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Tailoring Requirements Engineering
for Responsible AI

Walid Maalej, Yen Dieu Pham and Larissa Chazette

Abstract—Requirements Engineering (RE) is the discipline for
identifying, analyzing, as well as ensuring the implementation and
delivery of user, technical, and societal requirements. Recently re-
ported issues concerning the acceptance of Artificial Intelligence
(AI) solutions after deployment, e.g. in the medical, automotive,
or scientific domains, stress the importance of RE for designing
and delivering Responsible AI systems. In this paper, we argue
that RE should not only be carefully conducted but also tailored
for Responsible AI. We outline related challenges for research
and practice.

Index Terms—AI Engineering, Machine Learning Engineer-
ing, Quality Requirements, Data-Centric AI, Trustworthy AI,
Human-in-the-Loop.

INTRODUCTION

A remarkably high number of AI solutions either do not
make it to the production environment1 or fail after deploy-
ment. The reason is often the same: a missing or a bad
understanding of user, technical, and societal requirements.
For instance, Google [1] recently encountered major issues
when deploying its large-scale, top-accuracy Machine Learn-
ing (ML) model for detecting diabetic retinopathy in Thai
hospitals. Beede et al. [1] observed that the detection accuracy
decayed compared to the lab evaluations since ∼ 20% of the
field data did not meet the image quality assumed during
the training and evaluation of the model. Moreover, there
were serious user acceptance issues because the new system
was poorly integrated into the existing hospital infrastructure,
disrupted the nurses workflows, and compromised the patient
experience causing a significant overhead. The authors argued:
“Currently, there are no requirements for AI systems to be
evaluated through observational clinical studies, nor is it
common practice. This is a problem because the success of
a deep learning model does not rest solely on its accuracy, but
also on its ability to improve patient care.”

In recent years, multiple similar examples of AI project
failures resulted in negative news coverage and brought serious
consequences to the software vendors and to the society at
large. Fry [2] created a collection of prominent AI failures
that raised serious societal or legal concerns, including medical
ML systems that failed to provide the correct diagnosis with
negative impact on people’s health, accidents involving self-
driving cars that failed to recognize pedestrians and obstacles,
or predictive policing systems that erroneously identified black
people as being more likely to commit a crime [3]. What these
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make it to production: https://www.gartner.com/en/newsroom/press-releases/
2020-10-19-gartner-identifies-the-top-strategic-technology-trends-for-2021

cases have in common, is that their AI models are designed
and trained in a lab environment, representing a limited un-
derstanding and representation of the real world scenarios, and
not accurately reflecting the context when making a decision.
Technology-driven AI solutions tend to prioritize automation
over stakeholder needs and to oversimplify rare but important
scenarios and tradeoffs. Moreover, a lack of transparency and
explainability of AI-based solutions often lead to mistrust and
low acceptance by users [4].

While some might argue that these issues represent greater
scientific, regulatory, and societal challenges, the good news
for responsible AI is that there is already an established prag-
matic engineering discipline which focuses on understanding
stakeholder needs, specifying acceptable requirements, and
ensuring the satisfaction of these requirements to a reasonable
extent within the solution space. This discipline is called
Requirements Engineering (RE) with a large body of knowl-
edge that has emerged over the last 45 years of research and
practice [5] including a vivid research community, a fairly
large practitioner community, several standards (such as IEEE
830), and certification bodies (such as IREB and IIBA). There
are multiple, well-studied, domain- and project-independent
RE methods, templates, and tools [6] that can also be used for
Responsible AI Engineering projects, particularly to:

• Conduct interviews, workshops, or focus groups with
stakeholders to a) identify the needs, requirements,
boundary cases, and constraints concerning the system
in general and the data in particular.

• Co-design incremental acceptable solutions with precise
acceptance criteria.

• Run observational studies and as-is analysis, not only
to understand the users’ workflows, technical and legal
constraints, as well as the system interfaces, but also
to specify the baselines against which new AI solutions
should be compared.

• Evaluate the feasibility, priorities, and costs of require-
ments, while exploring and documenting the tradeoffs.

• Create user stories, use cases, empathy maps, (accep-
tance) test cases, or other models in order to a) analyze,
document, and validate the requirements for subsequent
development and b) to check and trace the progress.

