
Safety-critical systems, such
as automobiles and medical
devices, are systems whose
failure could result in loss of

life, significant property damage, and
damage to the environment. The grave
consequences of failure have compelled
industry and regulatory authorities to
adopt conservative design approaches
and exhaustive verification and val-
idation (V&V) procedures to prevent
mishaps. In addition, strict licensing
requirements are often placed on hu-
man operators of many safety-critical
systems. Ultracritical systems, such
as civil transport aircraft and nuclear
power plants, are safety-critical sys-
tems that society deems should never
suffer a catastrophic failure during
their operating lifetime and whose
development is subject to particularly
strict regulatory constraints and rig-
orous operator training requirements.
In practice, the V&V of avionics and
other ultracritical software systems

Digital Object Identifier 10.1109/MC.2023.3266860
Date of current version: 23 August 2023

Assuring Safety-
Critical Machine
Learning-Enabled
Systems: Challenges
and Promise
Alwyn E. Goodloe , NASA Langley Research Center

We outline how assurance processes work

for conventional systems and identify the

primary difficulty in applying them to machine

learning-enabled systems. We then outline a

path forward, identifying where considerable

research remains.

C
O

P
Y

R
IG

H
T

 IS
T

O
C

K
P

H
O

T
O

, C
R

E
D

IT
:L

V
C

A
N

D
Y

SOFTWARE ENGINEERING
EDITOR PHIL LAPLANTE

IEEE Fellow;
plaplante@psu.edu

C O M P U T E R 0 0 1 8 - 9 1 6 2 / 2 3 © 2 0 2 3 I E E E 	 P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y S E P T E M B E R 2 0 2 3 � 83

https://orcid.org/0009-0004-8216-4996
mailto:plaplante@psu.edu

84	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

SOFTWARE ENGINEERING

relies heavily on traceability to re-
quirements and system predictabil-
ity. Technological advances, such as
the significant progress in machine
learning (ML), are enabling the devel-
opment of increasingly autonomous
cyberphysical systems that modify
their behavior in response to the exter-
nal environment and learn from their
experiences. ML is being employed
to enable autonomous systems that

operate in the real world, but many
implementations lack the salient fea-
tures of traceability and predictability.
Currently, in civil aviation, nuclear
power, and similar highly regulated
areas, there is no regulatory guidance
for assuring artificial intelligence (AI)
and analogous approaches that do not
exhibit predictable behavior.

AI-enabled systems pose new dangers
to public safety, especially when op-
erating in unexpected environments
and when encountering unexpected
events. While the challenge of safe AI
has been acknowledged,1 engineers
and regulators are not going to aban-
don established safety-engineering
approaches that have been proved to
yield safe systems until other equally
effective, approaches are developed.
In some cases, engineers will likely find
it necessary to assemble a considerable
body of evidence that an AI-enabled ul-
tracritical system is as safe as conven-
tional systems, including their ability
to handle off-nominal situations, hence
the need to develop new methodologies
for developing and assuring ML safe-
ty-critical systems. Efforts are under-
way to write standards and guidelines
to govern the use of this technology,
such as ANSI/UL 4600, Standard for
Safety for the Evaluation of Autonomous
Products,2 and Society of Automotive

Engineers (SAE) G34, Artificial Intelli-
gence in Aviation, but significant tech-
nical barriers must be overcome.

In this article, we provide a brief
overview of the processes and prac-
tices for assuring conventional soft-
ware-enabled systems, focusing on
the domain of civil aviation, which
has an exemplary safety record. We
discuss the challenges of assuring
ML-enabled systems and discuss some

of the tools and techniques that are
being proposed for this task and their
drawbacks. Although it may seem an
impossible task to assure ML-enabled
safety-critical systems within cur-
rent assurance frameworks, we discuss
how particular classes of problems are
within reach, while others are likely to
remain basic research challenges for
the foreseeable future.

