
112 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y 0 0 1 8 - 9 1 6 2 / 2 2 © 2 0 2 2 I E E E

C
O

P
Y

R
IG

H
T

 IS
T

O
C

K
P

H
O

T
O

, C
R

E
D

IT
:L

V
C

A
N

D
Y

SOFTWARE ENGINEERING

A recent article in the Forbes Technology Council
“an invitation-only community for world-class
CIOs, CTOs, and technology executives” enti-
tled “It’s Time for Software Engineering to Grow

Up,”1 caught my eye. The author contends that “headcount
has always been the primary lever for [software] engineer-
ing leaders to substantially increase output.” The article fur-
ther argues that one reason that metric-based management
is not used in software engineering is over “fear of alien-
ating a volatile and rare resource—the software engineer.

Software engineering is a creative
craft. Some operational metrics may
be ‘big brotherly’ and would stifle the
creativity that leads to innovation.”

These negative views of software
engineers and software engineering
are not based on reality. For exam-
ple, my own recent surveys of prac-
titioners showed that almost 50% of
software engineers were using met-
rics-based requirements manage-
ment tools (75% for agile projects)

and of software testing position ads 56% asked for test-
ing-tool skills as a requirement or as a preference.2,3 The
software engineering profession embraces tools. In fair-
ness, the author of the curious article is mostly promoting
a “software project visibility tool,” but the assertion that
software engineering “needs to grow up” got me think-
ing—if software engineering were a human, where would
it be on the development spectrum? I think adolescence.

SOFTWARE ENGINEERING VERSUS
MEDICINE OR ELECTRICAL ENGINEERING
For almost 60 years, software engineering (or whatever
name the discipline has gone under over the years: coding,

Digital Object Identifier 10.1109/MC.2022.3200281
Date of current version: 24 October 2022

Software Engineering’s
Adolescent Growing
Pains
Phil Laplante , The Pennsylvania State University

Software engineering has a long way to go to

reach the stature of other mature scientific or

engineering disciplines. Based on the history of

these professions, software engineering may

not even be halfway from “infancy” to a

mature profession.

http://orcid.org/0000-0002-0415-271X

 N O V E M B E R 2 0 2 2 113

EDITOR PHIL LAPLANTE
The Pennsylvania State University;

plaplante@psu.edu

programming, systems analysis, and so
on) has been trying to define itself and be
regarded with the same respect as other
engineering disciplines and the medi-
cal profession.4 Anyone can write soft-
ware, so what is a “software engineer?”
Software “engineers” are almost never
licensed in any country in the same way
that other engineers are licensed. Why?
I think that even though software engi-
neering’s history includes curriculum
standardization, certifications, and at-
tempts at licensure, it is not yet mathe-
matically mature. But other science and
mathematically based professions took
a very long time to reach maturity. For
example, fewer than 200 years ago the
medical profession was a hodgepodge
of practitioners of various approaches to
healing, including many untrained and
unskilled quacks. It was until the late
20th century that the medical profession
became profession we recognize today.
What brought the medical doctors to-
gether was unification behind science.5

Likewise, electrical engineering took
longer than 200 years to resemble its
modern form. While luminaries such as
Leyden, Galvani, Franklin, and Volta were
experimenting with electricity almost 300
years ago, there were few foundational
equations until the late 1890s. I have an
original 1898 copy of Trowbridge’s “What
is Electricity?” (1896), an early and semi-
nal text on the subject. The 315-page book
has almost no equations—it is mostly
long narratives and a smattering of dia-
grams. Yet a modern electrical engineer-
ing textbook is densely packed with math-
ematical theory and important equations,
such as Ohm’s law, Maxwell’s equations,
and Kirchoff’s laws. How did electrical en-
gineering mature to this “adulthood”?

Frankly, reaching this maturity required
intellectual and legal battles among and
between experimentalists and theorists.
The era from the 1850s through early
1900s featured battles over the theory,
application, and patent superiority of
telegraph, telephone, light bulb, and

phonograph technologies, of ac versus
dc for the power grid, batteries, motion
pictures, radio, and more. Along the way,
significant theory was developed. In his
fantastic book on Edison, Morris relates
the battles of this skilled experimentalist
with many important and practical inven-
tions, versus the theorists with few practi-
cal achievements during that transforma-
tive period of the discipline.6 These battles
forced theory to harmonize with experi-
ment and practice—yielding the modern,
scientific, and mathematically rigorous
discipline of electrical engineering.

THE ENGINEERING PART OF
SOFTWARE ENGINEERING
Rigor in software engineering requires
the use of mathematical techniques. Of
course, any kind of scientific program-
ming, embedded control systems, and
so on use mathematical algorithms.
But real engineering of software further
requires that there be a rigorous math-
ematically based approach to the speci-
fication, design, coding, and documen-
tation of the software. Formal methods
might fit this characterization, but its
use is so limited that stories of its suc-
cessful implementation in practical sys-
tems are article worthy.