However, there are also two bad news that challenge the
application of RE in AI projects. First, RE is often a hard-
to-budget, easy-to-ignore activity in software projects. While
developers and stakeholders often recognize the importance of
RE, the actual doing falls short. Dedicated roles of require-
ments engineers or business analysts as well as dedicated RE
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Fig. 1: A recent popular Tweet about the importance of Requirements Engineering for Machine Learning projects by Pochetti,
who was named a “Machine Learning Hero” by AWS in 2019.

activities such as elicitation, analysis, traceability, or validation
are often missing, unless they are required by contract or
compliance rules, e.g., in governmental and aerospace projects.
Therefore, one may argue that it is unrealistic to expect each
AI project or AI organization to have dedicated RE profes-
sionals. In such cases, it is all the more important that, on the
one hand, Responsible AI engineers acquire and understand
basic RE knowledge to engage in RE activities by themselves;
and on the other hand, that other roles (e.g., product owners,
UX experts, scrum masters, quality and governance experts)
collaborate with AI engineers from the early phases with
specific emphasis on RE. For instance, based on a study
of different organizations, Nahar et al. [7] suggested that
the product team must involve the data science team in the
negotiation of requirements to avoid unrealistic expectations.

Second, several recent studies of Software Engineering prac-
tice in ML projects [7]–[10] particularly highlighted the RE-
related pains. In a survey with 278 practitioners, Ishikawa and
Yoshioka [10] stated that most engineering difficulties encoun-
tered in ML projects were caused by insufficient understanding
of customers or too much expectation. Wan et al. [8] inter-
viewed 14 practitioners and found that most interviewees made
strong statements about differences between the requirements
of ML systems versus non-ML systems, yet these differences
seem not fully understood by research. Interviewees stated that
requirements are more uncertain for ML systems than non-
ML systems, arguing that the goals are often too abstract (e.g.
to automate or predict something). Unlike traditional systems
which expose multiple logical states, ML systems expose a
blackbox behavior that is hard to specify, analyze, and validate.

Motivated by these studies and to tap the full potential of
RE in ensuring the deployment of Responsible AI systems that
meet user, system, and societal requirements, we discuss six
aspects that need particular attention and tailoring to the AI
context. These aspects emerged from analyzing the specifics
of the AI domain, the literature, and our own experience with
AI projects (mainly ML and Data Science projects).

I. ACCEPTABLE LEVELS OF QUALITY
REQUIREMENTS

Quality requirements (sometimes also called non-functional
requirements or system qualities) such as accuracy, explain-

ability, scalability, adaptability, fairness, and error-tolerance
seem particularly important and challenging for AI projects
[11], [12]. These qualities are generally fuzzy, hard to specify,
and measure. Their importance depends not only on the
domain (e.g., self-driving cars vs. weather prediction) but
often also on the specific usage context and might even be
subject to change depending on the stakeholders’ awareness
[13]. Moreover, quality requirements are difficult to guarantee
due to their dependency on multiple components, underlying
technologies, external services, or possibly noisy field data.
As a consequence, qualities might get only a low or a late
attention in the projects, first when serious acceptance issues
emerge or negative news coverage happens [3].

However, to ensure implementability, testability, and con-
tractual compliance, qualities should be negotiated and spec-
ified in a precise and measurable way. For example, instead
of the ambiguous requirement “the system should be usable”,
a certain time interval for performing a user task, a number
of user interactions, or satisfaction scores for particular use
cases should be specified. This can be very challenging in
Responsible AI projects as quality goals tend to remain tacit.
For instance, stakeholders often agree that a ML classifier
should be as accurate as possible, after the motto: the more
accurate the better. While this imprecise requirement might
be desired for research papers, benchmarking studies, or
open competitions, in the case of Responsible AI systems,
accuracy requirements must be made as concrete as possible
to stakeholders and AI engineers. That is, stakeholders should
explore, negotiate, and specify for a certain use case what
metrics for measuring a certain quality are important (e.g.
precision, recall, or AU-ROC for classification accuracy) and
what are the acceptable values. This also guides the design
and optimization of AI models.

Due to stakeholder fuzzy expectations and technical uncer-
tainties in early project phases, agreeing on precise values is
difficult or unreasonable. Using Quality Levels instead of fixed
values can be a good compromise to overcome this challenge.
For instance, AI engineers and stakeholders might agree on the
following requirement: The acceptable precision for release
1 should be Level 8 (that is 80-89.9%) and for release 2
Level 9 (>90%) while the recall should be at Level 9 for
release 1 and 10 for release 2 (>98%). Standardizing quality
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Fig. 2: A simple metamodel for discussing and specifying
acceptable quality requirements.

levels similar to energy labels or food classifications can hide
complex technical specification details while still allowing for
comparison and an approximation of what to expect. This
increases the acceptance chances for AI systems as it helps
clarify the user expectation and the comparability between so-
lutions. What levels are reasonable for what qualities remains
an open question for researchers and standardization bodies.