ASSURING CONVENTIONAL
SYSTEMS
Years of experience at building safe-
ty-critical software systems, such as
aircraft and nuclear power systems,
have yielded analysis, design, and
development practices that have pro-
duced extraordinarily safe systems,
such as the current air transportation
system. The public now demands that
technological advances not lower the
level of safety it has come to expect. In
this section, we give a high-level over-
view of design and development pro-
cesses used for civil transport aircraft.

Like all software systems develop-
ment, engineering safety-critical sys-
tems begins with ascertaining require-
ments, but in addition, there is a need
for one or more safety analyses, such as

›› a process used to assess risk,
such as a hazard analysis for the

identification of different types
of hazards

›› a process to identify potential
failure modes in a system and
their causes and effects.

In civil aviation, safety analyses are
carried out whenever there are changes
to the system. The functional require-
ments and safety analyses together flow
into the system specification, system
architecture, and design. A functional
specification precisely states what the
system is to do, usually in terms of a for-
mal relation of system output given a
specified input. Given a functional spec-
ification of system requirements φ and
a system S, if ψ is true and we execute S,
then S will terminate in a state where φ is
true. If it is possible to write a functional
specification φ precisely stating what the
system is to do, it is also possible to de-
duce what constitutes undesired behav-
ior. When we can refine requirements
into such specifications, we call them
actionable specifications.

The safety analysis will determine
what faults the system will be expected
to sustain and still operate safely. This
is called the fault model of the system.
Faults and failures are often mitigated
at the architectural level by employing
sufficient redundancy. Engineers have
to demonstrate traceability back to
the original requirements and safety
analyses at each refinement step of the
development process. These practices
are often codified in guidelines. Soft-
ware implementations tend to adhere
to very conservative guidelines3 that
constrain nondeterminism and en-
sure bounds on resource consumption
by disallowing dynamic memory allo-
cation and recursion. Although these
restrictions may constrain the design
space, they make the task of assuring
such systems tractable.

The assurance processes for safe-
ty-critical systems typically use test-
ing to demonstrate that a system
meets the requirements, that there is
no unintended behavior, and that the
system tolerates specified faults. Cov-
erage metrics are used that measure

ML is being employed to enable autonomous
systems that operate in the real world, but many

implementations lack the salient features of
traceability and predictability.

	 S E P T E M B E R 2 0 2 3 � 85

how well test inputs exercise the code.
In particular, they aim to show the de-
gree to which the test inputs execute
all branches of the code. In civil avia-
tion, the DO-178C3 guidelines require
that the most critical software must
undergo modified condition/decision
coverage testing,4 where

›› Each entry and exit point is
invoked.

›› Each decision takes every possi-
ble outcome.

›› Each condition in a decision
takes every possible outcome.

In addition to testing, formal meth-
ods-based tools are increasingly being
used for certification credit.

A 10,000-ft VIEW OF ML
When building conventional systems,
one refines requirements into an action-
able specification that is then refined
into program logic and implemented in
a programming language. The resulting
program consumes data as input as it
executes the program logic, which often
makes decisions based on that input. In
contrast, ML systems are constructed
by providing the system with examples
that one can construe as a model of what
is to be built.

The most popular application of
ML is classification, where an ML-con-
structed model is used to classify input
data. For instance, an ML model could
classify a collection of pictures of birds
by species. Let us consider the process
of building a classifier with supervised
learning. The first step is to gather a
sufficiently large representative set of
examples. These examples need to be
labeled with the correct classification
so as to serve as “ground truth.” We
can represent the data as a set of pairs
{(xi, yi)}, where xi is an n-dimensional
vector and yi is the label. Ascertaining
that the training dataset is sufficiently
large and representative to serve as a
“complete” set of examples is a consid-
erable engineering challenge.

