
SECTION TITLEPREDICTIONS

136	 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y � 0 0 1 8 - 9 1 6 2 / 2 4 © 2 0 2 4 I E E E

Traditional high-

performance computing

and modern artificial

intelligence computing

are converging with

workflows as a common

paradigm. We predict

nine principles of

heterogeneity and

serverless computing for

this convergence, from

high-level programming

to low-level hardware.

H igh-performance com-
puting (HPC) is increas-
ingly converging with
ar tif icia l intel l igence

(AI), and both are increasingly

PREDICTIONS

©
S

H
U

T
T

E
R

S
T

O
C

K
.C

O
M

/M
IC

H
A

E
L

T
R

A
IT

O
V

Predicting
Heterogeneity and
Serverless Principles
of Converged
High-Performance
Computing, Artificial
Intelligence, and
Workflows
Pedro Bruel , Sai Rahul Chalamalasetti , Aditya Dhakal ,
Eitan Frachtenberg , Ninad Hogade , Rolando Pablo Hong Enriquez ,
Alok Mishra , Dejan Milojicic , Pavana Prakash , and
Gourav Rattihalli , Hewlett Packard Labs

Digital Object Identifier 10.1109/MC.2023.3332973
Date of current version: 5 January 2024

https://orcid.org/0000-0002-6017-0816
https://orcid.org/0000-0001-9004-440X
https://orcid.org/0000-0002-8297-8525
https://orcid.org/0000-0002-3709-1829
https://orcid.org/0000-0001-8560-2497
https://orcid.org/0009-0008-5652-4408
https://orcid.org/0000-0003-3140-1088
https://orcid.org/0000-0001-9830-8588
https://orcid.org/0000-0002-5752-5778
https://orcid.org/0000-0002-0373-1867

EDITOR EDITOR NAME
Affiliation;

	 J A N U A R Y 2 0 2 4 � 137

EDITOR DEJAN MILOJICIC
Hewlett Packard Labs;

dejan.milojicic@hpe.com

expressed as workflows. Workflows
enable a higher level of abstraction
that is easier to develop, (re)use, and
operate. Both HPC and AI depend
heavily on accelerators, and they
both adopt serverless computing.
Similarly to workflows, serverless
computing also raises the level of ab-
straction and simplifies DevOps.1 In
addition, it matches the fine granu-
larity of accelerators in terms of time
and size; they intuitively represent a
good match in terms of performance
and utilization.

When analyzing this convergence,
three perspectives with different re-
quirements and benefits exist:

1.	 End users care about latency or
throughput of workflows
at scale and ease/convenience
of use.

2.	 Developers care about ease
of development, for exam-
ple, constructing workflows
from existing workloads and
making quality-of-service (QoS)
guarantees.

3.	 Providers (of services infra-
structure) primarily care
about meeting service-level
agreements for user QoS and
maximizing infrastructure
utilization.

These three roles intertwine, and
individuals could easily play two or
even all three roles. For example, an
end user of some services can be a pro-
vider to other users, and a developer
can conduct operations.

The principles and approaches we
describe strive toward enabling seam-
less scalability and fluidity for end
users, increased productivity of devel-
opers, and improved performance effi-
ciency of providers.

To navigate these principles, we
organized them in Figure 1, listed in
order of description. Each principle FI
G

U
RE

 1
. L

an
ds

ca
pe

 o
f p

ri
nc

ip
le

s.
 M

LI
R

: M
ul

til
ev

el
 In

te
rm

ed
ia

te
 R

ep
re

se
nt

at
io

n;
 P

2
P

: p
ee

r t
o

pe
er

; F
P

G
A

: f
ie

ld
-p

ro
gr

am
m

ab
le

 g
at

e
ar

ra
y;

 S
m

ar
tN

IC
: s

m
ar

t n
et

w
or

k
in

te
rf

ac
e

ca
rd

.

S
er

ve
rle

ss
 F

ra
m

ew
or

k

…
..

…
..

C
P

U
s

S
ch

ed
ul

er

R
em

ot
e

S
er

ve
rle

ss
Fr

am
ew

or
k

1)
 R

ed
ire

ct
 to

 O
th

er
 S

er
ve

r/
S

ite
/e

tc
. f

or
 C

le
an

 E
ne

rg
y

2)
 A

dd
iti

on
al

 B
al

an
ci

ng
 a

nd
 F

ol
lo

w
 th

e
S

un
 M

od
el

s

R
em

ot
e

S
ch

ed
ul

er

W
or

kf
lo

w
 M

an
ag

er

(9
)

P
re

di
ct

in
g

A
pp

/S
er

vi
ce

 P
er

fo
rm

an
ce

 o
n

an
y

C
on

fig
ur

at
io

n
W

ill
 b

e
C

rit
ic

al
 fo

r
Q

oS
1)

 R
ed

uc
e

C
os

t o
f E

xe
cu

tio
n

2)
 In

cr
ea

se
 In

fr
as

tr
uc

tu
re

 U
til

iz
at

io
n

3)
 O

pt
im

iz
e

E
ne

rg
y

(6
)