To identify acceptable levels of qualities, in addition to a
domain and stakeholder analysis, carefully analyzing boundary
conditions and exception handling of use cases as well as
potential types of failures – particularly prediction failures – is
a key. Qualitative and quantitative systematic approaches for
Failure Analysis, including Failure Mode Analysis or Fault
Tree Analysis (which are common in safety-critical domains
such as aerospace, energy/nuclear plants, or medical devices)
can serve as a starting point and should be evaluated and
adjusted to the domain of responsible AI. Such analysis often
include the identification of failures and failure types, the
evaluation of their severity and probability, as well as the
identification of possible hazards or impacts. This process can
be prospective to guide responsible AI engineers optimize their
models based on what is more important and help customers
and other stakeholders understand the limitations and risks of
the systems. Also fallback solutions, e.g., to include a human
oracle in the decision loop can be designed. The baselines (i.e.,
what values are known from the state of the art or practice),
development costs, speed, and other tradeoffs can play a role
to define what is acceptable.

Figure 2 depicts a simple metamodel that can structure AI
failure analysis and the specification of acceptable quality lev-
els. This analysis can particularly be guided by the following
questions:

• What types of prediction failures can occur, when, at what
frequency, and why?

• What evaluation metrics are more important and should
be optimized for and why?

• What is the cost or risk associated with the different types
of prediction failures?

• When are particular failures (and resulting biases) accept-
able to whom, at what average rate, at what frequencies,

and in which legal, societal and user/task context?
• Can quality metrics be decomposed into more specific use

cases or prediction tasks (e.g., optimizing for the accuracy
of certain (more important) classes instead of averages)?

The answers to those questions can differ when comparing
what stakeholders think and what they actually do and choose.
Thus, interview studies and surveys (for capturing stakehold-
ers’ opinions) as well as observational studies and A/B Testing
(for capturing their behavior) might be needed.

II. DATA- AND USER-CENTERED PROTOTYPING
FOR AI

Prototyping is traditionally an important technique not only
to communicate with stakeholders, clarify their expectations,
and gather their feedback, but also to explore the solution
space and check the requirements feasibility. While prototyp-
ing is common in AI, it usually focuses on exploring the data,
technology, and feasibility, e.g. through tuning and optimizing
ML models. Data scientists and AI engineers often create
Computational Notebooks to quickly explore datasets, train,
and tune prediction models. A big advantage of Notebooks
and data scripting environments in general is that they allow
for quick exploration of the data and the prediction technology
stack (i.e. data- and technology-centered prototyping) with
workflow automation in mind (given a certain input, calculat-
ing a certain output). The disadvantage, however, is that they
are typically decoupled from user-centered prototyping, which
focuses on user tasks and interactions [14]. Bridging these two
prototyping perspectives, i.e. data- and user-centricity, is not
trivial since the target groups and the tooling are different.

Prototypes that only focus on exploration and feasibility
risk to remain with the AI teams and not get released to
and evaluated with actual users. Such notebooks usually target
research and scientific users showing summative or analytical
visualizations of the data and the models rather than a system
perspective in the user environment. Notebooks are also often
self-contained and hard to integrate into other environments.
Moreover, if the expectation is to fully automate certain deci-
sions with the AI solution under development, demonstrating
multiple erroneous predictions to users may lead to a strong
expectation gap, leading in the worst case to losing the trust
in the system and stop using it before it gets released.

Releasing AI models early to particular user groups, com-
municating transparently the level of qualities achieved, and
offering a fallback solution (with a Human in the Loop to
manually correct predictions, e.g., based on achieved predic-
tion uncertainty [15]) increase acceptance and allow to test
the AI models in the wild on unseen data. In the best case,
this would enable AI engineers to collect additional data for
model retraining and improvement. The challenge is to achieve
a balance between the understanding of the problem space
(including what to automate and how to integrate into the
stakeholders workflows) and exploring the solution space (how
and how well automation can be achieved).