A deep neural network (DNN) is
composed of an input layer, an output

layer, and many hidden layers of neu-
rons. Each layer is connected to the pre-
vious layer, where each connection has
a parameter that is typically a weight
on the connection. At each layer, nodes
behave like a linear regression model,
computing outputs based on weights
and a basis. A layer can be thought of
as computing a mathematical func-
tion li, so the NN can be thought of as
being a composition of these layers:
N = lk    l1  l0. DNNs are often com-
posed of thousands and even millions
of nodes arranged in many layers,
making them quite opaque.

To train the NN, the parameters are
initialized, and then an iterative pro-
cess is carried out, where at each pass,
training data are applied to the DNN
and the parameters are updated so as
to minimize the difference between
the output of the DNN and the ground
truth || N (xi) − yi ||. In summary, the
model is defined by the model param-
eters that get updated as the system
learns and hyperparameters that in-
fluence this process. The optimization
process is intended to ensure that the
system “generalizes” well, that is, pro-
viding the right output to input that
was not given in the training dataset.
The DNN itself approximates a math-
ematical function f : n → m. In the
case of a classifier, f maps n-dimen-
sional input to one of m classes. Note
that f is a partial function defined on
the distribution of the training data
and undefined off the distribution.

ML is often advertised as the approach
to use when you do not know how to
specify the system you want to build. In-
dustrial use of ML spans almost every do-
main, from advertising to finance to agri-
culture. The more cautious safety-critical
systems domain has been slower to adapt
this technology, especially those areas

subject to strict regulatory oversight. As
we have seen in the preceding section,
safety-critical systems are typically built
using a requirements-driven methodol-
ogy that demands having requirements
that can be refined into actionable spec-
ifications. Yet, the desire to build auton-
omous systems that need functionality
such as perception, for which we currently
do not know how to write actionable
specifications, has driven engineers to
use ML, as it is currently the option with
the best performance. The challenge in
adapting the conventional assurance
approaches is that, other than large

datasets of examples, what constitutes
a specification? Consider an ML-based
classifier for pictures of birds. There may
be many gigabytes of examples, but what
exactly would constitute a specification of
a hummingbird or a cardinal?

On the other hand, there are use
cases where ML is used to replace con-
ventionally built applications because
it exhibits superior performance char-
acteristics. An example of such an ap-
plication is an ML-enabled aircraft fuel
management system. Such systems
might use significantly fewer compu-
tational resources than conventional
solutions while better optimizing fuel
use. We know how to write specifica-
tions for such systems because we al-
ready do it.

In addition to functional correct-
ness, we often speak of the software
safety properties defined as “some-
thing bad does not happen.” Typical
traditional safety properties are float-
ing-point arithmetic overflows and
buffer overflows. ML has its own bas-
ket of safety properties. For instance,
NN-based perception classifiers have
shown themselves to be sensitive to
small changes in an image that may not
even be recognizable to humans.5 This

ML is often advertised as the approach to use when
you do not know how to specify the system you

want to build.

86	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

SOFTWARE ENGINEERING

phenomenon is called adversarial attack,
and systems that exhibit adversarial ro-
bustness do not exhibit such sensitive
behavior. One of the more popular for-
mulations of adversarial robustness6
follows. Suppose the DNN N is a classi-
fier. An NN is said to be δ locally robust
at input x0 if small perturbations do not
change the classification:

∀x.|| x − x0 || ≤ δ ⇒ N(x) = N(x0).

Such safety properties are action-
able specifications and are attractive
because they are amenable to detection
by automated tools. One of the reasons
adversarial robustness has attracted
so much attention is that it is one of the
few such properties for which we have
actionable specifications.

ASSURANCE APPROACHES
A number of approaches have been
proposed for assurance of ML-enabled
systems. We brief ly survey five of
these and assess their strengths and
weaknesses.