A
cc

el
er

at
or

s
W

ill
 C

om
m

un
ic

at
e

P
2P

1)
 A

vo
id

 C
P

U
 B

ec
om

in
g

B
ot

tle
ne

ck
2)

 L
ar

ge
r

O
ve

ra
ll

M
em

or
y

3)
 R

ed
uc

e
E

ne
rg

y
fo

r
M

ov
in

g
B

its

(7
)

P
er

fo
rm

an
ce

 a
t E

xt
re

m
e

S
ca

le
 W

ill
 b

e
Im

pr
ov

ed
 U

si
ng

 O
pe

ra
to

r
O

ffl
oa

di
ng

1)
 N

ea
r-

D
at

a
C

om
pu

te
 o

f C
om

m
on

 O
pe

ra
tio

ns
2)

 R
ed

uc
e

U
nn

ec
es

sa
ry

 D
at

a
M

ov
em

en
t

…
..

…
..

(2
)

M
LI

R
 W

ill
 A

dd
re

ss
 H

et
er

og
en

ei
ty

 C
om

pl
ex

ity

1)
 E

as
e

of
 U

se
 o

f P
ro

gr
am

m
in

g
W

ith
 H

et
er

og
en

ei
ty

2)
 M

ul
til

ev
el

 O
pt

im
iz

at
io

n
3)

 D
at

a
M

ov
em

en
t R

ed
uc

tio
n

(1
) W

or
kf

lo
w

s
W

ill
 B

ec
om

e
N

at
iv

e
A

pp
lic

at
io

ns
 fo

r
H

P
C

 a
nd

 A
I

1)
 E

as
ie

r
D

ev
O

ps
2)

 C
ap

tu
re

s
P

ar
al

le
lis

m
 E

xp
lic

itl
y

an
d

P
ro

gr
am

m
at

ic
al

ly
3)

 M
at

ch
es

 W
el

l N
ew

 A
cc

el
er

at
or

s

(4
)

P
ar

ts
 o

f W
or

kf
lo

w
s

W
ill

 b
e

D
yn

am
ic

al
ly

 R
em

ap
pe

d
1)

S
er

ve
rle

ss
 F

ra
m

ew
or

ks
 K

no
w

 W
he

re
 H

ot
 F

un
ct

io
ns

 R
es

id
e

2)
Fa

ci
lit

at
e

B
in

 P
ac

ki
ng

 to
 In

cr
ea

se
 G

P
U

 U
til

iz
at

io
n,

 E
ne

rg
y

3)
Fa

ilo
ve

r I
f N

ee
de

d

(5
)

A
cc

el
er

at
or

 F
ul

l U
til

iz
at

io
n

T
hr

ou
gh

 B
in

 P
ac

ki
ng

Application Performance
Prediction

Benchmarking

S
m

ar
tN

IC
s

F
P

G
A

s
G

P
U

s

(8
) A

cc
ou

nt
 fo

r t
he

 N
on

de
te

rm
in

is
tic

 P
er

fo
rm

an
ce

of
 L

ar
ge

-S
ca

le
 H

P
C

 a
nd

 A
I W

or
kl

oa
ds

1)
 Im

pr
ov

e
Ta

il
P

er
fo

rm
an

ce

2)
 E

na
bl

e
R

ep
ro

du
ci

bi
lit

y
3)

 E
vo

lv
in

g
B

en
ch

m
ar

ki
ng

 M
et

ho
do

lo
gi

es

1)
 H

ig
he

r
G

P
U

 U
til

iz
at

io
n

2)
 Im

pr
ov

e
A

pp
lic

at
io

n
T

hr
ou

gh
pu

t
3)

 R
ed

uc
e

E
ne

rg
y

by
 A

vo
id

in
g

R
un

ni
ng

 E
m

pt
y

(3
)

S
er

ve
rle

ss
 G

lo
ba

l P
ro

ce
ss

in
g

N
ea

r
C

le
an

 E
ne

rg
y

138	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

PREDICTIONS

enumerates possible benefits. The fig-
ure should be read clockwise, starting
with principle 1.

WORKFLOWS WILL BECOME
NATIVE APPLICATIONS FOR
HPC AND AI
With no intention of exploring the
history of HPC and while focusing
on the software evolution over hard-
ware innovations, we would like to
recall simpler times when calculations
were performed on isolated, domain-
specific problems by homogeneous
CPU-based hardware. As the computa-
tional problems grew in complexity,
they were typically broken into smaller
tasks or files. However, it was still fea-
sible then for a single programmer or
small team to completely rewrite the
code. Today’s variety of domain-spe-
cific workflows in HPC has pushed
application scientists and engineers to
propose various workflow-management
systems with no clear standards or im-
plementation patterns beyond a few
workflow specifications and program-
ming languages (Figure 2).