III. EXPANDING RE TO FOCUS ON DATA
Data plays a central role in AI, particularly in the subfields

of ML and Data Science. Many properties and qualities of
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AI systems directly dependent on the properties and qualities
of the data [16]. Traditionally, however, data plays a rather
secondary role in RE. Instead, the system behavior as well
as the system interaction with the user and the environ-
ment often represent the main focus of elicitation, analysis,
and testing activities. Therefore, researchers and practitioners
should consider adjusting RE activities, templates, and tools
to focus more on data. This includes requirements for the
collection, integration, pre-processing, labeling, enrichment,
storage, usage, and sharing of data.

Example questions for guiding Data RE include:
• What data is available? What data is needed?
• What is acceptable for the stakeholders and the regula-

tions?
• What technical constraints concerning the data compati-

bility and processing exist and how hard are they?
• Who should label the data and how? What labeling

errors and labeling disagreements are acceptable in which
scenarios?

• What consequences do labeling disagreements have for
system requirements and qualities?

• What data sampling requirements are needed and what is
feasible?

• What datasets can be used and what compliance and
quality issues might emerge?

• How to assess the quality of the data and how to
communicate it to the stakeholders (in the system)?

• What meta-data is needed and why?
• What data governance policy applies and who owns what

data?
• What technical, legal, and ethical constraints are there

(e.g. license, copyright, privacy requirements, consents
etc.)?

As for any project, the criticality of these questions, with
whom they should be discussed, as well as other follow-up
questions depend on the project goals, phase, as well as the
level of knowledge available. These questions and resulting
requirements are often interdependent and need to be iden-
tified, analyzed, linked, and tradeoff’ed (as discussed below).
Current RE practices, such as the creation of use stories or use
cases might need to be expanded to address Data RE. Shifting
the focus to Data RE is an important research direction and
is inline with the data-centric AI movement [16], which is
defined as “the discipline of systematically engineering the
data needed to successfully build an AI system”.

IV. EMBEDDING RESPONSIBLE AI TERMINOLOGY
INTO THE ENGINEERING WORKFLOWS

In their Ethics Guidelines for Trustworthy AI [17], HLEG2,
an expert group appointed by the European Commission to
provide advice on its AI strategy, suggests seven core re-
quirements that are key to developing responsible, trustworthy
AI. Those are: 1) human agency and oversight; 2) technical
robustness and safety; 3) privacy and data governance; 4)
transparency; 5) diversity, non-discrimination and fairness; 6)

2https://digital-strategy.ec.europa.eu/en/policies/expert-group-ai

societal and environmental wellbeing; and 7) accountability.
The suggestions of the expert group was also based on
feedback from the European AI Alliance, an online forum
with over 4000 researchers, practitioners, and policymakers.
The experts highlight the importance to operationalize and
assess these core requirements in practice as they are high-
level and hard to implement, trace, and audit. They also created
a detailed guide for self-assessment of the requirements,
[18], mainly consisting of a catalog of questions for each
requirement. Yet the operationalization of these requirements
in technical, implementable, and testable features is still an
open challenge.

In a recent study, Pham et al. [19] studied the impact of
exposing stakeholders to a certain terminology on the resulting
requirements. This phenomenon – called the Linguistic Rela-
tivity Theory – indicates that the vocabulary used by humans
influences their thinking. In their study, the authors showed
that embedding a sustainability vocabulary into requirements
elicitation sessions leads to more concrete sustainability re-
quirements compared to a control group not exposed to such
vocabulary. We think that this simple idea is crucial for opera-
tionalizing Responsible AI in practice. That is, general system
qualities like human agency and oversight, transparency, or
sustainability, which engineers find rather fuzzy and hard to
operationalize in measurable way [19], should be decomposed
into dimensions (i.e. the vocabulary) which should then be
embedded into various RE activities, templates, and artifacts.

For instance, sustainability might include environmental, so-
cial, and economic sustainability. Fairness might cover gender,
profession, and ethnic fairness. Explainability might include
visualization, communication, and interpretability aspects at
different levels for different stakeholders. These dimensions
constitute the simple vocabularies to which stakeholders and
Responsible AI engineers should be exposed, e.g. in form of
questions in elicitation interviews, discussion topics in design
workshops, sections in requirements specifications documents,
or annotations for mockups and epics. This way, these goals
become more accessible and concrete in early project phases
to stakeholders and AI engineers who have to repeatedly
think about them. The representation of the vocabulary (e.g.,
brief/long explanation, examples, icons, etc.) is also likely
to make a difference. In fact, the catalog of questions in
the Assessment List for Trustworthy Artificial Intelligence
(ALTAI) provided by HLEG can guide the systematic creation
of such vocabularies for the seven core requirements.

