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Scientif ic discover y has 
been a major driving force 
for advances in computa-
tion and calculation: ev-

ery domain and every application 
comprises its own unique set of 
data and compute characteristics, 
and the amount of global resources 
that have been dedicated to devel-
opment, maintenance, and execu-
tion are likely nigh unquantifiable. 
As of late, however, artificial intel-
ligence (AI) and machine learning 
(M L) h ave become a n at t rac t ive 
means to unify a significant por-
tion of workloads under the same 
modeling framework by using neu-
ral networks as universal function 
approximators.1

As AI and ML began to make sig-
nificant advances in algorithms (in 
pa r t ic u la r, fa st automat ic dif-
ferentiation, which forms the back-
bone of all AI/ML training),  expres-
siveness and capabilities, and new 
hardware/platforms, AI/ML model-
ing started permeating through-
out scientific applications. Today, 
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it is common for most large technol-
ogy organizations to devote signifi-
cant resources toward “AI for Science,” 
research into how AI can be used to 
accelerate scientific discovery, and to 
tackle some of the biggest open chal-
lenges for humanity.

For many of these applications, AI/
ML models developed for industry 
problems directly map onto scientific 
ones: the transformer for NLP, for in-
stance, sees use in protein folding and 
weather forecasting. Although this 
benefits modeling capabilities, one dis-
tinguishing trait and major bottleneck 
in scientific AI is the sparsity of avail-
able data: experimental data are often 
difficult and expensive to acquire, and 
simulation with a modest computing 
budget can only afford so many data 
points and only on specific systems of 
interest. In contrast, AI applications in 
industry have seen significant invest-
ment in data collection since before 
the advent of big data; language mod-
els can be trained with text scraped 
from the Internet, while the same is 
impossible for genomics or cosmology. 
There are recent concerted efforts to 
overcome this data availability and 
coverage challenge. The workloads we 
review in this article are unique not 
solely because they have high-perfor-
mance computing (HPC)-scale require-
ments, but also because they represent 
concerted efforts to curate, generate, 
and standardize large amounts of sci-
entific data and novel neural network 
architectures, and open sourced for 
communities to build on. It is our opin-
ion that these grand efforts will hope-
fully make collective progress toward 
common goals in areas such as novel 
materials discovery, treatment of dis-
ease, and weather forecasting.

AI/ML AT HPC SCALES
Given that “HPC-scale AI/ML” is a 
highly nebulous and transient descrip-
tion, for the context of this article, 

we classify workloads as such based 
loosely (note that not all criteria need 
to be fulfilled) on four computational 
requirements, namely,

›› dataset size in the realm of hun-
dreds of gigabytes to terabytes; 
“HPC-scale” datasets necessitate 
a high training throughput ob-
tained through distributed data 
parallelism and/or accelerator 
offloading.

›› the number of learnable param-
eters, on the order of billions; 
“HPC-scale” neural network 
models involve intensive com-
pute and memory requirements, 
both in terms of capacity and 
bandwidth.

›› extremely low latency; appli-
cations that require neural 
network computations to finish 
on the order of microseconds or 
even lower.

›› an AI/ML model incorporated 
inside a conventional HPC 
workload/simulation.

Whereas the other categories are 
more obvious in their HPC require-
ments, dataset size warrants some dis-
cussion. Conventional or “classical” 
AI datasets like ImageNet2 (~150 GB) we 
would classify as being on the outskirts 
of our definition, although a few years 
ago it likely would have fit comfortably 
given its size. Now, when paired with 
models such as ResNet50, workstations 
with consumer-grade hardware are 
able to train to convergence within a 
day or two; thus, training on a distrib-
uted scale is not strictly necessary to 
obtain a result within a reasonable time 

frame even if it can naturally benefit 
from doing so.3 Although not strictly 
a scientific nor holdfast definition, an 
intuitive and practical one would see 

HPC-scale AI workloads being those 
that would take a few hours to close to 
a day to complete even a single epoch 
without data parallelism, assuming of 
course vectorized code running on re-
cent accelerators and associated deep 
learning framework and libraries. 

