-
elled through the mean used in the Poisson dis-
tribution: λ, with λklt representing the temporal
variations of arrivals/departures for each station
cluster: k and day type: l (i.e. weekend/weekday);
and time frame t. The following constraint is
placed on the λ in order for the model parameters
to be calculated:

∑
l,t

Dlλklt = DT, ∀k ∈ {1, ...,K} (3)

Taking into account the above, the conditional
density of the activity vector Xsd can be derived
as:

Pk(Xs) =
∏
d,t,l

p(Xsdt;αsλklt)
Wdl (4)

where p(., λ) is the density of the Poisson
distribution with mean λ. The generative model
makes the assumption that the departure/arrival
counts for each hour are independent and follow a
Poisson distribution of parameter αsλklt. Estima-
tion of the model parameters and station cluster-
ing can be performed by the maximum likelihood
estimates (MLE) of these parameters. For this,
the log-likelihood is first derived by substituting
Pk from Equation 4 into the mixture model
equation (Equation 1), summing over all k and
taking the logarithm of the function. Instead of
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estimating the parameters’ MLE directly through
numerical optimisation, the EM algorithm is used
to maximise the log-likelihood.

EM Algorithm
The parameters of the mixture model can be

estimated by using the expectation maximization
(EM) algorithm [19], which is used for obtaining
MLE of parameters when there is latent, i.e.
unobserved data. It is an iterative algorithm with
two steps: in the E step, soft assignment is done
for each of the data points to one of the clusters
based on the current model parameters. This is
done by estimating the aposteriori probabilities
of each cluster: msk, given by:

msk =
πkPk(Xs)∑
k πkPk(Xs)

(5)

Thus, the E step computes the expectation of
the log-likelihood of the conditional density given
in Equation 4. This provides the lower bound
of the log-likelihood. The M step updates the
parameters in such a way so as to maximize the
log likelihood of the model based on the results
from the E step. The parameters are updated
according to the following rules:

πk =
1

N

S∑
s=1

msk (6)

λklt =
1∑

s mskαsk

∑
d Wdl

∑
s,d

mskWdlXsdt

(7)
Equation 6 depicts how πk, which encodes the

cluster membership of a station, is updated using
the aposteriori probabilities of each cluster.
Equation 7 shows the calculation of λklt as a
weighted mean of the activity of cluster k stations
in day cluster l and time frame t. The E and M
steps are iterated until the parameters converge to
the local maximum of the log-likelihood function.

DATASET
The dataset is sourced from the Transport for

London (TfL) cycling open data website3, usage-
stats section, that has data on all Santander Cycles
journeys. The TfL data is available as download-
able comma-separated-values (CSV) files, each

3https://cycling.data.tfl.gov.uk

Figure 1. Schema of bike journey data

containing bike journeys for a 15-day period.
Each bike journey is described as shown in the
Checkins table of Figure 1, with the start/end date
and time and start/end station IDs. We collected
bike trips’ data for a 3-year period, from 4th
January, 2015 to 16th May, 2017, which after
parsing and cleaning contains over 15 million
trips. Cleaning the dataset included removing
erroneous or invalid trip data, i.e. removing any
journeys with a duration of 0 seconds. Journeys
that took longer than a day, constituting 0.06%
of all journeys, were also removed, as these
possibly point to misuse of bikes. This seems
like an appropriate threshold to use to retain only
appropriate and normal bike usage, as majority of
the journeys in the dataset (98%) were less than
an hour. The station IDs are mapped to the station
name and location (latitude/longitude) using the
TfL Unified API and querying for ‘BikePoint’4.
The resulting data schema is shown in Fig. 1.

LONDON BSS STATION CLUSTERING
The mixture model for clustering the bike

stations is applied to the count-based trip data,
with the model parameters estimated using the
EM algorithm. The mixture model and EM algo-
rithm are implemented in Python 3, on a laptop
with AMD Ryzen5 5600X CPU and 16GB RAM.
Loading and pre-processing (parsing and clean-
ing) of the data is performed using the Pandas
library [20] as it provides functionality to load
large amounts of table data and to easily filter
and sort it. Numerical calculations for tensor ma-
nipulation and operations were performed using
the Numpy library5. The maximum probability
of each station was used to determine the cluster

4https://api.tfl.gov.uk/bikepoint
5https://numpy.org
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Figure 2. Map of bike station clusters

Figure 3. Mean activity pattern for stations in Cluster A: Leisure & Tourism (close to tourist attractions,
commercial areas and public transport) and Cluster B: Transport (close to public transport and train stations).

that a station belonged to. Check-in data across
all stations for a period of one week was used
for parameter estimation in the model. A range of
cluster numbers were experimented with, with the
most appropriate value selected by plotting the
mixture model’s log-likelihood against the cluster
numbers. This was then analysed by the elbow-
method heuristic [3] which shows an elbow in
the curve at K = 5. Hence, the value of 5
is chosen for the number of clusters. The MLE
of the mixture model parameters is taken as the
best of the set of local maxima obtained from

the various runs of the EM algorithm. Time to
reach convergence was 18 minutes, with each EM
run taking between 90 - 134 seconds with run
durations increasing with the later runs.