Testing
Testing is the most well-established
approach used in assuring systems,
and it definitely plays a role in assur-
ing ML-enabled systems, but there
are challenges. Given that the speci-
fication for an ML system is captured
in the example datasets, it is very dif-
ficult to create test oracles.7 Typically,
a set of examples is held back from
the training set and later used to test
the performance of the ML system.
There are numerous efforts to apply
techniques that have been successful
at testing conventional software, but
their efficacy is still being evaluated.
Given that the model that is being
tested approximates a partial function
defined only on the distribution of
the training data, rather than random
testing, test inputs should be on the
distribution.8 As we have noted, the
dataset used to train and test does not
really correspond to the traditional
notion of an actionable requirement;
thus, it is difficult to argue that testing

based on such a dataset corresponds to
requirements-based testing performed
on safety-critical systems.

It is difficult to see how coverage
metrics used in conventional software
are easily transferred to this setting.
A common coverage criterion for NNs
is that the test inputs are selected to
ensure that all neurons are activated.
The branching in NN implementations
is not very sophisticated, so achieving
such coverage is not difficult but not
very meaningful either.9

Lacking actionable specifications
and good coverage metrics, it is not pos-
sible to create tests for assuring that a
system performs its intended function
and that there is no unintended behav-
ior. Thus, it is not possible to perform
the kind of requirements-based test-
driven assurance described previously.
Discovering a new testing approach
that provides the same level of confi-
dence in assuring the system remains
the subject of research.

Formal methods
The application of techniques from
the formal methods community to the
verification of ML-enabled systems is
an active area of research. Consider an
NN that implements a function y = f(x)
for a bounded input domain D. Given
a correctness property φ(x, y), the goal
is to show

∀x ∈ D.y = f(x) ⇒ φ(x, y).

R at her t ha n a d i rec t proof, t he
problem can be reformulated as a con-
straint problem. One approach is to
recast the problem to be resolved by a
satisfiability modulo theories solver.
The Marabou10 tool has pioneered this
means of verification.

Abstract interpretation is a static
analysis technique that computes a
sound and conservative overapprox-
imation of a program by relating the
concrete states of a program to a more
tractable abstract set of states and then
automatically proving that the abstract
program satisfies a given safety prop-
erty. Researchers at ETH Zurich have

been investigating how abstract inter-
pretation can be applied to verifying
NNs.11 In this work, NNs are represented
as affine transformations guarded by
logical constraints. Abstract interpre-
tation tools have been applied to verify
adversarial robustness.

These techniques work very well
on small examples, but getting any of
these approaches to scale remains a
difficult problem. As with testing, the
biggest challenge is the need for ac-
tionable specifications. A huge dataset
does not in and of itself constitute a
property that we can prove.

Runtime verification
Runtime verification (RV) is a verifica-
tion technique that has the potential to
enable the safe operation of safety-crit-
ical systems that are too complex to
formally verify and fully test. In RV, the
system is monitored during execution to
detect and respond to property violations
that take place during the actual mis-
sion. The Copilot RV framework,12 de-
veloped by the author and his colleagues
at NASA, targets the RV of safety-criti-
cal systems, with a strong emphasis on
certification.13 Due to the probabilistic
behavior of ML, RV can help ensure that
input that has never been seen does not
result in unsafe behavior.

Just as with testing and formal meth-
ods, there must be actionable spec-
ifications to check. For instance, an
ML-enabled autopilot may have a safety
property saying it must stay within a
well-defined geofence, and this can be
checked at runtime, but it is not possible
to check that a classifier has properly
detected a Persian cat or a bluebird.

Explainability
Explainability of ML is often touted
as the missing piece complementing
other assurance practices by provid-
ing confidence that the system is op-
erating as intended or at least in a safe
fashion. Complicating this argument
is the fact that explainability means
different things to different people,
meaning you always have to ask, Ex-
plain what and to whom?

	 S E P T E M B E R 2 0 2 3 � 87

The “black box,” common in aviation,
is a well-established engineering artifact
allowing experts to determine the cause
of accidents and incidents after the fact.
Given that ML may not always react
to new situations in predictable ways
and, in the worst case, can endanger the
public safety, a similar recording device
that provides engineers with enough
visibility to ascertain why, given certain
inputs, the ML system behaved the way
it did, can provide valuable forensic ev-
idence when an accident or incident oc-
curs.14 Although deploying such a black
box is sound engineering practice and
the data could be used to improve the
system performance, this notion of ex-
plainability does not really improve the
assurance processes.

