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Traditional high-

performance computing 

and modern artificial 

intelligence computing 

are converging with 

workflows as a common 

paradigm. We predict 

nine principles of 

heterogeneity and 

serverless computing for 

this convergence, from 

high-level programming 

to low-level hardware.

H igh-performance com-
puting (HPC) is increas-
ingly converging with 
ar tif icia l intel l igence 

(AI), and both are increasingly 
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expressed as workflows. Workflows 
enable a higher level of abstraction 
that is easier to develop, (re)use, and 
operate. Both HPC and AI depend 
heavily on accelerators, and they 
both adopt serverless computing. 
Similarly to workflows, serverless 
computing also raises the level of ab-
straction and simplifies DevOps.1 In 
addition, it matches the fine granu-
larity of accelerators in terms of time 
and size; they intuitively represent a 
good match in terms of performance 
and utilization.

When analyzing this convergence, 
three perspectives with different re-
quirements and benefits exist:

1.	 End users care about latency or 
throughput of workflows  
at scale and ease/convenience 
of use.

2.	 Developers care about ease 
of development, for exam-
ple, constructing workflows 
from existing workloads and 
making quality-of-service (QoS) 
guarantees.

3.	 Providers (of services infra-
structure) primarily care 
about meeting service-level 
agreements for user QoS and 
maximizing infrastructure 
utilization.

These three roles intertwine, and 
individuals could easily play two or 
even all three roles. For example, an 
end user of some services can be a pro-
vider to other users, and a developer 
can conduct operations.

The principles and approaches we 
describe strive toward enabling seam-
less scalability and fluidity for end 
users, increased productivity of devel-
opers, and improved performance effi-
ciency of providers.

To navigate these principles, we 
organized them in Figure 1, listed in 
order of description. Each principle FI
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enumerates possible benefits. The fig-
ure should be read clockwise, starting 
with principle 1.

WORKFLOWS WILL BECOME 
NATIVE APPLICATIONS FOR 
HPC AND AI
With no intention of exploring the 
history of HPC and while focusing 
on the software evolution over hard-
ware innovations, we would like to 
recall simpler times when calculations 
were performed on isolated, domain-
specific problems by homogeneous 
CPU-based hardware. As the computa-
tional problems grew in complexity, 
they were typically broken into smaller 
tasks or files. However, it was still fea-
sible then for a single programmer or 
small team to completely rewrite the 
code. Today’s variety of domain-spe-
cific workflows in HPC has pushed 
application scientists and engineers to 
propose various workflow-management 
systems with no clear standards or im-
plementation patterns beyond a few 
workflow specifications and program-
ming languages (Figure 2).

As individual applications become 
workflow friendly by embedding CPU/

GPU programming in single execut-
ables, it’s becoming clearer that these 
partial solutions are unlikely to stay 
relevant, partially because the end of 
the Dennard-scaling era is leading to 
accelerator diversification. Creating 
truly native solutions for HPC will 
likely involve not only methodolo-
gies from multiple domains of knowl-
edge at once, but also 1) distributing 
computing tasks efficiently among 
emerging accelerators, 2) dynamically 
redeploying at scale, and 3) generat-
ing/testing workflows interactively 
using low-code programming models 
and simulations. The need for human 
experts to achieve next-level perfor-
mance on these increasingly complex 
computational workflows will be com-
plemented by machine learning and 
AI. These techniques will not only be 
used within the workflows themselves 
but also as part of the HPC infrastruc-
ture. Future HPC is evolving toward 
harmoniously engineered workflows 
whose complexity can be abstracted 
while still performing optimally un-
der flexible conditions.

Optimally deploying these hetero-
geneous codes will require attention 

to how these codes are represented, as 
discussed next.

MULTILEVEL INTERMEDIATE 
REPRESENTATION WILL 
ADDRESS HETEROGENEITY 
COMPLEXITY
As applications become more workflow 
centric, it becomes increasingly chal-
lenging for programming languages 
and compilers to ensure efficient task 
execution, unified representation, in-
teroperability, and good abstraction. 
Multilevel Intermediate Representation 
(MLIR)2 is an open source project initi-
ated by LLVM to develop a new inter-
mediate representation for compilers. 
It addresses some of the limitations of 
compilers that use traditional IRs (like 
LLVM-IR) by providing a more expres-
sive, flexible, and efficient way to rep-
resent program structures in the front 
end. It also enables efficient compila-
tion, optimization, and interoperability 
across diverse programming languages, 
domains, and hardware platforms, fos-
tering innovation and collaboration in 
compiler design, AI, HPC, and more.

MLIR offers several advantages to 
HPC, AI, and workflow optimization. 

