
Safety-critical systems, such 
as automobiles and medical 
devices, are systems whose 
failure could result in loss of 

life, significant property damage, and 
damage to the environment. The grave 
consequences of failure have compelled 
industry and regulatory authorities to 
adopt conservative design approaches 
and exhaustive verification and val-
idation (V&V) procedures to prevent 
mishaps. In addition, strict licensing 
requirements are often placed on hu-
man operators of many safety-critical 
systems. Ultracritical systems, such 
as civil transport aircraft and nuclear 
power plants, are safety-critical sys-
tems that society deems should never 
suffer a catastrophic failure during 
their operating lifetime and whose 
development is subject to particularly 
strict regulatory constraints and rig-
orous operator training requirements. 
In practice, the V&V of avionics and 
other ultracritical software systems 

Digital Object Identifier 10.1109/MC.2023.3266860
Date of current version: 23 August 2023

Assuring Safety-
Critical Machine 
Learning-Enabled 
Systems: Challenges 
and Promise
Alwyn E. Goodloe , NASA Langley Research Center

We outline how assurance processes work 

for conventional systems and identify the 
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learning-enabled systems. We then outline a 

path forward, identifying where considerable 

research remains. 
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relies heavily on traceability to re-
quirements and system predictabil-
ity. Technological advances, such as 
the significant progress in machine 
learning (ML), are enabling the devel-
opment of increasingly autonomous 
cyberphysical systems that modify 
their behavior in response to the exter-
nal environment and learn from their 
experiences. ML is being employed 
to enable autonomous systems that 

operate in the real world, but many 
implementations lack the salient fea-
tures of traceability and predictability. 
Currently, in civil aviation, nuclear 
power, and similar highly regulated 
areas, there is no regulatory guidance 
for assuring artificial intelligence (AI) 
and analogous approaches that do not 
exhibit predictable behavior.

AI-enabled systems pose new dangers 
to public safety, especially when op-
erating in unexpected environments 
and when encountering unexpected 
events. While the challenge of safe AI 
has been acknowledged,1 engineers 
and regulators are not going to aban-
don established safety-engineering 
approaches that have been proved to 
yield safe systems until other equally 
effective, approaches are developed. 
In some cases, engineers will likely find 
it necessary to assemble a considerable 
body of evidence that an AI-enabled ul-
tracritical system is as safe as conven-
tional systems, including their ability 
to handle off-nominal situations, hence 
the need to develop new methodologies 
for developing and assuring ML safe-
ty-critical systems. Efforts are under-
way to write standards and guidelines 
to govern the use of this technology, 
such as ANSI/UL 4600, Standard for 
Safety for the Evaluation of Autonomous 
Products,2 and Society of Automotive 

Engineers (SAE) G34, Artificial Intelli-
gence in Aviation, but significant tech-
nical barriers must be overcome.

In this article, we provide a brief 
overview of the processes and prac-
tices for assuring conventional soft-
ware-enabled systems, focusing on 
the domain of civil aviation, which 
has an exemplary safety record. We 
discuss the challenges of assuring 
ML-enabled systems and discuss some 

of the tools and techniques that are 
being proposed for this task and their 
drawbacks. Although it may seem an 
impossible task to assure ML-enabled 
safety-critical systems within cur-
rent assurance frameworks, we discuss 
how particular classes of problems are 
within reach, while others are likely to 
remain basic research challenges for 
the foreseeable future.

ASSURING CONVENTIONAL 
SYSTEMS
Years of experience at building safe-
ty-critical software systems, such as 
aircraft and nuclear power systems, 
have yielded analysis, design, and 
development practices that have pro-
duced extraordinarily safe systems, 
such as the current air transportation 
system. The public now demands that 
technological advances not lower the 
level of safety it has come to expect. In 
this section, we give a high-level over-
view of design and development pro-
cesses used for civil transport aircraft.

Like all software systems develop-
ment, engineering safety-critical sys-
tems begins with ascertaining require-
ments, but in addition, there is a need 
for one or more safety analyses, such as

›› a process used to assess risk, 
such as a hazard analysis for the 

identification of different types 
of hazards

›› a process to identify potential 
failure modes in a system and 
their causes and effects.

