
The rise of artificial intelli-
gence (AI) models in fields 
like image recognition and 
natural language process-

ing has been driven by general ad-
vancements in neural computing, 
and in particular, multilayered ar-
chitectures such as deep learning. 
Recent developments in machine 
learning attention mechanisms and 
generative models, such as trans-
formers, have greatly accelerated AI 
adoption. Many newer AI applica-
tions require more than just the pat-
tern recognition offered by main-
stream deep learning models and 
are grappling with more complex 
tasks like fact-checking, general 
reasoning, real-time learning, and 
performant large-scale inference.

Although generative AI archi-
tecture like large language models 
(LLMs) have demonstrated remark-

able success in handling diverse queries, they neverthe-
less face limitations in capturing, learning, and recall-
ing factual and contextual knowledge beyond a short 
session window. By contrast, knowledge graphs (KGs) 
are structured data models capable of explicitly learning 
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and permanently storing rich factual 
knowledge in 3D. However, construct-
ing and maintaining KGs can be chal-
lenging, and they often struggle in in-
complete or dynamic data spaces.

This raises the intriguing possi-
bility of combining LLMs and KGs. 
Would an LLM and KG hybrid leverage 
the strengths of each while addressing 
their weaknesses, resulting in a more 
powerful and comprehensive knowl-
edge processing platform? How would 
this integration take place? And what 
challenges would this face?

LLMS
LLMs are commonly deployed using 
in-context learning, wherein their be-
havior is controlled through prompt-
ing and conditioning on relevant con-
textual data.1 The typical workflow 

preprocesses the training data, de-
composes relevant documents into 
chunks, passes them through an em-
bedding model, and stores them in a 
vector database. Next, prompts and 
valid output examples based on the 
ground truth and external context 
(that is, from beyond the model’s train-
ing) are fed to the pretrained model for 
inference and fine-tuning.

Although creating a library of 
fine-tuning prompts is relatively sim-
ple, crafting them to provide the most 
effective guidance is much more of a 
challenge and requires robust moni-
toring mechanisms to optimize train-
ing and fine-tuning. One common ap-
proach to assess an LLM’s robustness, 
such as Fiddler AI’s Auditor platform, 
uses a second monitoring LLM to mea-
sure the sensitivity of the first LLM’s 
response to varying inputs. By gener-
ating variations of an original prompt 
and evaluating semantic similarities 

across the LLM’s responses, the mon-
itoring LLM can help speed fine- 
tuning, increase model robustness, 
and identify performance issues such 
as data drift in text embeddings.2

LLM CHALLENGES
Despite meteoric adoption across many 
different domains, LLMs have signifi-
cant shortcomings and drawbacks, in-
cluding the following:

 › Factual accuracy: Research has 
demonstrated that LLMs strug-
gle to recall actual facts and are 
prone to generating inaccurate 
information, known as halluci-
nations, and false assertions.3 
LLMs can also exhibit unex-
pected errors when confronted 
with examples  

that do not conform to the 
patterns learned during train-
ing. “GPTs can produce useful 
content, but when it comes to 
decisions where high accuracy 
is a critical requirement, we 
cannot rely on them,” Peter Voss, 
CEO and chief scientist at Aigo.
ai points out.4

 › Data poisoning: In addition, 
models exposed to maliciously 
altered data can sometimes alter 
their behavior in ways imper-
ceptible to humans. Various 
techniques have been employed 
to mitigate these errors, such as 
prompting pretrained models5 
or employing human-in-the-
loop reinforcement for fine-
tuned models.6

 › Bias and opaqueness: LLMs have 
a propensity to amplify social, 
cultural, demographic, and 
various other biases present 

in the training data.7 More-
over, explaining a model’s 
decision-making process is 
typically ambiguous or even 
impossible.8 This opaqueness 
is particularly concerning in 
applications related to medical, 
financial, legal, and autono-
mous systems.

 › Large infrastructure: LLM 
workflows depend heavily on 
computationally intensive 
and memory-demanding base 
models that do not scale lin-
early. The continuous growth of 
model parameters, scaling to-
ken vocabulary, and increasing 
training memory has reached a 
point of diminishing returns.9 
Additionally, the physical, tech-
nical, and organizational chal-
lenges of continually deploying 
more computation and data 
infrastructure makes the cost 
and complexity of endless scal-
ing untenable, particularly for 
models like ChatGPT,10  leaving 
LLMs in the domain of only the 
largest implementors.

 › Data access: LLM training is 
constrained by data access, 
which is increasingly expensive 
due to copyright complexities, 
privacy concerns, regulations, 
data fees, Web3 (where users 
store data in personal vaults 
or crypto wallets), geopolitical 
factors, and datasets contam-
inated with vast amounts of 
AI-generated synthetic data. 
This is causing a shift toward 
model enhancement through 
methods not solely reliant 
on more data. An illustrative 
example of this approach is 
chain-of-thought prompting, 
in which a model is requested 
to generate steps of logical 
thinking while simultaneously 
providing annotations to train 
smaller models.11

 › Real-time learning: After train-
ing and fine-tuning, LLMs 
remain quite static until another 

LLMs are commonly deployed using in-context 
learning, wherein their behavior is controlled 

through prompting and conditioning on  
relevant contextual data.
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training cycle. As such, they 
do not assimilate new facts or 
patterns while conducting infer-
ence and are therefore incapable 
of real-time learning.