DOMAINS
In the next sections, we review a sam-
pling of current scientific AI/ML work-
loads that operate at HPC scale, per 
our narrow definition discussed in the 
preceding section. Although we do not 
provide an exhaustive set of workloads, 
we believe that they are representative 
of the current state of the art, sufficient 
to see how and where AI can be applied 
to scientific problems at scale.

Chemistry
In applied chemistry, AI/ML surro-
gates are now routinely used for high 
throughput screening of large data-
bases of molecules and materials for 
desirable properties such as toxicity 
for drug discovery and bandgaps for 
semiconductors. Traditionally, these 
properties were eit her determined 
experimentally, leading to exorbitant 
research costs, or calculated and/or 
simulated, although the computational 
resources required for this restricted 
the breadth and complexity of systems 
that were able to be considered. In these 
screening applications, surrogate mod-
els learn to parameterize functions that 
map molecular/material features onto 

“HPC-scale” neural network models involve 
intensive compute and memory requirements, both 

in terms of capacity and bandwidth.
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target properties using existing exper-
imental and theoretical data, at a mere 
fraction of the computational cost.

Because the space of potential mol-
ecules and systems is extremely large 
and the enumeration of even small mol-
ecules is a daunting task,4 HPC-scale 
datasets are necessary to obtain AI/ML 
models that can generalize to unknown 
systems reliably. An excellent example 
of this is the Open Catalyst Project,5 a 
collaborative effort by Meta (formerly 
known as Facebook) AI research and 
Carnegie Mellon University that re-
sulted in an HPC-scale dataset and open 
source repository for catalytic material 
discovery, which utilizes graph neu-
ral networks as surrogate models for 
gas-surface interactions and structure 

optimization. In its latest incarna-
tion, referred to as OC22,6 the dataset 
comprises approximately 2 TB of data 
pertaining to different ML tasks, cat-
alytic materials, adsorbates, and con-
figurations. The extremely wide range 
of systems, particularly in diversity of 
rare-earth atoms typically employed 
in batteries and renewable energy ap-
plications, presents a highly promising 
platform for discovering new mate-
rials. Similarly, the complexity of the 
data has required as well as spawned a 
suite of novel neural network architec-
tures with hundreds of thousands of 
parameters up to the billion scale.7

Another avenue for AI in chemistry 
that has seen a significant amount of 
interest is representation learning. Con-
veniently, molecules can be compactly 
represented as linear strings with only 
some loss of information (see Krenn  
et al.8 and the references therein). In 
contrast to OC20/22, molecular strings 
can be significantly easier to generate 
and obtain and are accessible in a num-
ber of sources such as PubChem9 and 

GDB,10 which enumerate hundreds of 
billions of molecules, making them a 
part of the frontier for scale in scientific 
data. The other advantage of string-
based representations is their conver-
sion of modeling problems into natural 
language tasks, thereby taking advan-
tage of the recent advancements made 
with large language models such as Gen-
erative Pre-trained Transformers (GPT). 
Notably, ChemGPT by Frey et al.11 repur-
poses the open source GPT-NeoX12 to op-
erate on two common molecular string 
formats, elegantly demonstrating that 
the model- and dataset- scaling laws 
seen in conventional NLP13 hold true 
for chemical representations. The rich 
embeddings obtained from these large 
language models are then typically 

used for downstream tasks, capturing 
enough information for even simple 
models to reproduce complex proper-
ties, for example, drug discovery.14

Biology
Similar to our discussion in the pre-
vious section, biology has seen sig-
nificant advancements through the 
application of large language models 
for drug discovery and protein in-
teractions. The latter have received 
significant public attention from nu-
merous organizations ranging from 
DeepMind/AlphaFold15 and Meta AI/
ESMFold16 as well as broad community 
efforts like OpenFold,17 all of which 
use large language models for protein-
sequence modeling and inference. Nota-
bly, ESMFold does not require multiple 
sequence alignment, a key differentia-
tion from how protein-sequence mod-
eling has been done in the past, and 
provides a prime example as to how AI 
can fundamentally change how scien-
tific problems can be approached, and 
not just simply surrogate models.