In civil aviation, safety analyses are 
carried out whenever there are changes 
to the system. The functional require-
ments and safety analyses together flow 
into the system specification, system 
architecture, and design. A functional 
specification precisely states what the 
system is to do, usually in terms of a for-
mal relation of system output given a 
specified input. Given a functional spec-
ification of system requirements φ and 
a system S, if ψ is true and we execute S, 
then S will terminate in a state where φ is 
true. If it is possible to write a functional 
specification φ precisely stating what the 
system is to do, it is also possible to de-
duce what constitutes undesired behav-
ior. When we can refine requirements 
into such specifications, we call them 
actionable specifications.

The safety analysis will determine 
what faults the system will be expected 
to sustain and still operate safely. This 
is called the fault model of the system. 
Faults and failures are often mitigated 
at the architectural level by employing 
sufficient redundancy. Engineers have 
to demonstrate traceability back to 
the original requirements and safety 
analyses at each refinement step of the 
development process. These practices 
are often codified in guidelines. Soft-
ware implementations tend to adhere 
to very conservative guidelines3 that 
constrain nondeterminism and en-
sure bounds on resource consumption 
by disallowing dynamic memory allo-
cation and recursion. Although these 
restrictions may constrain the design 
space, they make the task of assuring 
such systems tractable.

The assurance processes for safe-
ty-critical systems typically use test-
ing to demonstrate that a system 
meets the requirements, that there is 
no unintended behavior, and that the 
system tolerates specified faults. Cov-
erage metrics are used that measure 

ML is being employed to enable autonomous 
systems that operate in the real world, but many 

implementations lack the salient features of 
traceability and predictability.
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how well test inputs exercise the code. 
In particular, they aim to show the de-
gree to which the test inputs execute 
all branches of the code. In civil avia-
tion, the DO-178C3 guidelines require 
that the most critical software must 
undergo modified condition/decision 
coverage testing,4 where

›› Each entry and exit point is 
invoked.

›› Each decision takes every possi-
ble outcome.

›› Each condition in a decision 
takes every possible outcome.

In addition to testing, formal meth-
ods-based tools are increasingly being 
used for certification credit.

A 10,000-ft VIEW OF ML
When building conventional systems, 
one refines requirements into an action-
able specification that is then refined 
into program logic and implemented in 
a programming language. The resulting 
program consumes data as input as it 
executes the program logic, which often 
makes decisions based on that input. In 
contrast, ML systems are constructed 
by providing the system with examples 
that one can construe as a model of what 
is to be built.

The most popular application of 
ML is classification, where an ML-con-
structed model is used to classify input 
data. For instance, an ML model could 
classify a collection of pictures of birds 
by species. Let us consider the process 
of building a classifier with supervised 
learning. The first step is to gather a 
sufficiently large representative set of 
examples. These examples need to be 
labeled with the correct classification 
so as to serve as “ground truth.” We 
can represent the data as a set of pairs 
{(xi, yi)}, where xi is an n-dimensional 
vector and yi is the label. Ascertaining 
that the training dataset is sufficiently 
large and representative to serve as a 
“complete” set of examples is a consid-
erable engineering challenge.

A deep neural network (DNN) is 
composed of an input layer, an output 

layer, and many hidden layers of neu-
rons. Each layer is connected to the pre-
vious layer, where each connection has 
a parameter that is typically a weight 
on the connection. At each layer, nodes 
behave like a linear regression model, 
computing outputs based on weights 
and a basis. A layer can be thought of 
as computing a mathematical func-
tion li, so the NN can be thought of as 
being a composition of these layers: 
N = lk    l1  l0. DNNs are often com-
posed of thousands and even millions 
of nodes arranged in many layers, 
making them quite opaque.

To train the NN, the parameters are 
initialized, and then an iterative pro-
cess is carried out, where at each pass, 
training data are applied to the DNN 
and the parameters are updated so as 
to minimize the difference between 
the output of the DNN and the ground 
truth || N (xi) − yi ||. In summary, the 
model is defined by the model param-
eters that get updated as the system 
learns and hyperparameters that in-
fluence this process. The optimization 
process is intended to ensure that the 
system “generalizes” well, that is, pro-
viding the right output to input that 
was not given in the training dataset. 
The DNN itself approximates a math-
ematical function f : n → m. In the 
case of a classifier, f maps n-dimen-
sional input to one of m classes. Note 
that f is a partial function defined on 
the distribution of the training data 
and undefined off the distribution.