KGS
A KG is a machine-readable represen-
tation of real-world knowledge, such 
as general facts, domain-specific facts, 
and common-sense maxims, and en-
compasses modalities beyond text (for 
example, images, sounds, or video).4 
Typically implemented using a graph 
database, KGs form a network of digi-
tal entities categorized into reference 
classes (nodes) and the interconnected 
relationships between them (edges).12 
Upon this node and edge network, KGs 
build an ontology of concepts, proper-
ties, relationships, and instances for 
the given knowledge domain using 
a paradigm in which terminological 
boxes depict conceptualizations, and 
terminological knowledge and asser-
tional boxes describe instances con-
forming to those concepts. Each entity 
class in a KG is defined by properties 
such as attributes, functions, relations, 
and meta-attributes and takes the form 
of general entity types (for instance, a 
person or event) and domain-specific 
entity types (for example, health or fi-
nance related).

KGs also offer various ser vices 
ranging from simple operations like 
create, read, update, delete to ad-
vanced functionalities such as seman-
tic search, matching, and navigation 
for natural language processing tasks. 
The combination of KG operations 
and services allows new facts to be 
 in  tegrated as they are encountered, 
 allowing them to learn in real time af-
ter construction.

KG CHALLENGES
Although KGs offer various benefits, 
the also present several challenges:

 › Construction: KGs are generated 
by combining structured and un-
structured (noisy) data from var-
ious sources. Existing methods 

of knowledge extraction have 
low accuracy, which can pro-
duce inconsistent or incomplete 
KGs.13 In addition, non-English 
datasets are still rare and multi-
modal datasets remain difficult 
to extract and represent.

 › Maintenance: KGs often suffer 
from incomplete or missing 

entities, attributes, and relations 
due to erroneous data sources. 
Implementers resort to tedious 
human-in-the-loop techniques 
like crowdsourcing and expert 
sourcing to maintain knowledge 
quality. KGs also struggle to de-
tect and represent how domain 
and real-world knowledge evolve 
over time.14

 › Interoperability: Merging distinct 
KGs presents a significant chal-
lenge due to the variety, dissimi-
larity, and intricacy of data used 
during construction.15 Locating 
identical entities across KGs is a 
formidable task due to semantic 
differences in schemas and con-
cepts, complicated by language 
polysemy (that is, similar enti-
ties having different meaning 
across KGs) and entities with a 
variety of modalities.

COMBINING LLMS AND KGS
An LLM and KG hybrid offers the pos-
sibility of synergizing strengths and 
overcoming challenges (see Figure 1).  
Although LLMs embody patterns to 
create synthetic artifacts and KGs pro-
vide structure for semantic and factual 
data, their integration can identify en-
tities and handle diverse descriptions 

efficiently, advancing overall capabil-
ities significantly.16

In current LLM and KG integra-
tions, each exchanges its information 
with the other, yet each functions as 
a distinct element.16 LLMs are adept 
at discovering knowledge, while KGs 
compile this knowledge in a reinforc-
ing feedback loop, leading to ongoing 
enhancements and expanded capabili-
ties. LLMs dynamically generate, main-
tain, and expand KGs, while KGs offer 
refining prompts along with pertinent 
context to train LLMs and validate 
 responses. For instance, OntoGPT17 
and GraphGPT18 utilize prompting 
to extract schema-based information 
and populate the knowledge base.19 
SensEmBERT generates semantic rep-
resentations of word meanings in the 
form of vectors, akin to LLM’s contex-
tualized word embeddings, connecting 
a word’s occurrence and its meaning 
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FIGURE 1. The LLM and KG combination.

KGs are generated by combining structured  
and unstructured (noisy) data from  

various sources.
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to disambiguating word senses across 
multiple languages.20

Using automated pipelines, LLMs 
can also be connected to sources be-
sides KGs, such as application pro-
gramming interfaces (APIs), docu-
ments, and tabular data, to enhance 
their reasoning capabilities.21,22 How-
ever, the efficacy of these integrations 
depends on the LLM’s recognition ca-
pacity and how seamlessly each com-
ponent can function in a composition 
of services.

THE CONNECTED AI 
ARCHITECTURE
Cognitive AI has driven the develop-
ment of architectures that mimic hu-
man behavior and reasoning in ma-
chines.23 Recent AI advancements have 
renewed interest in enabling systems 
to “understand” by integrating mul-
tiple knowledge sources.24 However, 
bridging the gap between machine 
perception and cognition remains a 
challenge for operational AI systems 
attempting to accurately perceive and 
reason about their surroundings.