Researchers should investigate how effective for opera-
tionalizing Responsible AI systems are certain terminologies
and representations in certain project contexts with certain
backgrounds of the AI team. For instance, researchers could
investigate whether the word environmental leads to more
environment-related requirements or whether another word is
more effective in the language space of AI engineers, such as
energy efficiency. For measuring the impact of the terminology
and to facilitate auditing and documentation, the dimensions
should be linked and traced back and forth to different project
artifacts including source code and model documentation.

https://digital-strategy.ec.europa.eu/en/policies/expert-group-ai
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Fig. 3: An excerpt from a tradeoff model for an AI system that aims at recommending personalized cultural news.

V. TRADEOFF ANALYSIS FOR RESPONSIBLE AI

Tradeoff analysis is a central activity of requirements
analysis [20], [21] since requirements, particularly quality
requirements, are often in conflict. For example, a common
tradeoff is between usability and security requirements [22],
as additionally required security measures (e.g., two-factor
authentication) can lead to constraining the system usability
(e.g., additional interaction steps). For Responsible AI sys-
tems, the prediction accuracy might be constrained with eco-
logical sustainability requirements as analyzing large datasets,
ML benchmarking, hyperparameter tuning, and retraining ML
models often come with significant energy consumption and
CO2 emission [23]. A recent study suggests, for instance, that
the CO2 emission of building a Transformer-based language
model for English with optimization and search can be com-
pared to the total lifetime carbon footprint of five cars [24].

Other tradeoffs exist between explainability and usability
when additional explanation dialogues are shown to the users,
or between explainability and accuracy when, e.g., a neural
network classifier achieves a higher precision than a decision
tree classifier at the expense of tracing back and explain-
ing the specific ML features that resulted in that particular
prediction. Another common tradeoff example is between
achieving fairness (or avoiding discrimination) and protecting
the privacy of users, as additional datapoints about minority
groups need to be collected to study and unbias a model.
Tradeoff analysis helps Responsible AI engineers overview the
decision landscape, prioritize, and document the decisions.

There are multiple well-known tradeoff analysis techniques
in RE, going from descriptive to prescriptive approaches,
yet their suitability for the AI context is still to be shown.
Figure 3 shows a simplified tradeoff analysis concerning a
recommendation system for personalized cultural news. Some
key quality requirements were identified (top left to right of the
figure), including sustainability, explainability, prediction ac-
curacy, fairness, and privacy. By making the tradeoffs explicit,
practitioners can prioritize requirements and design solutions.
Design decisions with respect to the ML solution include
the type of model and the data needed to train this model.
These decisions have different impacts on the other quality

requirements. For instance, a Transformer model can lead to
a better prediction accuracy, but has a worse explainability,
costs more to retrain, and does not contribute to sustainability
since it would generate a larger carbon footprint. The model
shows common positive and negative assessments (shown as
+ and - in the figure for the corresponding qualities) as well
as estimates the single design options would have on quality
metrics (+/-x%).

If the arguments for the pros and cons are borderline, not
quantifiable, or purely subjective reflecting stakeholders’ opin-
ions and preferences, Responsible AI teams might consider
negotiation and estimation techniques such as Planning Poker
[25]. If the product has a large user base with a significant
public interest, user involvement techniques such as panel
surveys, feedback analytics, or open user discussion and voting
(e.g. in online forums or user participation platforms such
UserVoice) can be useful not only for making a decision but
also for reflecting and educating users about the difficulties of
choices [26].

For Responsible AI, tradeoff analysis should be carefully
conducted, as it is unlikely that all requirements can be
achieved at once and at the same level of quality. Some
requirements might also be subject to technology maturity or
data availability. The European Ethics Guidelines for Trust-
worthy AI highlight the importance for analyzing tradeoffs
and potentially including external stakeholders such as ethical
boards. Tradeoff analysis in engineering projects, such as the
example depicted in Figure 3, helps to:

• Externalize tacit knowledge (i.e., why and how certain
requirements are constrained, or what are the strengths
and limitations of different options).

• Create awareness and a common ground across the
stakeholders (possibly noting unrealistic or unfeasible
expectations).

• Make and document rationale-based decisions (i.e., based
on the assessment of concrete criteria and discussion of
pros and cons).