Software engineering has a problem,
and it relates to the lack of grand the-
ories. Can you name five foundational
theories or formula of software engi-
neering, based on mathematics? I can
only think of a few. To me, the most prac-
tical is McCabe’s Cyclomatic Complexity
Theorem (which demonstrates the max-
imum number of linearly independent
code paths in a program) and is used
by software engineers for software test
planning, code complexity analysis, and
more. Other theories have only theoret-
ical applications of what is possible or
impossible in programming. For exam-
ple, the Boem–Jacopini Theorem, that is,
that all programs can be constructed us-
ing only sequential and goto statements.
I can’t think of any others.

Of course, we can defer to theorems
and formulas from probability and sta-
tistics for applications, for example, in
artificial intelligence, failure analysis,
timing analysis, testing, and so on, but
none of these uses are unique to soft-
ware engineering. And while there are
many metrics used in software project
management (for example, function or
use case points, churn, and so on), these
are informal and certainly do not form
a comprehensive engineering approach
to software.

There are no grand mathematical the-
orems of writing software, though there
are rules and principles of structure, or-
ganization, and grammar. We have vari-
ous principles of object-oriented design,
patterns, and so on and these are useful
and important. But of the thousands of
papers published in various transactions
and journals, I can think of only a few im-
portant theoretical papers that strongly
influence modern, software engineering
practices. For example, those that intro-
duced McCabe’s metric, the Chidamber–
Kemmerer metrics, and Parnas Partition-
ing, but there are few others.

Electrical engineering has its uni-
fying Maxwell’s equations: four vector
equations that define the fundamental
relationships between electricity and
magnetism, which are among the most
important formulas in all physical sci-
ences. The original formulation by Max-
well was in 20 quaternion equations
with 20 variables, which were compre-
hensible to only a few individuals and
practically useless. These equations were
simplified to their modern form (four
equations in six variables) by Heaviside,
which are practical and ready for use.
That is how a discipline grows up.

Iwas once skeptical that software
engineering could become a true
engineering discipline in my life-

time. But then I was given hope that
this could happen much sooner, I even

SOFTWARE ENGINEERING

helped launch the first software engi-
neering licensing effort in the United
States. But this effort fizzled after only
a few years for a number of reasons,
including that there is not enough
engineering in software engineering
to persuade other engineering dis-
ciplines that we deserve to join their
ranks. Now I realize my original opin-
ion was correct—it will be decades for
software engineering to be a true engi-
neering discipline.

It took both the medical profession
and electrical engineering at least 200
years to move from an informal sci-
ence to a more rigorous one. Software
engineering researchers and practi-
tioners need to focus on the science
and mathematics and find more ways
to make the theory practical. We need
to find grand theorems that unify the
many informal practices, that may
work, but that need to be mathemati-
cally based. Only then, as in the medi-
cal profession and electrical engineer-
ing, can the discipline come together

to agree on a body of knowledge that
joins theory and practice.

We are only about 60 years into soft-
ware engineering as a discipline. We
lack unifying principles and a rigorous
mathematical basis that influences daily
practices. Thus, software engineering
is just entering its adolescence.

REFERENCES
1. S. Nabar. “It’s time for software engi-

neering to grow up.” Forbes Technology
Council. Accessed: Jul. 26, 2022.
[Online]. Available: https://www.
forbes.com/sites/forbestechcouncil/
2022/08/04/its-time-for-software
-engineering-to-grow-up/?sh=3
d8d18d57c4e

2. M. Kassab and P. Laplante, “The
current and evolving landscape of re-
quirements engineering in practice,”
IEEE Softw., early access, Nov. 2022,
doi: 10.1109/MS.2022.3147692.

3. M. Kassab, P. Laplante, J. Defranco,
V. V. G. Neto, and G. Destefanis,
“Exploring the profiles of software

testing jobs in the United States,”
IEEE Access, vol. 9, pp. 68,905–68,916,
May 2021, doi: 10.1109/ACCESS.2021.
3077755.

4. P. Laplante, “A brief history of
software professionalism and the
way forward,” Computer, vol. 53, no.
9, pp. 97–100, Sep. 2020, doi: 10.1109/
MC.2020.3004017.

5. P. A. Laplante, “Professional licensing
and the social transformation of soft-
ware engineers,” IEEE Technol. Soc. Mag.,
vol. 24, no. 2, pp. 40–45, Jun. 2005, doi:
10.1109/MTAS.2005.1442380.

6. E. Morris, Edison. Munich: Random
House Trade Paperbacks, 2020.

PHIL LAPLANTE is a professor of
software and systems engineering
at The Pennsylvania State University,
State College, PA 16801 USA,
a Fellow of IEEE, and an associate
editor in chief of Computer. Contact
him at plaplante@psu.edu.

IEEE Pervasive Computing

seeks accessible, useful papers on the latest

peer-reviewed developments in pervasive,

mobile, and ubiquitous computing. Topics

include hardware technology, software

infrastructure, real-world sensing and

interaction, human-computer interaction,

and systems considerations, including

deployment, scalability, security, and privacy.

 Call
 for Articles

Author guidelines:

www.computer.org/mc/

pervasive/author.htm

Further details:

pervasive@computer.org

www.com
puter.o

rg/perv
asive

Digital Object Identifier 10.1109/MC.2022.3208679

mailto:plaplante@psu.edu