In regard to medical applications, 
vision models and image datasets have 
been a notably intuitive application 
of deep learning. Although there are 
countless individual research papers, 
notably those captured in the grand 
challenges, on applying various neu-
ral network architectures to imaging 
data, there have only recently been ef-
forts to try and consolidate medical AI 
applications in a data-centric way. Dee-
pLeison18 is an example of a concerted 
effort to curate a large-scale dataset for 
radiology imaging, comprising 33,688 
labeled images (~220  GB compressed) 
for multiclass leison segmentation. 
More recently, AMOS19  represents a 
more data-centric20 effort toward or-
gan segmentation; in the same way 
OpenCatalyst provides multiple tasks, 
AMOS provides labeled and unlabeled 
data for (semi)-supervised learning in 
different contexts and problems. This 
shift in attitudes surrounding data 
and modeling enables researchers to 
devise workflows that actively con-
tribute toward general solutions of 
problems, as opposed to an emphasis 
on models that perform well on data-
sets with an extremely narrow scope. 
For this reason, the CANcer Distrib-
uted Learning Environment (CANDLE) 
project21 demonstrates another holis-
tic approach to multiple areas of can-
cer research and precision medicine, 
providing an open source pipeline for 
large-scale distributed model training 
and hyperparameter optimization.

Unlike simulated materials data, 
however, medical images are consider-
ably more difficult to collect, calibrate, 
and label due to privacy and availabil-
ity constraints. One way of alleviating 
this issue is with federated learning, 
whereby data storage is decentralized, 
and the only information transferred 
among workers in this massively dis-
tributed setting is model parameters. As 
a recent and perhaps largest example of 
federated learning for biological appli-
cations, Pati et al.22 demonstrated the 
need for highly generalizable AI models 
applied to large, diverse datasets. In this 
case, an aggregate, “consensus model” 

Another avenue for AI in chemistry that has  
seen a significant amount of interest is 

representation learning.



	 A P R I L  2 0 2 3 � 119

pooled training results for tumor detec-
tion from 71 sites across six continents, 
generating a model that is robust to dif-
ferent data distributions.

Physics and Astronomy
Out of the domains covered in this 
article, physics and astronomy have 
perhaps the highest dynamic range of 
AI computational requirements: rang-
ing from extremely low latency appli-
cations to processing large historical 
datasets over time. For this reason, 
physics and astronomy HPC AI appli-
cations see specialized developments 
in model and hardware development 
not typically seen in other areas, such 
as application-specified integrated 
circuits and field-programmable gate 
arrays (FPGAs). Here we chose to high-
light some more extreme cases to em-
phasize their novelty.

In the case of particle physics, there 
has been a diverse range of domain-spe-
cific developments, particularly due 
to the high data volumes borne from 
operation of the Large Hadron Col-
lider, which operates at 40  MHz, or 
latency on the order of microseconds. 
These extremely low latencies have 
required consideration and develop-
ment of highly specialized accelera-
tors, in particular FPGAs, not just for 
the initial data pipeline but for AI/ML 
inference for real-time processing.23 In 
these cases, neural network models are 
trained offline in the usual way, and 
subsequently compressed and adapted 
for computations on the FPGA board. 
The typical challenges associated with 
these ventures are sacrificing abstrac-
tion for performance, highly custom-
ized and tuned kernels are required for 
function, and the pipelining process 
may not have a straightforward map-
ping from its CPU/GPU counterpart. 
Progress has been made, for example, 
by Khoda et al.,24 to port architectures 
like recurrent neural networks that are 
well suited for sequences/time series 
to FPGAs, and demonstrate latencies 
spanning tens to several hundred mi-
croseconds, depending on the size of the 
model. Increasingly, these hardware 

developments make AI processing a 
viable option in real-time particle data 
collection and processing. In the re-
lated field of fusion energy research, 
the authors from DeepMind25 showed 
incredible success in applying deep re-
inforcement learning for real-time re-
actor control; however, they noted that 
their modeling choice was constrained 
specifically to fit within the L2 cache 
of the CPU control system to ensure 
low latencies. Given that some of these 
constraints would be lifted with FPGAs, 
there is a natural synergy between these 
two developments. This will be a highly 
anticipated and exciting area to see.