STATION CLUSTERING RESULTS
Figure 2 shows a map of London with the

location of the bike station coloured by the
cluster that they belong to. Figures 3 and 4
show the temporal activity profiles of the sta-
tions in the five computed clusters, given by
the parameter λ of the model. The temporal
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plots are organized according to the nature of
the count (arrivals/departures) and the day type
(weekday/weekend), with the 24-hour scale on
the x-axis and the y-axis depicting the normalised
count of bike arrivals/departures (corresponding
to the normalised X in

s /Xout
s , respectively, of all

stations in that cluster).

Cluster A - Leisure and Tourism

The left half of Figure 3 shows the activity
pattern for cluster A. On weekdays, the arrivals
and departures patterns were very similar with
peaks in the morning (around 8am) and evening
(7pm). These two peaks most likely corresponded
to commuting times, which is one of the main
uses of the bikes in London. In between the peaks,
however, the activity still stays relatively high in
comparison to some of the other clusters. Addi-
tionally, the peaks during the weekend activity
are very similar in magnitude to the weekday
peaks. This shows that these stations are used
as much on weekends as they were used during
commuter times on weekdays. This suggests that
these stations are also used heavily for tourism
and leisure activities besides commuting. Looking
at the locations of these stations shows that they
are close to either public transport, or tourist
attractions such as Madame Tussauds and Hyde
park as well as commercial areas.

Cluster B - Transport

The right half of Figure 3 shows the ac-
tivity patterns for stations in cluster B, which
were similar to the patterns seen in cluster A,
however, distinctions can be seen in the differ-
ence in peak activity during weekdays and the
activity in between these peaks. The difference
is a lot larger, with activity between the peaks
being significantly smaller, suggesting that these
stations are predominantly used during commut-
ing hours. However, unlike stations in cluster A,
they are used in both directions. Looking at the
locations of these stations, it shows that they
are located close to public transport, including
several of London’s largest train stations such
as London Euston, Victoria, London Marylebone
and Paddington.

Clusters C - Work and Leisure and D - Work
Figure 4 shows the activity patterns for sta-

tions in clusters C and D, which are similar
to each other, with both having high peaks in
arrivals during the morning and departures during
the evening. This is opposite to what is seen
in cluster E, suggesting that these stations are
predominantly being used as the destination sta-
tions for work commuting in the morning and
origins for commuting back home in the evenings.
The locations of these stations are mainly based
around central London which is the busiest part of
the city, especially in terms of industry and jobs,
reinforcing the idea that these stations are used
as destinations for work commutes. The main
difference between the activities at this cluster is
their activity outside of commuting hours and on
the weekends. Stations in cluster C show more
activity during these times in comparison to the
commuting peaks, suggesting that these stations
are also used for other purposes such as tourism
and entertainment. The spread of these stations
across London shows that although they are both
mostly located around central London, cluster D
heavily occupies the east side whilst cluster C
heavily occupies the west side. Looking at the
map, although both sides have a lot of industries,
the west side has more entertainment facilities
such as shopping districts and theatres.

Cluster E - Residential
The rightmost part of Figure 4 shows the ac-

tivity patterns for stations in cluster E. It contains
a significant difference in arrival and departure
activity during the weekdays, with peak activity
occurring during the evening for arrivals and in
the morning for departures. These peaks appear
at commuting times and suggest these stations
are in residential areas and used by individuals
leaving for work in the morning and returning
home in the evening. Looking at the locations
of these stations on the map, it shows that they
are predominantly located on the outskirts of
London which is less industrially dense than the
centre and contains more residential areas. These
stations are also usually close in proximity to
a station from another cluster, usually one that
is close to public transport. This indicates that
these are most likely the destination station for
the morning commute and origin station for the
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Figure 4. Mean activity pattern for stations in Clusters C: Work & Leisure (high morning arrivals and high
evening departures, more weekend activity, predominantly in west central London); D: Work (high morning
arrivals and high evening departures, less weekend activity, predominantly in east central London); and E:
Residential (peak arrivals in the evening and high departures in the morning).

evening commute. The stations are also relatively
active during the weekends with the peak activity
only dropping by 50% from weekday to weekend,
suggesting the stations are still in heavy use
during the weekend by individuals living in these
residential areas.

LONDON BSS STATION PAIR
PATTERN
Pair Pattern Approach

In order to quantify the relationship of the
temporal characteristics of the stations (derived
from the EM model) to the social and eco-
nomic activities of the station neighbourhood
type, we spatially cluster the pairwise flows be-
tween source-destination station pairs. To this
end, to find the pattern of bike journeys that relate
to different socio-economic activities, a second
clustering approach is applied to group station
pairs that serve as the source and destination
stations of the bike journeys contained in the
dataset, to determine the strongest movement
patterns between pairs of stations.