A second notion of explainability ex-
poses technical details to developers for
the purpose of debugging. The internal
operation as well as details about input
data are presented to developers with
expert knowledge during testing to help
them understand why the system may
not be performing as expected. While
this helps the developers improve the
quality of the product, it is not clear how
it impacts assurance.

Another concept of explainability
is targeted at users. This notion of ex-
plainability aims to tell users what is
going on, using language they can un-
derstand. The idea is to improve trust
in ML-enabled systems, but it is well
known that trust is often misplaced.
For safety-critical systems, it is more
important for the system to be trust-
worthy. Work in this area remains in
the realm of basic research.

Licensing
In conventional safety-critical systems,
there is usually a clear dividing line
between automation and human op-
erator. The computing hardware and
software undergo certification, while
the human operator is required to be
licensed. ML is often employed in au-
tonomous systems to replace functions
that have traditionally been carried out
by humans. There have been a number
of proposals to license the ML-enabled

components of a system that are replac-
ing a human in an autonomous system.
The idea seems reasonable, as there is
often a set of well-documented skills
and procedures that are expected to
be mastered and demonstrated in the
licensing exam. Yet, in addition, there
are often minimum age requirements
intended to ensure a level of maturity.
More research is needed to understand
what life experiences contribute to
being “mature enough” and how they
factor into handling off-nominal sit-
uations. There are often mandatory
apprenticeship and mentoring require-
ments that can sometimes last years,
with candidates who cannot demon-
strate an ability to handle themselves
in off-nominal situations washing out
of the program. We do not have a good
understanding of the role that appren-
ticeship, mentor evaluation, and matu-
rity often play in the licensing process.
Although a very valuable subject for re-
search, a number of complex questions
need to be sufficiently addressed before
licensing AI safety could play the same
role it does in licensing humans.

A PATH FORWARD
We have established that the key feature
enabling the assurance of safety-crit-
ical systems is possessing actionable
specifications. It is critical not to aban-
don this pillar of assuring safe systems
for the sake of expediency. Instead, we
should focus on building those sys-
tems for which we possess actionable
specifications.

Within the domains of cyberphysical
systems and aerospace, in particular,
there is a significant number of prob-
lems where ML can be applied to ap-
plications possessing actionable spec-
ifications.15 One instance is a battery
management system. We know how to
construct battery management systems
via conventional means and hence can
construct actionable specifications that
can be used to construct test oracles and
properties to check at runtime. In some
cases, we may not know how to obtain
an actionable specification of an ML
component itself, but we can formulate

an actionable specification to ensure
safe operation based on other compo-
nents of the system.15

In autonomous systems, the most
compelling use cases for ML are areas
such as perception, where there are no
effective conventional solutions and
where the only form of specification is a
large dataset. Although we currently do
not know how to extract an actionable
specification from such a dataset, there
is promising research. Mathematicians
working in the area of topological data
analysis (TDA)16,17,18 are bringing to
bear powerful techniques from alge-
braic and differential topology as well
as differential and algebraic geometry
that allow us to compute geometric and
topological invariants on the data. At a
basic level, the mathematical field of
topology is the study of properties of a
geometric object that are invariant un-
der continuous deformation. TDA typ-
ically focuses on the properties of the
manifold where data resides. A large
dataset may have holes and loops that
can be classified using computational
tools developed in an area of topology
called homology. Persistent homology
and distributed persistent homology19
have emerged as techniques that help
distinguish between actual features of
high-dimensional datasets from noise
in the data. Although the field is rela-
tively new, the techniques have provided
valuable insight into the differences be-
tween deep and shallow NNs.20 Given
that in ML, the data are the algorithm, it
would seem that data invariants should
be respected by the implementation
and thus constitute actionable specifi-
cations that can be checked by testing,
formal methods, and at runtime. TDA
researchers are developing novel tech-
niques for proving that a learned model
does indeed satisfy these topological in-
variants. TDA is promising and exciting
basic research being supported by NASA
and other organizations, and it will re-
quire some time to achieve a technical
readiness level to transfer to industrial
practice, but at present, it appears to be
our best hope for obtaining actionable
specifications from large datasets.