ML is often advertised as the approach 
to use when you do not know how to 
specify the system you want to build. In-
dustrial use of ML spans almost every do-
main, from advertising to finance to agri-
culture. The more cautious safety-critical 
systems domain has been slower to adapt 
this technology, especially those areas 

subject to strict regulatory oversight. As 
we have seen in the preceding section, 
safety-critical systems are typically built 
using a requirements-driven methodol-
ogy that demands having requirements 
that can be refined into actionable spec-
ifications. Yet, the desire to build auton-
omous systems that need functionality 
such as perception, for which we currently 
do not know how to write actionable 
specifications, has driven engineers to 
use ML, as it is currently the option with 
the best performance. The challenge in 
adapting the conventional assurance 
approaches is that, other than large 

datasets of examples, what constitutes 
a specification? Consider an ML-based 
classifier for pictures of birds. There may 
be many gigabytes of examples, but what 
exactly would constitute a specification of 
a hummingbird or a cardinal?

On the other hand, there are use 
cases where ML is used to replace con-
ventionally built applications because 
it exhibits superior performance char-
acteristics. An example of such an ap-
plication is an ML-enabled aircraft fuel 
management system. Such systems 
might use significantly fewer compu-
tational resources than conventional 
solutions while better optimizing fuel 
use. We know how to write specifica-
tions for such systems because we al-
ready do it.

In addition to functional correct-
ness, we often speak of the software 
safety properties defined as “some-
thing bad does not happen.” Typical 
traditional safety properties are float-
ing-point arithmetic overflows and 
buffer overflows. ML has its own bas-
ket of safety properties. For instance, 
NN-based perception classifiers have 
shown themselves to be sensitive to 
small changes in an image that may not 
even be recognizable to humans.5 This 

ML is often advertised as the approach to use when 
you do not know how to specify the system you 

want to build.
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phenomenon is called adversarial attack, 
and systems that exhibit adversarial ro-
bustness do not exhibit such sensitive 
behavior. One of the more popular for-
mulations of adversarial robustness6 
follows. Suppose the DNN N is a classi-
fier. An NN is said to be δ locally robust 
at input x0 if small perturbations do not 
change the classification:

∀x.|| x − x0 || ≤ δ ⇒ N(x) = N(x0).

Such safety properties are action-
able specifications and are attractive 
because they are amenable to detection 
by automated tools. One of the reasons 
adversarial robustness has attracted 
so much attention is that it is one of the 
few such properties for which we have 
actionable specifications.

ASSURANCE APPROACHES
A number of approaches have been 
proposed for assurance of ML-enabled 
systems. We brief ly survey five of 
these and assess their strengths and 
weaknesses.

Testing
Testing is the most well-established 
approach used in assuring systems, 
and it definitely plays a role in assur-
ing ML-enabled systems, but there 
are challenges. Given that the speci-
fication for an ML system is captured 
in the example datasets, it is very dif-
ficult to create test oracles.7 Typically, 
a set of examples is held back from 
the training set and later used to test 
the performance of the ML system. 
There are numerous efforts to apply 
techniques that have been successful 
at testing conventional software, but 
their efficacy is still being evaluated. 
Given that the model that is being 
tested approximates a partial function 
defined only on the distribution of 
the training data, rather than random 
testing, test inputs should be on the 
distribution.8 As we have noted, the 
dataset used to train and test does not 
really correspond to the traditional 
notion of an actionable requirement; 
thus, it is difficult to argue that testing 

based on such a dataset corresponds to 
requirements-based testing performed 
on safety-critical systems.

It is difficult to see how coverage 
metrics used in conventional software 
are easily transferred to this setting. 
A common coverage criterion for NNs 
is that the test inputs are selected to 
ensure that all neurons are activated. 
The branching in NN implementations 
is not very sophisticated, so achieving 
such coverage is not difficult but not 
very meaningful either.9

Lacking actionable specifications 
and good coverage metrics, it is not pos-
sible to create tests for assuring that a 
system performs its intended function 
and that there is no unintended behav-
ior. Thus, it is not possible to perform 
the kind of requirements-based test-
driven assurance described previously. 
Discovering a new testing approach 
that provides the same level of confi-
dence in assuring the system remains 
the subject of research.