On the other end of the spectrum, 
astronomical observations at various 
wavelengths have produced extremely 
large troves of well-curated and cali-
brated data that could be analyzed in 
“time-domain” astronomy.26 At the 
same time, the advent of next-generation 
telescopes such as the square-kilometer 
array (SKA) is expected to accelerate 
data generation, with the SKA projected 
to produce approximately a terabyte per 
second, or an estimated 8.5 EB of data 
over a 15-year life span.27 For these rea-
sons, astronomy has seen a steady in-
crease in AI use for drawing inferences 
from large archives of data built on top 
of a long historical partnership.28 Object 
detection is perhaps one of the most in-
tuitive applications, and in the past has 
relied on crowd-sourced, citizen-science 
efforts like galaxy zoo, which has pro-
duced hundreds of thousands of labeled 
images. These images can subsequently 
be used to train computer vision mod-
els for object detection, classification, 
and segmentation29 that can be used as 
downstream data products.

In addition to galaxies, high-​
throughput AI models can also be ap-
plied toward analyzing and extracting 
physical insight from “rare” events, for 
example, in the work by Zhang et al.,30 
in applying neural density estimation 
to studying gravitational microlensing. 
Another avenue is the generation of 
synthetic images, which could be used 
to produce data for rare events in suf-
ficient quantities to train and test new 

algorithms. Smith et al.,31 for instance, 
applied diffusion image modeling to 
generate realistic galaxy images while 
preserving physical quantities such as 
galaxy size and flux, thereby showcas-
ing a direction that would strongly ben-
efit areas of astronomy that have tradi-
tionally been data sparse.

Weather and Climate
Naturally, weather and climate have 
traditionally been HPC-heavy areas, 
with extreme computational require-
ments given the large spatial and 
temporal grids involved. For the same 
reason, AI/ML surrogates are an at-
tractive option to attempt to mini-
mize time to solution in addition to 
introducing modeling flexibility and 
uncertainty quantification. Further-
more, the years of historical data, com-
bined with well-optimized weather/
climate modeling codes, has resulted 
in large datasets for training and eval-
uating AI/ML surrogates.

An early and recent approach to-
ward standardizing training data 
for weather/climate applications, in 
particular radiation transfer, was 
developed by the Rolnick Group at 
the University of Toronto and coined 
ClimART32 based on the Canadian 
Earth System model. The authors’ ef-
forts include best practices for data 
and model curation: for the former, 
organization into “tasks” or scenarios 
similar to OC20/22 to provide bench-
mark targets, and a number of base-
line model implementations for the 
latter. This way, ClimART facilitates 
open source development of fast and 
accurate radiative transfer surrogates, 
which can potentially be used to sub-
stitute modules within weather codes.

An even more recent approach was 
presented by researchers at DeepMind 
and Google, who developed a frame-
work termed GraphCast,33 which com-
bines an autoregressive graph neural 
network approach with 39 years of 
historical weather data,34 resulting in 
a new state of the art in medium-range 
weather forecasting. Of particular in-
terest to the HPC community is the 
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computational requirements of scien-
tific AI at such a scale: the authors note 
that each time step comprises almost 
a gigabyte of single-precision data, 
even before considering the memory 
requirements for model weights and 
backpropagation. Society has much to 
gain in the face of such a computation-
ally demanding workload, however, 
given the ability to generate accurate 
10-day forecasts in under a minute 
with a single tensor processing unit. 
Similar approaches to GraphCast like 
FourCastNet35 have considered model 
ensembling to obtain uncertainty es-
timates, which would be instrumen-
tal toward adopting AI in real-world 
weather forecasting.