88	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

SOFTWARE ENGINEERING

We have discussed how safety-
critical systems are designed
and assured to ensure the

protection of the public and seen how
ML poses a challenge to traditional de-
sign methodology. We have shown that
when there are actionable specifica-
tions, it is possible to adapt established
approaches to assure these systems.
On the other hand, domains for which
the only specification is a large dataset
remain a challenge. While TDA shows
promise to produce actionable specifi-
cations from large datasets, much ba-
sic research remains to be done. While
there is always a temptation on the part
of leaders to demand breakthroughs
based on a schedule, this is one of those
cases where the processes must run
their course.

ACKNOWLEDGMENT
The author benefited from valued in-
sights of many researchers, but Darren
Cofer, Philip Koopman, Taylor John-
son, Ufuk Topcu, Matthew B. Dwyer,
Paul Bendich, Abraham Smith, Carl
A. Gunter, members of SAE Working
Group 34, and fellow researchers in
NASA Langley’s Safety-Critical Avi-
onics Systems Branch were all specif-
ically helpful in developing the ideas
in this article. The work was supported
by NASA’s System-Wide Safety project
in NASA’s Airspace Operations and
Safety Program.

REFERENCES
1.	 J. M. Wing, “Trustworthy AI,” Com-

mun. ACM, vol. 64, no. 10, pp. 64–71,
Oct. 2021, doi: 10.1145/3448248.

2.	 Standard for Safety for the Evaluation
of Autonomous Products, UL Standard
ANSI/UL 4600. [Online]. Available:
https://ulse.org/UL4600

3.	 Software Considerations in Airborne
Systems and Equipment Certification,
RTCA, Inc., Washington, DC, USA,
RCTA/DO-178C, 2011.

4.	 K. J. Hayhurst, D. S. Veerhusen,
J. J. Chilenski, and L. K. Rierson,
“A practical tutorial on modified
condition/decision coverage,” Nat.

Aeronaut. Space Admin., Wash-
ington, DC, USA, Tech. Rep. NASA/
TM-2001-210876, 2001.

5.	 I. J. Goodfellow, J. Shlens, and
C. Szegedy, “Explaining and har-
nessing adversarial examples,” 2015,
arXiv:1412.657.

6.	 G. Katz, C. Barrett, D. L. Dill,
K. Julian, and M. J. Kochenderfer,
“Towards proving the adversarial
robustness of deep neural net-
works,” in Proc. 1st Workshop Formal
Verification Auton. Veh., L. Bulwahn,
M. Kamali, and S. Linker, Eds. Turin,
Italy: Open Publishing Association,
2017, vol. 257, pp. 19–26, doi: 10.4204/
EPTCS.257.3.

7.	 D. Marijan, A. Gotlieb, and K. A.
Mohit, “Challenges of testing ma-
chine learning based systems,” in
Proc. 1st IEEE Artif. Intell. Testing Conf.
(AI Test), San Francisco, CA, USA:
IEEE, 2019, pp. 101–102, doi: 10.1109/
AITest.2019.00010.

8.	 S. Dola, M. B. Dwyer, and M. L. Soffa,
“Distribution-aware testing of neural
networks using generative models,” in
Proc. 43rd IEEE/ACM Int. Conf. Softw.
Eng., Companion (ICSE), Madrid,
Spain, May 2021, pp. 226–237, doi:
10.1109/ICSE43902.2021.00032.

9.	 F. Harel-Canada, L. Wang, M. A.
Gulzar, Q. Gu, and M. Kim, “Is neuron
coverage a meaningful measure
for testing deep neural networks?”
in Proc. 28th ACM Joint Meeting
Eur. Softw. Eng. Conf. Symp. Found.
Softw. Eng., 2020, pp. 851–862, doi:
10.1145/3368089.3409754.