Formal methods
The application of techniques from 
the formal methods community to the 
verification of ML-enabled systems is 
an active area of research. Consider an 
NN that implements a function y = f(x) 
for a bounded input domain D. Given 
a correctness property φ(x, y), the goal 
is to show

∀x ∈ D.y = f(x) ⇒ φ(x, y).

R at her t ha n a d i rec t proof, t he 
problem can be reformulated as a con-
straint problem. One approach is to 
recast the problem to be resolved by a 
satisfiability modulo theories solver. 
The Marabou10 tool has pioneered this 
means of verification.

Abstract interpretation is a static 
analysis technique that computes a 
sound and conservative overapprox-
imation of a program by relating the 
concrete states of a program to a more 
tractable abstract set of states and then 
automatically proving that the abstract 
program satisfies a given safety prop-
erty. Researchers at ETH Zurich have 

been investigating how abstract inter-
pretation can be applied to verifying 
NNs.11 In this work, NNs are represented 
as affine transformations guarded by 
logical constraints. Abstract interpre-
tation tools have been applied to verify 
adversarial robustness.

These techniques work very well 
on small examples, but getting any of 
these approaches to scale remains a 
difficult problem. As with testing, the 
biggest challenge is the need for ac-
tionable specifications. A huge dataset 
does not in and of itself constitute a 
property that we can prove.

Runtime verification
Runtime verification (RV) is a verifica-
tion technique that has the potential to 
enable the safe operation of safety-crit-
ical systems that are too complex to 
formally verify and fully test. In RV, the 
system is monitored during execution to 
detect and respond to property violations 
that take place during the actual mis-
sion. The Copilot RV framework,12 de-
veloped by the author and his colleagues 
at NASA, targets the RV of safety-criti-
cal systems, with a strong emphasis on 
certification.13 Due to the probabilistic 
behavior of ML, RV can help ensure that 
input that has never been seen does not 
result in unsafe behavior.

Just as with testing and formal meth-
ods, there must be actionable spec-
ifications to check. For instance, an 
ML-enabled autopilot may have a safety 
property saying it must stay within a 
well-defined geofence, and this can be 
checked at runtime, but it is not possible 
to check that a classifier has properly 
detected a Persian cat or a bluebird.

Explainability
Explainability of ML is often touted 
as the missing piece complementing 
other assurance practices by provid-
ing confidence that the system is op-
erating as intended or at least in a safe 
fashion. Complicating this argument 
is the fact that explainability means 
different things to different people, 
meaning you always have to ask, Ex-
plain what and to whom?
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The “black box,” common in aviation, 
is a well-established engineering artifact 
allowing experts to determine the cause 
of accidents and incidents after the fact. 
Given that ML may not always react 
to new situations in predictable ways 
and, in the worst case, can endanger the 
public safety, a similar recording device 
that provides engineers with enough 
visibility to ascertain why, given certain 
inputs, the ML system behaved the way 
it did, can provide valuable forensic ev-
idence when an accident or incident oc-
curs.14 Although deploying such a black 
box is sound engineering practice and 
the data could be used to improve the 
system performance, this notion of ex-
plainability does not really improve the 
assurance processes.

A second notion of explainability ex-
poses technical details to developers for 
the purpose of debugging. The internal 
operation as well as details about input 
data are presented to developers with 
expert knowledge during testing to help 
them understand why the system may 
not be performing as expected. While 
this helps the developers improve the 
quality of the product, it is not clear how 
it impacts assurance.

Another concept of explainability 
is targeted at users. This notion of ex-
plainability aims to tell users what is 
going on, using language they can un-
derstand. The idea is to improve trust 
in ML-enabled systems, but it is well 
known that trust is often misplaced. 
For safety-critical systems, it is more 
important for the system to be trust-
worthy. Work in this area remains in 
the realm of basic research.