As individual applications become
workflow friendly by embedding CPU/

GPU programming in single execut-
ables, it’s becoming clearer that these
partial solutions are unlikely to stay
relevant, partially because the end of
the Dennard-scaling era is leading to
accelerator diversification. Creating
truly native solutions for HPC will
likely involve not only methodolo-
gies from multiple domains of knowl-
edge at once, but also 1) distributing
computing tasks efficiently among
emerging accelerators, 2) dynamically
redeploying at scale, and 3) generat-
ing/testing workflows interactively
using low-code programming models
and simulations. The need for human
experts to achieve next-level perfor-
mance on these increasingly complex
computational workflows will be com-
plemented by machine learning and
AI. These techniques will not only be
used within the workflows themselves
but also as part of the HPC infrastruc-
ture. Future HPC is evolving toward
harmoniously engineered workflows
whose complexity can be abstracted
while still performing optimally un-
der flexible conditions.

Optimally deploying these hetero-
geneous codes will require attention

to how these codes are represented, as
discussed next.

MULTILEVEL INTERMEDIATE
REPRESENTATION WILL
ADDRESS HETEROGENEITY
COMPLEXITY
As applications become more workflow
centric, it becomes increasingly chal-
lenging for programming languages
and compilers to ensure efficient task
execution, unified representation, in-
teroperability, and good abstraction.
Multilevel Intermediate Representation
(MLIR)2 is an open source project initi-
ated by LLVM to develop a new inter-
mediate representation for compilers.
It addresses some of the limitations of
compilers that use traditional IRs (like
LLVM-IR) by providing a more expres-
sive, flexible, and efficient way to rep-
resent program structures in the front
end. It also enables efficient compila-
tion, optimization, and interoperability
across diverse programming languages,
domains, and hardware platforms, fos-
tering innovation and collaboration in
compiler design, AI, HPC, and more.

MLIR offers several advantages to
HPC, AI, and workflow optimization.

FIGURE 2. Evolution of workflows. IDE: integrated development environment; OOP: object-oriented programming; ML: machine
learning workflow.

H
P

C
 C

o
m

p
le

xi
ty

Scripting
OOP

IDEs, libraries
Workflows

Workflow Managers

Past

Native HPC Workflows

Present

Future

Domain-Specific Problems
CPU-Based HPC Clusters
Individuals and Small Teams

Emergence of Big Data
Mostly CPU/GPU

On Prem, Cloud, Edge
Large Teams and Communities

Multidomain Problems

Seamless Heterogeneity

Dynamic/Scalable Deployments

Low-Code and Workflow Simulators

ML/AI-Powered Solutions

	 J A N U A R Y 2 0 2 4 � 139

Its robust optimization capabilities,
including high-level optimizations
like data-layout transformation, along-
side low-level optimizations, such
as loop unrolling and vectorization,
allow performance tuning of HPC
applications. Its hardware-agnostic
representation allows workf lows to
adapt effortlessly to heterogeneous
architectures, like CPUs, GPUs, field-
programmable gate arrays (FPGAs), or
future quantum computing accelera-
tors, enabling customized optimization
for various HPC configurations. It pro-
vides a unified representation for com-
plex workflows, including HPC and AI
components, ensuring easy integration
and optimization across multiple com-
puting workloads in a single format.
Its framework-specific dialects, which
support TensorFlow, PyTorch, etc., en-
sure seamless model translation and
integration across various components
of AI processes, providing compatibility
and ease of implementation.

Moreover, the flexibility and dy-
namic compilation capabilities of
MLIR aid in sustainable workf low
scheduling (discussed next) and enable
dynamic deployment of HPC/AI work-
flows (principles 3 and 4), enabling
real-time optimizations and efficient
scaling of individual workloads.

SERVERLESS GLOBAL
PROCESSING NEAR CLEAN
ENERGY
In the drive toward a more sustain-
able digital realm, the potential of

workf low scheduling emerges as a
transformative force. Through the de-
composition of workflows into smaller,
manageable functions, an opportu-
nity arises to strategically deploy these
functions based on geographical and
environmental considerations. Geo-
distributed computational resources
differ in their energy sourcing. Some
benefit from renewable energy, while
others draw power from carbon-
intensive fossil fuels; some have faster
computing capabilities, and vice versa.
By leveraging workflow scheduling,
functions can be located based on uti-
lization, operating cost, and, critically,
environmental sustainability.3,4 This
inherent flexibility allows functions
within workflows to run in varied
geographical regions, aiming to either
minimize carbon emissions or opti-
mize the total runtime of a workflow.

To validate this idea, we proposed a
framework (shown in Figure 3) and con-
ducted a series of experiments. We used
Globus Compute5 as the backbone of
our framework to distribute functions
across various geodistributed comput-
ing resources. Our experimental setup
encompassed a variety of computational
resources: a Kubernetes cluster at Hewl-
ett Packard Enterprise (HPE) in Milpitas,
CA, USA, and two Google Cloud Plat-
form servers, one in Los Angeles, CA,
and another in Council Bluffs, IA. Each
location had its distinct energy profile,
influencing the function deployment
strategies. The functions originated
in HPE’s office in Fort Collins, CO. The

global workflow scheduler was inter-
faced with Performance Co-Pilot (PCP)
to monitor crucial metrics, such as
power consumption. Our experimental
focus was the implementation of a car-
bon-aware scheduling policy aimed at
minimizing carbon emissions in func-
tion deployment. Utilizing the proposed
policy, the system was able to execute
more functions (utilize more hardware)
with lower carbon emissions.