To find patterns between different source-
destination station pairs, it is important to re-
duce the size of the data, as the combinations
of stations grows rapidly with the number of
stations. In order to do this, the first step is to
find the principal components of the activity pat-
terns, which enable to summarise the data without
loss of information by transforming correlated
attributes into non-correlated components that are
a linear combination of the original features.
Activity patterns between stations are aggregated
per day of the week and hour (treating this as a

timestamp) and represented in a vector of size 168
(7×24), corresponding to the 7 days of the week
and 24 hours per day. The principal components
are found by using Principal Component Analysis
(PCA), and selected such that 90% of the variance
within the data is kept. To further reduce the
data, station pairs are filtered based on their maxi-
mum travels during any timestamp. This removes
station pairs with little to no activities between
them. Stations might have similar temporal ac-
tivity patterns; however, this pattern may vary in
scale from station to station. So, before clustering,
the stations’ data is normalized. The final step
applies the K-means algorithm to the normalized
data to find clusters between stations. The most
appropriate value for the number of clusters (i.e.
K = 3) is determined by the elbow method
heuristic. This is done by calculating the sum of
squared error (SSE) between the cluster centroid
and each cluster member for each value of K, and
plotting the SSE values against K. The K value
is chosen at which the graph forms an ’elbow’,
i.e. the SSE decreases abruptly.

Station Pair Pattern Results
Figure 5 shows the weekly activity pattern for

the station pair clusters, with the days plotted on
the x-axis and mean activity levels on the y-axis.
The left half of the plot shows the activity pattern
between stations in cluster 0 and 1. The figure
shows the activity relates very closely to com-
muter patterns, with a lot of activity on weekdays
peaking in the morning and in the afternoon. The
two clusters show a small difference in the timing
of the morning peak with stations in cluster 1
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peaking at 7 am whilst stations in cluster 0 peak
fractionally later at 8am.

From the 3 clusters found, cluster 0 contains
the most station pairs with 36%. Comparing the
types of stations that form the pairs in this cluster
reveals that 40% of the pairs contain a station
that was previously classified as “Residential” and
another 40% contain a station that was previously
classified as “Transport”. On top of this, the
majority of the pairs, 54%, had a station that was
in one of the two clusters previously identified
to be commuter destinations (clusters C and D).
This shows that one of the most predominant
uses of the London shared bike scheme is for
commuting purposes. Cluster 1 contains a smaller
portion of the station pairs with 21%, and shows
a difference in the station types in the pairs.
Only 30% of the pairs contain a station that was
previously classified as “Residential” and 33%
contain a station from “Transport”. In comparison
to the pairs in cluster 0, a significantly larger
portion of the pairs contain a station identified as
a commuter destination, at 66%. This shows that
in this pair-cluster, station pairs are used more
for the final part of a commute, whilst those in
cluster 0 are used more at the beginning or for
shorter commutes.

The right half of Figure 5 shows the weekly
patterns for pairs in cluster 2, this cluster has the
smallest portion of the station pairs and shows
a very different pattern than any of the other
clusters. There are a lot more activities during the
weekends and outside of normal commuter hours.
Most of the station pairs in this cluster, 55%,
contain a station that was previously classified
as “Tourist” whilst only 5% contain a station
that was in cluster D, which almost exclusively
showed commuter patterns. This would suggest
station pairs in this cluster are mainly used for
tourist and leisure purposes.

CONCLUSION
The analysis performed on the London BSS

data was able to discover multiple unique patterns
that can be explained and related to the different
usages across the city of London. When looking
at the arrivals and departures at the bike stations
across London, five unique behaviour patterns
were discovered. Although all of these patterns
displayed two peaks on weekdays (reflecting their

use by commuters at the start and end of the
working day) and a single peak on weekends (re-
flecting their use for leisure activities or exercise);
the difference in magnitude of these peaks and
in-between these peaks were strikingly different.
The discovered patterns showed that most travel
using the bike is dictated by commuters; however,
leisure activities in areas also had a strong impact
and resulted in notable changes to the usage of the
bike stations. The developed model can be easily
replicated and applied to other cities where bike
trips are captured in terms of the date, time and
location of its start and end.

With the inclusion of the scaling factor in the
developed model, both the temporal characteris-
tics as well as magnitude of activity at stations is
captured. This enables a good insight into urban
mobility in the city, such as comparison of com-
muter behaviour before and after certain events,
such as the coronavirus lockdown. In addition to
facilitating recognition of evolving functions of
particular stations (i.e. for commuting or leisure),
new emerging transportation hubs can also be
identified. The latter can also help the business
profile of the BSS: to optimise the bike redis-
tribution policy and plan for citing new stations
(location as well as bike fleet size). A limitation
of the Poisson construction of the model is the
assumption of independence between the arrival
and departure events at each hour. However, this
may not hold depending upon the mixed nature
of the station neighbourhood.
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