Licensing
In conventional safety-critical systems, 
there is usually a clear dividing line 
between automation and human op-
erator. The computing hardware and 
software undergo certification, while 
the human operator is required to be 
licensed. ML is often employed in au-
tonomous systems to replace functions 
that have traditionally been carried out 
by humans. There have been a number 
of proposals to license the ML-enabled 

components of a system that are replac-
ing a human in an autonomous system. 
The idea seems reasonable, as there is 
often a set of well-documented skills 
and procedures that are expected to 
be mastered and demonstrated in the 
licensing exam. Yet, in addition, there 
are often minimum age requirements 
intended to ensure a level of maturity. 
More research is needed to understand 
what life experiences contribute to 
being “mature enough” and how they 
factor into handling off-nominal sit-
uations. There are often mandatory 
apprenticeship and mentoring require-
ments that can sometimes last years, 
with candidates who cannot demon-
strate an ability to handle themselves 
in off-nominal situations washing out 
of the program. We do not have a good 
understanding of the role that appren-
ticeship, mentor evaluation, and matu-
rity often play in the licensing process. 
Although a very valuable subject for re-
search, a number of complex questions 
need to be sufficiently addressed before 
licensing AI safety could play the same 
role it does in licensing humans.

A PATH FORWARD
We have established that the key feature 
enabling the assurance of safety-crit-
ical systems is possessing actionable 
specifications. It is critical not to aban-
don this pillar of assuring safe systems 
for the sake of expediency. Instead, we 
should focus on building those sys-
tems for which we possess actionable 
specifications.

Within the domains of cyberphysical 
systems and aerospace, in particular, 
there is a significant number of prob-
lems where ML can be applied to ap-
plications possessing actionable spec-
ifications.15 One instance is a battery 
management system. We know how to 
construct battery management systems 
via conventional means and hence can 
construct actionable specifications that 
can be used to construct test oracles and 
properties to check at runtime. In some 
cases, we may not know how to obtain 
an actionable specification of an ML 
component itself, but we can formulate 

an actionable specification to ensure 
safe operation based on other compo-
nents of the system.15

In autonomous systems, the most 
compelling use cases for ML are areas 
such as perception, where there are no 
effective conventional solutions and 
where the only form of specification is a 
large dataset. Although we currently do 
not know how to extract an actionable 
specification from such a dataset, there 
is promising research. Mathematicians 
working in the area of topological data 
analysis (TDA)16,17,18 are bringing to 
bear powerful techniques from alge-
braic and differential topology as well 
as differential and algebraic geometry 
that allow us to compute geometric and 
topological invariants on the data. At a 
basic level, the mathematical field of 
topology is the study of properties of a 
geometric object that are invariant un-
der continuous deformation. TDA typ-
ically focuses on the properties of the 
manifold where data resides. A large 
dataset may have holes and loops that 
can be classified using computational 
tools developed in an area of topology 
called homology. Persistent homology 
and distributed persistent homology19 
have emerged as techniques that help 
distinguish between actual features of 
high-dimensional datasets from noise 
in the data. Although the field is rela-
tively new, the techniques have provided 
valuable insight into the differences be-
tween deep and shallow NNs.20 Given 
that in ML, the data are the algorithm, it 
would seem that data invariants should 
be respected by the implementation 
and thus constitute actionable specifi-
cations that can be checked by testing, 
formal methods, and at runtime. TDA 
researchers are developing novel tech-
niques for proving that a learned model 
does indeed satisfy these topological in-
variants. TDA is promising and exciting 
basic research being supported by NASA 
and other organizations, and it will re-
quire some time to achieve a technical 
readiness level to transfer to industrial 
practice, but at present, it appears to be 
our best hope for obtaining actionable 
specifications from large datasets.
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We have discussed how safety- 
critical systems are designed 
and assured to ensure the 

protection of the public and seen how 
ML poses a challenge to traditional de-
sign methodology. We have shown that 
when there are actionable specifica-
tions, it is possible to adapt established 
approaches to assure these systems. 
On the other hand, domains for which 
the only specification is a large dataset 
remain a challenge. While TDA shows 
promise to produce actionable specifi-
cations from large datasets, much ba-
sic research remains to be done. While 
there is always a temptation on the part 
of leaders to demand breakthroughs 
based on a schedule, this is one of those 
cases where the processes must run 
their course. 
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