10.	 G. Katz et al., “The marabou frame-
work for verification and analysis of
deep neural networks,” in Proc. 31st
Int. Conf. Comput. Aided Verification,
I. Dillig and S. Tasiran, Eds. New York,
NY, USA: Springer International Pub-
lishing, 2019, vol. 11561, pp. 443–452.

11.	 T. Gehr, M. Mirman, D. Drachsler-
Cohen, P. Tsankov, S. Chaudhuri, and
M. Vechev, “AI2: Safety and robust-
ness certification of neural networks
with abstract interpretation,” in Proc.
IEEE Symp. Security Privacy, 2018, pp.
3–18, doi: 10.1109/SP.2018.00058.

12.	 I. Perez, F. Dedden, and A. Goodloe,
“Copilot 3,” NASA Langley Research
Center, Nat. Aeronaut. Space Admin.,
Washington, DC, USA, Tech. Rep.
NASA/TM–2020–220587, Apr. 2020.

13.	 A. Goodloe, “Challenges in high-as-
surance runtime verification,” in Proc.
7th Int. Symp., Leveraging Appl. Formal
Methods, Corfu, Greece, Oct. 2016, pp.
446–460.

14.	 G. Falco et al., “Governing AI safety
through independent audits,” Nature
Mach. Intell., vol. 3, no. 7, pp. 566–571, Jul.
2021, doi: 10.1038/s42256-021-00370-7.

15.	 D. Cofer et al., “Run-time assurance
for learning-enabled systems,” in
Proc. 12th Int. Symp. NASA Formal
Methods, Berlin, Heidelberg: Spring-
er-Verlag, May 2020, pp. 361–368, doi:
10.1007/978-3-030-55754-6_21.

16.	 H. Edelsbrunner and J. Harr, Computa-
tional Topology: An Introduction. Provi-
dence, RI, USA: AMS Press, 2010.

17.	 G. Carlsson, “Topology and data,”
Bull. Amer. Math. Soc., vol. 46, no. 2,
pp. 255–308, Apr. 2009, doi: 10.1090/
S0273-0979-09-01249-X.

18.	 A. Zia, A. Khamis, J. Nichols, Z.
Hayder, V. Rolland, and L. Petersson,
“Topological deep learning: A review
of an emerging paradigm,” 2023.
[Online]. Available: https://arxiv.
org/abs/2302.03836

19.	 E. Solomon, A. Wagner, and P. Ben-
dich, “From geometry to topology:
Inverse theorems for distributed
persistence,” in Proc. 38th Int. Symp.
Comput. Geometry, X. Goaoc and
M. Kerber, Eds. Wadern, Germany:
Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2022, vol. 224, pp. 1–16.

20.	 G. Naitzat, A. Zhitnikov, and L.-H.
Lim, “Topology of deep neural net-
works,” 2020. [Online]. Available:
https://arxiv.org/abs/2004.06093

ALWYN E. GOODLOE is a research
computer engineer at the NASA
Langley Research Center, Hampton,
VA 23666 USA. Contact him at
a.goodloe@nasa.gov.

http://dx.doi.org/10.1145/3448248
https://ulse.org/UL4600
http://dx.doi.org/10.4204/EPTCS.257.3
http://dx.doi.org/10.4204/EPTCS.257.3
http://dx.doi.org/10.1145/3368089.3409754
http://dx.doi.org/10.1038/s42256-021-00370-7
http://dx.doi.org/10.1090/S0273-0979-09-01249-X
http://dx.doi.org/10.1090/S0273-0979-09-01249-X
https://arxiv.org/abs/2302.03836
https://arxiv.org/abs/2302.03836
https://arxiv.org/abs/2004.06093
mailto:a.goodloe@nasa.gov

	083_56mc09-softwareengineering-3266860