It is also worth noting that tradeoff analysis can also be
considered a design task as the solution space is explored
and alternative technologies, models, or datasets are evaluated.
It can also be considered a documentation and knowledge

https://uservoice.com/
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sharing task, as awareness of the tradeoffs, the constraints,
strengths and limitations of different options are discussed and
documented.

VI. REQUIREMENTS AS FOUNDATION FOR
QUALITY AND TESTING OF AI

The ultimate goal of RE, also for Responsible AI, is to
ensure the continuous delivery of system versions that satisfy
users, supply their needs, comply with the regulations, and
meet the expected quality. It is therefore crucial that RE
activities and artifacts impact and depend on other engineering
and management activities – particularly the continuous testing
and quality assurance. Ideally, requirements should always
lead and be linked to test cases.

Along with RE-related challenges, recent studies also high-
lighted major challenges with testing ML systems [7]–[10].
Because the system behavior is often non-deterministic, not all
states of AI models can be specified, tested, and monitored as
for other systems. What makes it even more challenging is that
the term “testing” has its own meaning in the ML and Data
Science communities, referring to a summative, simulation-
based evaluation of the prediction accuracy of a trained model.
In addition to the model testing, which is based on known data
in the lab, Responsible AI engineers should carefully consider
the black-box testing of the system and its parts, which is
conducted against specified requirements, often by different
people than the developers, and following different techniques.

Inspired by metamorphic testing, an established software
engineering technique, Ribeiro et al. [27] recently introduced
an approach called CheckList to test what they call “individual
capabilities” of NLP models. They developed a tool to help
create and execute the test cases and evaluated it among others
at Microsoft. The idea is to specify a list of qualities (or
capabilities) expected from the model and to provide tool
support for managing and testing these specifications. For
instance, a sentiment analysis model should deliver the same
sentiment, if in a sentence the name of a city, a person, or a
country is changed (e.g. sentiment prediction for “Alice can’t
lose her luggage moving to Brazil” should be the same as in
“Bob can’t lose his luggage moving to Germany”) [27]. The
authors list many such capabilities for specific NLP models but
do not explain where they originated from. We argue that these
capabilities correspond to requirements either a) identified by
human analysts, engineers, and other stakeholders; or b) reused
from RE activities conducted in similar domains or similar
projects.

Specifying and testing AI model capabilities should be an
incremental process based on an initial analysis and on the
feedback of stakeholders, e.g., in form or reviews and bug
reports submitted after a release. Yet, research still needs
to study and evaluate the effectiveness of specifying and
reusing various capabilities in practice. Different types of
systems might have different capabilities in different contexts.
Moreover, capabilities will likely have tradeoffs as discussed
in the previous section. For instance, requiring a certain level
of geographical fairness to the sentiment analysis of a text on
loosing the luggage in the example above can be tradeoff’ed

with a precision requirement to reflect a higher luggage lost
frequency on certain routes or to reflect certain cultural tones.
Also the automation support for testing capabilities need
further investigation, while ensuring that the human creativity
(for discovering, specifying, and tweaking test cases) remains
a central step within the loop.

SUMMARY

In summary, we think that the first step for operationalizing
Responsible AI is to ensure that RE activities and techniques
are known and thoroughly applied in AI projects. For taping
the full potential, we have discussed six areas which need
a particular attention by research and practice. Qualities of
AI systems such as fairness, explainability, sustainability, or
human agency are rather fuzzy and need to be analyzed
with the various stakeholders. Systematic failure and tradeoff
analysis can help set realistic expectations and specify accept-
able yet feasible levels of qualities. Exposing the stakeholders
and engineers to common shared Responsible AI vocabularies
(e.g., in design meetings, prototypes specification documents,
and feedback forms) helps create awareness and lead to precise
AI models capabilities and system requirements. These should
then be translated into test cases and continuously checked
and expanded to ensure a long term acceptance of AI systems
outside the lab.

As these areas are mainly based on the authors personal
observations and experience, we refrain from claiming com-
pleteness and generalizability. There might be indeed other im-
portant challenging RE-specific aspects which can emerge, e.g.
from interview or observational studies in specific domains.
Also the outlined direction need to be investigated in detail,
their applicability proved, and evaluated, e.g., in case studies
or user studies. Therefore, collecting and comparing empirical
studies and experience reports is perhaps a seventh focus area
and challenge to the community at large for maximizing the
benefits of RE for Responsible AI.
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