The emerging area of neurosym-
bolic computing25 combines neural 

networks’ pattern-recognition capabil-
ities with KGs’ reasoning abilities using 
one of the following two methods:

1. Compression and vectorization: 
This method compresses 
knowledge structures into 
vectorized representations 
suitable for neural networks. 
Vectorization generates mul-
tidimensional vector repre-
sentations for graph triples 
(knowledge embedding)26 
using techniques like manifold 
learning, topological data anal-
ysis, graph neural networks, 
and generative graph models 
to capture the structure and 
semantics of the network. Al-
though compressed knowledge 
enhances the reasoning capa-
bilities of LLMs and orchestra-
tion pipelines,21,22 it does lose 
some of the original semantics 
in the produced representa-
tions and encoded textual 
entities.27 Nevertheless, such 
representations become “reg-
ularizers” by providing more 
flexible responses through 

constraining the neural net-
work search problem, and by 
categorizing LLMs’ outputs for 
verification. This allows KGs to 
instill rigor in LLMs behavior, 
akin to verifying a computer 
program.

2. Pattern extraction: This tech-
nique links neural patterns 
with symbolic knowledge by 
extracting pertinent pat-
tern information.25 Pattern 
extraction is predominantly 
implemented using end-to-end 
pipelines that incorporate 
differentiable LLM and KG 
components.21,22

Neurosymbolic computation tech-
niques can be realized in a platform 
we have dubbed the “connected AI ar-
chitecture” (see Figure 2), which uses 
bidirectional graph-to-vector and 
vector-to-graph links between per-
ception (LLMs) and cognition (KGs) to 
track and interpret content exchang-
 ed between them. In this method, a 
KG encoder translates graphs into 
an intermediate format compatible 
with corresponding transformations 
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(for instance, graph embedding or 
masking methods), and then an LLM 
decoder reconstructs and validates 
these transformations, yielding vec-
tor representations. When applied in 
an iterative fashion, this can achieve 
desired performance levels, such as 
minimizing compression loss. Like-
wise, LLM extraction encodes vectors, 
analyzes acquired patterns to extract 
entities and relationships, and uses 
these to create triple-like structures 
for ingestion by the target graph. An 
iterative feedback loop ensures that 
the generated triples attain logical 
coherence and consistency.

The connected AI a rch itect ure 
bridges the gap between machine se-
mantics and the evolving context of the 
physical world it mirrors. Addition-
ally, creating simpler probabilistic and 
formal components establishes causal 
relations between digital and physical 
objects, capturing real-world dynam-
ics. This enables discovery of how dig-
ital entities correspond to real-world 
objects, assesses whether a digital 
action results in the desired real- 
world outcome, and identifies which 
digital counterparts are affected by 
this outcome. These real-time seman-
tics can be accessed remotely through 
APIs and integrated into various  
services like translation, search, and 
dialogue functions.

CHALLENGES
To implement and deploy a success-
ful connected AI architecture, one 
must address the following critical 
requirements:

 › Trust: One must trust the under-
lying LLMs and KGs to trust the 
overall architecture. Although 
there are several techniques un-
der development that assess the 
trustworthiness of LLMs,7 these 
need to be extended to the larger 
connected AI architecture. Be-
yond this, it is crucial to educate 
end users on system interaction, 
intended use cases, expected 
and unexpected behaviors, and 

potential repercussions from 
exceeding them.

 › Explainability: “Language mod-
els have a vector representation 
based on word distance, which 
is very opaque, and there is no 
effective way to map vectors 
to nodes in a KG due to this 
opaqueness. LLMs can map to 
KGs using an intermediate rep-
resentation they produce, but we 
might need a supervisory level 
over both due to hallucinations 
and opaqueness of LLMs,” notes 
Voss.4 As such, a connected AI 
system must provide explain-
ability to the decision-making 
process, focusing on the sys-
tem’s rationale rather than rely-
ing solely on posthoc techniques 
like feature importance.

 › Accuracy: A connected AI ar-
chitecture must ensure precise 
symbolic representation and 
meaning and be verifiable in a 
mathematical and unambigu-
ous way given the absence of a 
shared consensus or guidelines 
regarding symbolic systems.25

 › Randomness: Algorithmic pro-
cesses, individual behaviors, and 
social interactions embody some 
degree of randomness. Thus, 
the algorithmic predictions and 
generative artifacts produced 
can only reduce error rates to a 
particular threshold. A rigorous 
and comprehensive evaluation 
of systems built on a connected 
AI architecture must be con-
ducted to minimize errors  
from randomness.

 › Safety: LLM risk does not arise 
from LLMs’ statistical capabil-
ities but from their limitations 
and inherent deceptive abilities 
(for example, hallucinations, 
deepfakes, and disinformation). 
Continuous input and output 
audits are crucial for detecting 
data and concept drift, ensuring 
unbiased outcomes and detect-
ing toxic or harmful decisions 
and content.

Concerns surrounding LLMs’ lim-
itations have led to an increased 
focus on KG-based downstream 

applications. Combining LLMs’ gen-
erative abilities with KGs’ logical and 
factual coherence into a connected AI 
architecture creates a theoretical frame-
work to maximize capabilities and min-
imize systemic shortcomings across 
many real-world domains. 
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