Building upon the operational
advantages of geodistributed sched-
uling, we next explore dynamic rede-
ployment, harnessing heterogeneous
hardware to further optimize our
global workflow framework.

PARTS OF WORKFLOWS WILL
BE DYNAMICALLY DEPLOYED
With the increase in HPC and AI in
computational research, the need to
alleviate the bottleneck of statically
deployed workf lows grows urgent.
Traditionally, workf lows have been
hosted on a fixed number of machines,
resulting in resource underutilization.
The growth of cloud-based virtual ma-
chines and bare-metal nodes enabled a
game-changing solution: dynamic (re)
deployment of workflow components.
This strategy ensures that specified
components of a workflow operate on
specialized hardware, maximizing
utilization and decreasing workflow
execution runtime.6 These compo-
nents can be dynamically redeployed
on specific hardware accelerators
when they are available.

FIGURE 3. Carbon-aware scheduling of functions within a workflow. IEA: International Energy Agency; PCP: Performance Co-Pilot.

Functions

Fort Collins, CO

Global
Scheduler

IEA Carbon
Emissions
Database

Globus
Compute

Task/Result
Queues

PCP

Feedback Loop

Resource Monitor

gcp_LA Node
Los Angeles, CA

gcp_CB Node
Council Bluffs, IA

hpe_MP k8s
Cluster

Milpitas, CA

140	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

PREDICTIONS

To validate this dynamic redeploy-
ment model, we used the GROMACS
Lysozyme workflow.7 We tried three
different execution methods:

1.	 Serial monolithic execution (mono-
lith): This is the traditional ap-
proach, executing the workflow
as serial, monolithic tasks.

2.	 Decomposed but heterogene-
ity-oblivious execution (decom-
posed_NHHA): The workflow
was decomposed into its
constituent functions and exe-
cuted on a serverless platform
without specific hardware
considerations.

3.	 Decomposed and heterogeneous
hardware-aware execution

(decomposed_HHA): Enhancing
the second method, this tech-
nique dynamically redeployed
the decomposed functions,
assigning intensive tasks to
specialized nodes with GPUs
(when available).

Figure 4 details these execution
techniques. Monolith and decom-
posed_NHHA are inefficient since
they don’t utilize the specialized hard-
ware, thus taking longer to run. While
decomposed_NHHA has extended ex-
ecution times caused by container cold
starts, the decomposed_HHA method
significantly reduces runtime.

Dynamically redeploying workflow
components optimizes task execution

on suitable hardware, ensuring en-
hanced cluster utilization and mini-
mized runtime. This shift toward dy-
namic deployment signifies a future of
optimized resource allocation in com-
putational research.

There is a huge demand for GPUs
nowadays, shifting importance from
user workload execution to maximiz-
ing GPU utilization, which leads us to
the next principle.

ACCELERATOR FULL
UTILIZATION THROUGH BIN
PACKING
A workflow task might not saturate
the entire GPU, so exploiting acceler-
ator granularity could be increasingly
important for HPC.8,9 To motivate
finer accelerator granularity, we pres-
ent an experiment where we ran the
same nano-LAMMPS workflow with
different GPU partition sizes. We
picked a kernel that ran more than
6,000 times during the workflow
execution and plotted its runtime
with varying amounts of GPU com-
pute (GPU percentage) in Figure 5(a).
We can see the runtime of some runs
(0–1,000) improve when the GPU per-
centage gets higher, although not as
much between kernels running at
50% GPU and 100% GPU. However, the
runtime of almost all kernels hovers
around 5 μs and does not change re-
gardless of the GPU percentage. These

FIGURE 4. Three distinct execution techniques for the GROMACS Lysozyme workflow.

min_energy

run_nvt

run_npt

download

force_field

define_space

generate_ions

minimize_energy

run_nvt

run_npt

1) Monolith 3) Decomposed_HHA

download

force_field

define_space

generate_ions

run_nvt

run_nvt

2) Decomposed_NHHA

min_energy

CPU

GPU

download

force_field

define_space

generate_ions

Hardware Type

60,000

50,000

40,000

30,000

20,000

10,000

0

K
er

ne
l R

un
tim

e
(n

s)

0 1,000 2,000 3,000
Kernel Number

(a) (b)

4,000 5,000 6,000

20% GPU
25% GPU
50% GPU
100% GPU

20

15

10

5

0T
im

e(
s)

 to
 R

un
 F

iv
e

LA
M

M
P

S
 W

or
kf

lo
w

s

100% 50% 25%
GPU Percentage per Workflow

20%

FIGURE 5. (a) Kernel runtime of workflow across different GPU percentages. (b) Completion time of five workflows running concurrently.

