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Compute in memory (CIM) was a strong theme at 
IEEE’s International Solid-State Circuits Con-
ference (ISSCC) in February.1 A total of 19 CIM 
papers were chosen for presentation at this very 

selective event, which carefully picks only those research 
efforts that share the most innovative thinking. The devel-
opments in semiconductor technologies, such as CIM, will 
have a great impact on future computing technology and 
the software that manages that technology. 

COMBINING MEMORY  
AND PROCESSING
All but two of the CIM chips high-
lighted in this article have been de-
signed to push data-intensive infer-
ence tasks like image recognition 
to the edge. While this will lead to 
phenomenal reductions in the com-
munication bandwidth between 
the edge device and the central 
server, conventional computing ar-
chitectures would vastly increase 
endpoint energy consumption, and 
this would be impractical for most 
applications (and even impossi-

ble for many mobile devices). Neural network inference 
engines, particularly those that combine memory and 
processing, provide a compelling alternative since they 
perform basic recognition tasks while consuming very 
little energy.

An earlier article, in the May issue of Computer,2 
explained the need for CIM but didn’t go into concrete 
examples. This article highlights papers that show the 
difficulty of architecting a quality CIM chip for edge 
inference, where most of these devices are expected to 
be used, and gives some remarkable ideas of how to ad-
dress them.

Semiconductor 
Architectures Enable 
Compute in Memory
Jim Handy, Objective Analysis 

Tom Coughlin  , Coughlin Associates, Inc.

Compute in memory (CIM) promises faster 

and lower power processing of data. Recently 

presented papers at the 2023 IEEE ISSCC gave 

some examples of how various semiconductor 

architectures can enable CIM devices for various 

computing applications.

Digital Object Identifier 10.1109/MC.2023.3252099
Date of current version: 3 May 2023

MEMORY AND STORAGE

https://orcid.org/0000-0002-6216-935X


EDITOR TOM COUGHLIN 
Coughlin Associates; tom@tomcoughlin.com

	 M AY  2 0 2 3 � 127

ANALOG OR DIGITAL?
One perennial question continues 
to polarize the research community. 
Should data (for example, from vari-
ous sensors and cameras) be processed 
in linear circuits (analog), or should 
they be digitally processed using stan-
dard CMOS logic? Valid arguments 
were presented for both sides of this 
argument by various papers, with one 
paper extending the digital argument 
to say that floating point math was 
preferable to the use of integers.

Digital proponents favor digital’s 
precision, determinism, and freedom 
from corruption due to process, voltage, 
and temperature, while the advocates 
of analog processing share their opin-
ion that this approach reduces com-
plexity, which improves power con-
sumption, performance, and die area. 
Although we feel unqualified to take 
part in this debate, we found it intrigu-
ing that one paper3 combined digital 
math, for those weighted features with 
the highest values, with analog pro-
cessing for the weighted features with 
the lowest values, using place values to 
select between the two approaches.

Quite interestingly, those architec-
tures based on digital integers in neural 
networks often used very narrow data 
words of only four to five bits. Although 
this may sound highly imprecise to 
most computing professionals, we have 
heard time and again that neural net-
works tend to be very tolerant of low res-
olution, noise, and imprecision. This is a 
matter best left to those who deeply un-
derstand the math behind these devices.

SPARSE DATA
Neural networks are configured to ac-
cept dense feature inputs and multiply 
them by dense weights, but real-world 
data don’t work this way. When data are 
collected from a variety of sources, they 
are often called sparse. There will be fea-
tures that are redundant, unimportant, 
or even totally absent. This can also be 

true for data from a single source. For 
example, a video image is likely to con-
tain the same background information 
frame after frame with only a fraction 
of its pixels representing something of 
real interest, like the image of a mov-
ing pedestrian. A lot of unnecessary 
computing resources and energy can 
be saved by removing these redundant 
data prior to them being processed, and 

a number of the papers mentioned novel 
ways to handle this task. While the au-
thors didn’t share much detail in the 
ways that this was performed, it is quite 
clear that this was a key design criterion 
for these systems, which had been ar-
chitecturally optimized for cost, power 
consumption, and performance.

THE I/O CONUNDRUM
One of the most challenging issues, and 
the one that is most problematic for 
the von Neumann architecture, is the 
high cost in both the speed and power 
of managing I/O traffic between the 
processor and memory. As was illus-
trated in the May article,2 data traffic 
consumes more than its fair share of 
processing energy, and one important 
CIM goal is to dramatically reduce this 
consumption. This requires very care-
ful judgment to architect the CIM sys-
tem to keep the most important data 
within the CIM chip for the longest 
time possible.

All of the ISSCC papers focused on 
this, with different approaches to solving 
the problem. For the most part, these were 
centered around storing the frequently 
used data in the on-chip memory.

One paper stood out.4 One of Tsing-
hua University’s five papers described 
a chip that used conventional caching 
techniques to determine which fea-
tures should remain on-chip for later 
use. A look-ahead policy further helps 
by preloading values that are likely to 
be used in the near future.