FUTURE OUTLOOK
Although we have chosen to focus on 
HPC-scale scientific AI for this article, 
this niche is by no means the only path 
taken. Broadly speaking, industry ap-
plications in computer vision and NLP 
have adopted extremely large mod-
els and datasets, taking advantage of 
the un/self-supervised nature of deep 
neural networks that scale with both 
dimensions; in turn, they present a spe-
cial, interesting case for HPC. The oppo-
site end of the spectrum, however, deals 
with data scarcity and highly parame-
ter-efficient models, those that capture 
physical biases well, such as symmetry 
in nature36 and those mimicking math-
ematical operators.  Although they may 
not be parameter intensive, they may 
demonstrate complex, compute-inten-
sive use patterns that require highly 
specialized tuning and accelerators. 
Graph neural networks are a recent ex-
ample of this; naive implementations of 
graph structures are extremely prone to 
cache misses, and a significant amount 
of effort has been devoted to proposing 
algorithms and architectures38 that 
improve graph processing. 

Another area that is currently lack-
ing in HPC-scale scientific AI is inter-
pretability and explainability. Thus 
far, the surrogates highlighted in this 
article are “black-box” regressors, and 
although they are effective at doing 

so, they do not offer insight into why 
a prediction was obtained. Although 
some early interpretive techniques 
could be used with the trained model, 
such as input gradients, there are well-
known shortcomings to such posthoc 
analyses,39 and there is a strong case 
to be made for model architectures 
with built-in uncertainty quantifica-
tion and explainability. In particular, 
frameworks that include causal learn-
ing (see Kaddour et al.40 for a compre-
hensive and recent review on the topic)  
where simple modifications to the ar-
chitecture and training approach can 
provide robust and interpretable pre-
dictions.41 Uncertainty quantification, 
on the other hand, is critical for deci-
sion making: the authors of GraphCast, 
too, note that prediction ensembling 
is missing from their approach, which 
would be needed to describe how dif-
ferent initial conditions map onto final 
weather states, a ubiquitous problem 
for modeling/simulating physical sys-
tems. In this light, although scientific 
AI has certainly reached new scales 
that enable new scientific discover-
ies, there are still improvements to be 
made to unlock its full potential.

Finally, and perhaps to end on a 
positive, forward-looking note, 
we discuss how the HPC-scale 

scientific AI landscape may evolve 
thanks to algorithmic and hardware 
improvements: models and data that 
cannot be considered today due to data, 
compute, and memory constraints. For 
these, we rely on fundamental shifts 
in AI/ML abstraction and frameworks. 
We give two examples of these efforts: 
generative modeling and new ap-
proaches to model training.

In the former, a mere two or three 
years ago, generative models remained 
a research niche comprising gen-
erative adversarial networks,42 neu-
ral flows,43 and diffusion models,44 
among other architectures. In the last 
year, stable diffusion and DALL-E have 
propelled generative models into the 
public zeitgeist; although there were 

existing efforts to use generative mod-
els to generate scientific data (for a re-
cent example, see Hoogeboom et al.45), 
they have yet to become widespread 
in the scientific AI tool kit despite be-
ing a viable and scalable way to miti-
gate sparsity in scientific datasets. By 
generating useful data with these ap-
proaches, we are hopeful that new sci-
entific discoveries and inferences can 
be drawn from models trained on HPC-
scale datasets in more domains.

In the case of model training, back-
propagation has been at the core of 
deep learning, enabling extremely 
large models to be trained. Typically, 
backpropagation records all opera-
tions in the forward pass of the data 
to facilitate automatic differentiation, 
leading to high memory costs. Ad-
vancements in this field circumvent 
these requirements by avoiding back-
propagation altogether, usually by 
means of approximate gradients such 
as “forward gradients”46 and the “for-
ward-forward” algorithm.47 By allevi-
ating memory constraints, AI training 
will require less memory movement, 
and thus enable even larger and com-
plex models, perhaps those needed to 
solve some of the biggest open ques-
tions in science and humanity. 
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