	 J A N U A R Y 2 0 2 4 � 141

measurements show that the kernels
in these workflows do not require
100% GPU, and often 20% GPU suf-
fices. Packing the GPU with multiple
workflows, each getting a certain GPU
percentage, could increase the GPU
throughput.

In another experiment, we look at
the throughput of a bin-packed GPU
compared to a situation where the GPU
is not multiplexed. In Figure 5(b), we
present the time to run five LAMMPS
workflows. Giving each workflow its
own “bin” with 20% GPU completes
running all workflows 60% faster
than running each workflow indi-
vidually with 100% GPU. This reduc-
tion in makespan stems from the
increased throughput due to partition-
ing the GPU and running workflows
concurrently.

Data transfer across computing
elements [CPUs, GPUs, FPGAs, smart
network interface cards (SmartNICs),
etc.] is the slowest part of such work-
f lows. Therefore, optimizing this
communication is imperative. The
next principle discusses optimizing
performance with peer-to-peer (P2P)
communications.

ACCELERATORS WILL
COMMUNICATE P2P
When accelerators consume the
majority of an application’s com-
putation, it is necessary to enable
faster data movement to them;
this currently uses the Peripheral

Component Interconnect Express
(PCIe) interface. However, the num-
ber of PCIe lanes at the CPU socket
level limits the number of accel-
erators at a node level. Although
a dual-socket-based server allows
more accelerators per server, the
NUMA-node connectivity interface
for communication between accel-
erators across sockets can become a
bottleneck. This is where P2P access
to accelerators can help.

To illustrate this technique, we
measured transfers from a Mellanox
InfiniBand (IB) 200 Gb/s network in-
terface controller (NIC) to a Nvidia
A100 GPU using GPUDirect,10 which
uses PCIe P2P transfers. We compared
it to a host bounce back (the host buf-
fer as an intermediate data copy). We
used OpenMPI 4.1.1, which supports
GPUDirect transfer and point-to-point
OSU latency and bandwidth (BW)
benchmarks for the analysis.11

Figure 6(a) shows that GPU-to-GPU
device communication across nodes
through the IB NIC using GPUDirect/
P2P exhibits a 1.2–3 times higher
BW than host bounce back. Also, the
GPUDirect/P2P GPU device buffer
transfer could saturate the PCIe in-
terface to the practical BW limit of
24 GB/s (75% of the theoretical PCIe
Gen4 ×16 BW of 32 GB/s). In addition,
GPUDirect/P2P [Figure 6(b)] also ex-
hibits a 1.2–5 times lower latency for
message sizes below 8 MB, but for
message sizes larger than 16 MB the

latency of GPUDirect/P2P transfers
converges to the host bounce-back
transfer latency.

With machine learning training
workloads that rely on GPU-to-GPU com-
munication, a higher P2P transfer BW
allows faster training speeds. For HPC
workloads, most of the GPU-to-GPU
communication would use small mes-
sage sizes, so lower latency using P2P
transfer will reduce the overall appli-
cation execution time.

In addition to GPU partitioning and
P2P optimizations, the next princi-
ple introduces operator off loading
as another important performance
optimization.

PERFORMANCE AT EXTREME
SCALE WILL BE IMPORVED
USING OPERATOR
OFFLOADING
In addition to hardware accelerators,
distributed HPC and AI workflows rely
on industry-standard libraries, such as
the Message Passing Interface (MPI),
to effectively distribute, perform,
and synchronize computation across
interconnected machines. Common
distributed operations, such as syn-
chronizing data buffers in multiple
machines via an aggregation opera-
tion, are encapsulated in MPI collective
communication routines, or collectives.
The operation AllReduce collective in
MPI parlance is a fundamental opera-
tion of AI training workloads and also
appears in many HPC workloads.12

FIGURE 6. (a) Unidirectional internode GPU-to-GPU BW. (b) Unidirectional internode GPU-to-GPU latency.

U
ni

di
re

ct
io

na
l B

W
 (

G
B

/s
)

U
ni

di
re

ct
io

na
l L

at
en

cy
 (

m
s)75% PCIE Gen 4 × 16 BW 24 GB/s

1.2×

1.2×

3×

3×

30

25

20

15

10

5

0
64 256 1K 4K 16K

Message Size (Bytes)

64K 256K 1M 4M 64 256 1K 4K 16K

Message Size (Bytes)

(a) (b)

64K 256K 1M 16M4M

Higher Is Better Lower Is Better

~5 × Until 32 kB

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Host Bounce Back
GPUDirect

Host Bounce Back
GPUDirect

142	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

PREDICTIONS

Driving these critical communication
operations using the CPU or an ac-
celerator, such as the GPU, consumes
valuable computation and memory
bandwidth, slowing down the appli-
cation performance.13 Other than MPI
collectives, operators, such as data

sorting, filtering, and encrypting/de-
crypting,14 are also ubiquitous in HPC
and AI workflows. Since all of these
critical and high-frequency operators
depend on network communication,
freeing CPU and GPU BW by offload-
ing operators to network hardware,

such as NICs and switches, presents a
great opportunity to improve the per-
formance of HPC and AI workflows.15