Caching is a well-understood ap-
proach to reducing communication 

between a processor chip, even a CIM 
chip, and a larger external memory. It 
provides faster access while minimiz-
ing power-hungry bus traffic, all while 
improving processing speeds.5

TRAVELING SALESMEN
Although the vast majority of the con-
ference’s CIM papers described infer-
ence engines, two papers6,7 gave ex-
amples of Ising machines, which are 
designed to solve combinatorial optimi-
zation problems. For those unfamiliar 
with this term, it is often referred to as 
the Traveling Salesman Problem. These 
problems can be enormously compu-
tationally intensive in a von Neumann 
architecture, but other computer ar-
chitectures handle them well.

In the case of the Traveling Sales-
man Problem (Figure 1), the basic prob-
lem is to find the most efficient route 
for the salesman to visit all of his many 
accounts out of the numerous possible 
options. A brute force approach would 
be to sequentially evaluate every pos-
sible option. With an Ising machine, 
all solutions are examined in parallel, 
with stronger solutions naturally ris-
ing to the top. The Ising machine is a 
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remain on-chip for later use.
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hardware accelerator that determines 
solutions to combinatorial optimiza-
tion problems using the Ising model’s 
natural inclination to converge to the 
optimum solution. Physicists use this 
same approach to model ferromag-
netism. The typical Ising model sta-
tistically calculates the evolution of 
atomic spins’ dipole moments, which 
can be in either of two states. The two 
Ising machines presented at ISSCC used 
different approaches based on standard 
CMOS logic.

One of the two papers, from the Uni-
versity of California, Santa Barbara,7 
interconnects 1,440 flip-flops in a way 
that causes them to wrestle against one 
another as linear devices until they set-
tle down into a steady state, which can 
then be read as the solution. Weights 
guide the interconnections among all 
of these flip-flops for the problem at 
hand. The other, the Tokyo Institute of 
Technology’s “Amorphica,”6 is a com-
pletely digital CIM approach that mi-
grates among four different morphol-
ogies. This one was found to come to 
a solution 58 times faster than a com-
mercial 1-GHz GPU while consuming 
1/500th as much power to consume 
only 1/30,000th of the GPU’s energy.

MEMORY TYPES
Although the bulk of the papers de-
scribed CIMs based on static RAM, 
which is readily available at any CMOS 
semiconductor fabrication, some used 
different memory types. KAIST’s Dy-
naPlasia chip8 is based on an embed-
ded dynamic RAM, which cuts the 
CIM cell’s transistor count from 10–18 
transistors to three. This results in 
commensurate savings in the die area 
to allow more operations in a given die 
area, hence lowering cost.

Taiwan’s National Tsing Hua Uni-
versity introduced9 a chip based on 
resistive RAM (ReRAM) that used 
both single-level cells and multilevel 
cells to balance performance against 
cost. Its nonvolatile memory allows 
the chip to boot faster than one whose 
weights must be loaded from external 
memory, and that provides important 

FIGURE 2. Leading emerging memory types. (a) Magnetoresistive RAM (MRAM). 
(Source: University of California; used with permission.) (b) Phase change memory 
(PCM).  (Source: Intel Corporation; used with permission.) (c) ReRAM. (Source: upper 
left, Intel; upper right and lower, Technion, Israel Institute of Technology; used with 
permission.) (d) Ferroelectric RAM (FRAM).  (Source: imec; used with permission.) IEDM: 
IEEE International Electron Devices Meeting; WL: word line; BL: bit line; 0V: zero voltage 
or ground: SL: select level. 

(a) (b)

(c) (d)

FIGURE 1. The Traveling Salesman Problem determines the optimum route for the 
salesperson to visit all of their accounts. (Source: USGS Map, public domain.)
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energy savings in battery-operated 
systems at the network edge and in 
embedded devices.

ReRAM is only one of a number of 
emerging memory technologies that 
are being evaluated for their great 
potential for use with inference en-
gines, usually in the form of neural 
networks. Other chips that perform 
CIM are also drawn to emerging mem-
ory technologies thanks to their per-
sistence (they are all nonvolatile), their 
low energy consumption, and other as-
pects of their performance. The lead-
ing emerging memory candidates are 
illustrated in Figure 2 and are detailed 
in a report by Coughlin Associates and 
Objective Analysis.10

Both China’s Southeast University11 
and Taiwan’s National Tsing Hua Uni-
versity12 described their spin-transfer 
torque magnetoresistive RAM (MRAM)-
based inference engines. The Tsing Hua 
chip reduces power consumption by 
minimizing transitions among ones 
and zeros in its serial data processor. It 
performs this interesting task by nudg-
ing values with several transitions to 
nearby values with fewer transitions 
(Figure 3). The resultant errors are re-
ported to be relatively minor, which is in 
keeping with reports from others about 
neural networks’ error tolerance.

T he sheer number and variety 
of options presented by these 
highly innovative papers show 

that the industry is nowhere near 
reaching a consensus regarding 
which technology best fits edge and 
embedded device computing. CIM is 
a rich field, and it will see many fur-
ther advancements before it becomes 
a common part of our everyday lives. 
But it will become commonplace, and 
when it does, we will hardly notice 
that such innovative products have 
even become a critical part of our ev-
eryday lives.
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FIGURE 3. Reducing bit transitions by 
adjusting data values. (a) Original values. 
(b) Revised values. (Source: Objective 
Analysis).
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