When pushing AI and HPC work-
flows toward extreme scales, for ex-
ample, systems with tens or hundreds
of thousands of GPUs, it becomes
extremely hard to hide communica-
tion operations behind computation
operations. Figure 7 presents the re-
sults of analytical simulations and
modeling of the distributed training
of convolutional neural networks
(CNNs) and large language models
(LLMs) in extreme-scale systems.
The figure highlights the large im-
pact that driving communication has
on GPU bandwidth, especially when
increasing the message size of MPI
collectives. We modeled analytically
and simulated the use of AllReduce
operations in AI workflows with-
out NIC offloading (shown in green
lines), with NIC offloading (shown in
blue lines), and with NIC offloading
plus full gradient caching (red lines).
This last scenario is impractical in
real hardware since the necessary

FIGURE 8. Performance histograms for four example applications from the Rodinia HPC benchmark suite, run 1,000 times each on a
single machine with no interference. These applications represent distributions that are (a) approximately near constant, (b) right tailed,
(c) left-tailed, and (d) symmetric.

400

300

200

100

0

C
ou

nt

1.25 1.5 1.75 2 2.25 5 6 7 0.9 1 1.1 1.2 1.3 3.5 4 4.5 5 5.5

Run Time (s) Run Time (s) Run Time (s) Run Time (s)
(a) (b) (c) (d)

100

75

50

25

0 0 0

20

40

60

80

50

100

150

kmeanshotspotheartwallbfs

FIGURE 7. Analytical simulations and modeling of distributed training of CNNs and LLMs
in extreme-scale systems, highlighting the large impact that driving communication has
on GPU bandwidth.

100

75

50

25

0

Fr
ee

 G
P

U
 M

em
or

y
B

W
 in

 R
ed

uc
tio

n
(%

)

512 1K 10K 100K 1M Nodes

Increase Cache

GPT-4GPT-3LLaMAoverfeat

All Reduce Size (Bytes)

ResNet200

225 231 237 243

Offloading and Caching

With NIC Offloading

Without NIC Offloading

	 J A N U A R Y 2 0 2 4 � 143

cache size would be too expensive,
but it can serve as a basis for compar-
ison for increasing NIC cache sizes
from the feasible scenario shown on
the blue lines. We simulated real AI
training workloads, from ResNet200
to GPT-4, highlighting the total
AllReduce size involved in training
each neural network. These simula-
tions and models demonstrate that,
after saturation, driving communi-
cation during training would leave
only around 30% of GPU memory BW
free for computation, while offload-
ing the AllReduce to a capable NIC
would leave up to 87% GPU memory
BW free, which represents an expres-
sive amount of computing power at
extreme scales.

The seven optimization mech-
anisms and operation principles
described so far emphasize heteroge-
neity in hardware in software, which
complicates performance evaluation,
as discussed next.

ACCOUNT FOR THE
NONDETERMINISTIC
PERFORMANCE OF
LARGE-SCALE HPC AND AI
WORKLOADS
The combination of large-scale and het-
erogeneous software, middleware, and
hardware means that every time we
measure system performance we could
be getting a different result (as shown
for illustration in Figure 8). Some vari-
ability could be reduced or controlled,
but likely not all of it. If the observed
performance differences are relatively
large and unpredictable, this nonde-
terministic behavior obfuscates the
actual performance of the underlying
system. It therefore becomes increas-
ingly harder to answer critical business
questions, such as: Does system A per-
form better than system B? What is the
cost/performance of a system? Did its
performance regress or improve?

The key to answering such ques-
tions is to handle performance like
every other nondeterministic factor
using statistical tools for distribu-
tions, similar to the research tools

used in social and medical sciences.
These tools can range from simple
hypothesis testing and quantification
of uncertainty to more advanced top-
ics, such as divergence metrics and
causality analysis. Although these
tools carry an implicit penalty, both
in additional work and additional ex-
pertise, they also carry the promise of
better performance reproducibility,
correct interpretations, and action-
able insights.

PREDICTING APP/SERVICE
PERFORMANCE ON ANY
CONFIGURATION WILL BE
CRITICAL FOR QOS
The nondeterministic behavior of
complex system performance brings
to light the need for accurate estimates
of performance and its distribution.
For example, performance models of
key applications have always been crit-
ical in the design and procurement of
future computer systems,16 but these
models often assume a homogeneous
workload and architecture.

As another example, when mak-
ing scheduling decisions on a shared
cluster, understanding the expected
tail and outliers of the performance
distribution of an application can im-
pact the timing of its scheduling to
maintain service-level agreements for
other jobs.

Together with collaborator Izzat
el Hajj at the American University of
Beirut (AUB), we have been developing
performance prediction mechanisms
based on a machine learning model
trained on low-level performance
metrics. This model has been success-
fully demonstrated in tasks such as
predicting the performance of known
applications on new hardware config-
urations,17 which can be applied to the
problem of selecting new hardware
without benchmarking on all available
choices. These techniques were also
successful in predicting when appli-
cations are near the end of their exe-
cution as a very useful prediction for
supercomputer and mission-critical
schedulers.

We presented nine principles
of convergence of HPC,
AI, and workflows. These

end-to-end principles cover workflows
through middleware to hardware.
Nevertheless, there are many other
missing aspects where this conver-
gence can apply.18,19,20 We did not even
touch on nonfunctional aspects, such
as security, reliability, scale, avail-
ability, etc. Each of these represents a
considerable challenge but also an op-
portunity for improved usability, de-
velopment, and delivery of converged
HPC, AI, and workflows.

ACKNOWLEDGMENT
We would like to thank our many
collaborators who graciously con-
tributed to different aspects of this
work: Wen-mei Hwu and Deming
Chen of the University of Illinois Ur-
bana-Champaign, Gustavo Alonso of
ETH, Izzat El Hajj of AUB, Ian Foster
of the University of Chicago, Avi Men-
delson of Technion, and Sudeep Pas-
richa of Colorado State University.
We would also like to thank Alex Qi,
Alex Weaver, Hongzheng Tian, Kai-
wen Cao, Kanchu Kiran, Liad Gerst-
man, Philipp Raith, Vijay Thurimella,
and Viyom Mittal for contributing to
some of the insights.

REFERENCES
1.	 L. Leite, C. Rocha, F. Kon, D. Milojicic,

and P. Meirelles, “A survey of DevOps
concepts and challenges,” ACM
Comput. Surv. (CSUR), vol. 52, no. 6,
pp. 1–35, Nov 2019, doi: 10.1145/
3359981.

2.	 C. Lattner et al., “MLIR: Scaling
compiler infrastructure for do-
main specific computation,” IEEE/
ACM Int. Symp. Code Gener. Optim.
(CGO), 2021, pp. 2–14, doi: 10.1109/
CGO51591.2021.9370308.

3.	 S. Qi, D. Milojicic, C. Bash, and
S. Pasricha, “SHIELD: Sustainable
hybrid evolutionary learning frame-
work for carbon, wastewater, and en-
ergy-aware data center management,”
in Proc. IEEE Int. Green Sustain.
Comput. Conf., 2023.

144	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

PREDICTIONS

4.	 C. Bash, N. Hogade, D. Milojicic, G.
Rattihalli, and C. D. Patel, “Sustain-
ability: Fundamentals-based approach
to paying it forward,” Computer, vol.
56, no. 1, pp. 125–132, Jan. 2023, doi:
10.1109/MC.2022.3219173.

5.	 “Computing with Globus.” Globus. Ac-
cessed: Jul. 11, 2023. [Online]. Available:
https://www.globus.org/compute

6.	 G. Rattihalli et al., “Fine-grained
heterogeneous execution frame-
work with energy aware sched-
uling,” in Proc. IEEE 16th Int.
Conf. Cloud Comput. (CLOUD),
2023, pp. 35–44, doi: 10.1109/
CLOUD60044.2023.00014.

7.	 “Lysozyme in water.” MD Tutorials.
Accessed: Jul. 11, 2023. [Online].
Available: http://www.mdtutorials.
com/gmx/lysozyme/

8.	 T. Pfandzelter et al., “Kernel-as-a-
Service: A serverless programming
model for heterogeneous hardware
accelerators,” in Proc. ACM Middle-
ware, 2023, pp. 1–15.

9.	 A. Dhakal et al., “Fine-grained
accelerator partitioning for Machine
Learning and Scientific Computing
in Function as a Service Platform,” in
Proc. Int. Conf. High Perform. Comput.,
Netw., Storage, Anal., New York,
NY, USA, Denver, CO, USA: ACM,
Nov. 12–17, 2023, pp. 1606–1613, doi:
10.1145/3624062.3624238.

10.	 “Enhancing data movement and
access for GPUs.” Nvidia Developer.
Accessed: Oct. 11, 2023. [Online].
Available: https://developer.nvidia.
com/gpudirect

11.	 “MVAPICH: MPI over InfiniBand,
Omni-Path, Ethernet/iWARP, RoCE,
and Slingshot.” MVAPICH. Accessed:
Oct. 11, 2023. [Online]. Available:
https://mvapich.cse.ohio-state.edu/
benchmarks/

12.	 S. Chunduri et al., “Characteriza-
tion of MPI usage on a production
supercomputer,” in Proc. Int. Conf.
High Perform. Comput., Netw., Storage
Anal., 2018, pp. 386–400, doi: 10.1109/
SC.2018.00033.

13.	 S. Rashidi et al., “Enabling
compute-communication overlap

in distributed deep learning
training platforms,” in Proc.
ACM/IEEE 48th Annu. Int.
Symp. Comput. Archit. (ISCA),
2021, pp. 540–553, doi: 10.1109/
ISCA52012.2021.00049.

14.	 D. Korolija et al., “Farview: Disag-
gregated memory with operator
off-loading for database engines,” in
Proc. 12th Annu. Conf. Innov. Data Syst.
Res., 2022, pp. 1–14.

15.	 T. Hoefler. General in-Network
Processing - Time is Ripe! (Oct. 1, 2020).
Accessed: Jul. 11, 2023. [Online
Video]. Available: https://www.you-
tube.com/watch?v=t6jdjnnIRZs

16.	 D. J. Kerbyson, H. J. Alme, A. Hoisie,
F. Petrini, H. J. Wasserman, and M.
Gittings, “Predictive performance and
scalability modeling of a large-scale
application,” in Proc. ACM/IEEE Conf.
Supercomput., 2001, pp. 1–37, doi:
10.1145/582034.582071.

17.	 A. Nassereldine et al., “Pre-
dicting the performance-cost

trade-off of applications across
multiple systems,” in Proc. IEEE/
ACM 23rd Int. Symp. Cluster,
Cloud Internet Comput. (CCGrid),
2023, pp. 216–228, doi: 10.1109/
CCGrid57682.2023.00029.

18.	 R. M. Badia, I. Foster, and
D. Milojicic, “More real than real:
The race to simulate everything,”
Computer, vol. 55, no. 7, pp. 67–72,
 Jul. 2022, doi: 10.1109/
MC.2022.3173359.

19.	 N. Dube, P. Faraboschi, D. Milojicic,
and D. Roweth, “Future of HPC:
Internet of workflows,” IEEE
 Internet Comput., vol. 25, no. 5,
 pp. 26–34, Sep./Oct 2021, doi:
10.1109/MIC.2021.3103236.

20.	 D. Milojicic, P. Faraboschi, N. Dube,
and D. Roweth, “Future
of HPC: Diversifying heterogeneity,”
in Proc. Des., Autom. Exhib.
(DATE), 2021, pp. 276–281, doi:
10.23919/DATE51398.2021.
9474063.

PEDRO BRUEL is a scientist at Hewlett
Packard Labs, Milpitas, CA 95035 USA.
Contact him at bruel@hpe.com.

SAI RAHUL CHALAMALASETTI is a
senior scientist at Hewlett Packard
Labs, Milpitas, CA 95035 USA.
Contact him at sai-rahul.chalamalasetti@
hpe.com.

ADITYA DHAKAL is a scientist at
Hewlett Packard Labs, Milpitas, CA
95035 USA. Contact him at aditya.
dhakal@hpe.com.

EITAN FRACHTENBERG is a master
technologist at Hewlett Packard Labs,
Milpitas, CA 95035 USA. Contact him at
eitan.frachtenberg@hpe.com.

NINAD HOGADE is a scientist at
Hewlett Packard Labs, Fort Collins,
CO 80528 USA. Contact him at ninad.
hogade@hpe.com.

ROLANDO PABLO HONG ENRIQUEZ
is a senior scientist at Hewlett Packard
Labs, Milpitas, CA 95035 UK. Contact
him at rhong@hpe.com.

ALOK MISHRA is a scientist at Hewlett
Packard Labs, Milpitas, CA 95035 USA.
Contact him at alok.mishra@hpe.com.

DEJAN MILOJICIC is a Hewlett Packard
Enterprise Fellow and vice president
at Hewlett Packard Labs, Milpitas, CA
95035 USA. Contact him at dejan.
milojicic@hpe.com.

PAVANA PRAKASH is a scientist at
Hewlett Packard Labs, Milpitas, CA
95035 USA. Contact her at prakash@
hpe.com.

GOURAV RATTIHALLI is a scientist
at Hewlett Packard Labs, Milpitas, CA
95035 USA. Contact him at gourav.
rattihalli@hpe.com.

https://www.globus.org/compute
http://www.mdtutorials.com/gmx/lysozyme/
http://www.mdtutorials.com/gmx/lysozyme/
https://dl.acm.org/doi/proceedings/10.1145/3624062
https://dl.acm.org/doi/proceedings/10.1145/3624062
https://developer.nvidia.com/gpudirect
https://developer.nvidia.com/gpudirect
https://mvapich.cse.ohio-state.edu/benchmarks/
https://mvapich.cse.ohio-state.edu/benchmarks/
https://www.youtube.com/watch?v=t6jdjnnIRZs
https://www.youtube.com/watch?v=t6jdjnnIRZs
https://dl.acm.org/doi/proceedings/10.1145/582034
https://dl.acm.org/doi/proceedings/10.1145/582034
mailto:bruel@hpe.com
mailto:sai-rahul.chalamalasetti@hpe.com
mailto:sai-rahul.chalamalasetti@hpe.com
mailto:aditya.dhakal@hpe.com
mailto:aditya.dhakal@hpe.com
mailto:eitan.frachtenberg@hpe.com
mailto:ninad.hogade@hpe.com
mailto:ninad.hogade@hpe.com
mailto:rhong@hpe.com
mailto:alok.mishra@hpe.com
mailto:dejan.milojicic@hpe.com
mailto:dejan.milojicic@hpe.com
mailto:prakash@hpe.com
mailto:prakash@hpe.com
mailto:gourav.rattihalli@hpe.com
mailto:gourav.rattihalli@hpe.com

	136_57mc01-predictions-3332973