FIGURE 2. Evolution of workflows. IDE: integrated development environment; OOP: object-oriented programming; ML: machine 
learning workflow.
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Its robust optimization capabilities, 
including high-level optimizations 
like data-layout transformation, along-
side low-level optimizations, such 
as loop unrolling and vectorization, 
allow performance tuning of HPC 
applications. Its hardware-agnostic 
representation allows workf lows to 
adapt effortlessly to heterogeneous 
architectures, like CPUs, GPUs, field- 
programmable gate arrays (FPGAs), or 
future quantum computing accelera-
tors, enabling customized optimization 
for various HPC configurations. It pro-
vides a unified representation for com-
plex workflows, including HPC and AI 
components, ensuring easy integration 
and optimization across multiple com-
puting workloads in a single format. 
Its framework-specific dialects, which 
support TensorFlow, PyTorch, etc., en-
sure seamless model translation and 
integration across various components 
of AI processes, providing compatibility 
and ease of implementation.

Moreover, the flexibility and dy-
namic compilation capabilities of 
MLIR aid in sustainable workf low 
scheduling (discussed next) and enable 
dynamic deployment of HPC/AI work-
flows (principles 3 and 4), enabling 
real-time optimizations and efficient 
scaling of individual workloads.

SERVERLESS GLOBAL 
PROCESSING NEAR CLEAN 
ENERGY
In the drive toward a more sustain-
able digital realm, the potential of 

workf low scheduling emerges as a 
transformative force. Through the de-
composition of workflows into smaller, 
manageable functions, an opportu-
nity arises to strategically deploy these 
functions based on geographical and 
environmental considerations. Geo-
distributed computational resources 
differ in their energy sourcing. Some 
benefit from renewable energy, while 
others draw power from carbon-
intensive fossil fuels; some have faster 
computing capabilities, and vice versa. 
By leveraging workflow scheduling, 
functions can be located based on uti-
lization, operating cost, and, critically, 
environmental sustainability.3,4 This 
inherent flexibility allows functions 
within workflows to run in varied 
geographical regions, aiming to either 
minimize carbon emissions or opti-
mize the total runtime of a workflow.

To validate this idea, we proposed a 
framework (shown in Figure 3) and con-
ducted a series of experiments. We used 
Globus Compute5 as the backbone of 
our framework to distribute functions 
across various geodistributed comput-
ing resources. Our experimental setup 
encompassed a variety of computational 
resources: a Kubernetes cluster at Hewl-
ett Packard Enterprise (HPE) in Milpitas, 
CA, USA, and two Google Cloud Plat-
form servers, one in Los Angeles, CA, 
and another in Council Bluffs, IA. Each 
location had its distinct energy profile, 
influencing the function deployment 
strategies. The functions originated 
in HPE’s office in Fort Collins, CO. The 

global workflow scheduler was inter-
faced with Performance Co-Pilot (PCP) 
to monitor crucial metrics, such as 
power consumption. Our experimental 
focus was the implementation of a car-
bon-aware scheduling policy aimed at 
minimizing carbon emissions in func-
tion deployment. Utilizing the proposed 
policy, the system was able to execute 
more functions (utilize more hardware) 
with lower carbon emissions.

Building upon the operational 
advantages of geodistributed sched-
uling, we next explore dynamic rede-
ployment, harnessing heterogeneous 
hardware to further optimize our 
global workflow framework.

PARTS OF WORKFLOWS WILL 
BE DYNAMICALLY DEPLOYED
With the increase in HPC and AI in 
computational research, the need to 
alleviate the bottleneck of statically 
deployed workf lows grows urgent. 
Traditionally, workf lows have been 
hosted on a fixed number of machines, 
resulting in resource underutilization. 
The growth of cloud-based virtual ma-
chines and bare-metal nodes enabled a 
game-changing solution: dynamic (re)
deployment of workflow components. 
This strategy ensures that specified 
components of a workflow operate on 
specialized hardware, maximizing 
utilization and decreasing workflow 
execution runtime.6 These compo-
nents can be dynamically redeployed 
on specific hardware accelerators 
when they are available.

FIGURE 3. Carbon-aware scheduling of functions within a workflow. IEA: International Energy Agency; PCP: Performance Co-Pilot.
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To validate this dynamic redeploy-
ment model, we used the GROMACS 
Lysozyme workflow.7 We tried three 
different execution methods:

1.	 Serial monolithic execution (mono-
lith): This is the traditional ap-
proach, executing the workflow 
as serial, monolithic tasks.

2.	 Decomposed but heterogene-
ity-oblivious execution (decom-
posed_NHHA): The workflow 
was decomposed into its 
constituent functions and exe-
cuted on a serverless platform 
without specific hardware 
considerations.

3.	 Decomposed and heterogeneous 
hardware-aware execution 

(decomposed_HHA): Enhancing 
the second method, this tech-
nique dynamically redeployed 
the decomposed functions, 
assigning intensive tasks to 
specialized nodes with GPUs 
(when available).

Figure 4 details these execution 
techniques. Monolith and decom-
posed_NHHA are inefficient since 
they don’t utilize the specialized hard-
ware, thus taking longer to run. While 
decomposed_NHHA has extended ex-
ecution times caused by container cold 
starts, the decomposed_HHA method 
significantly reduces runtime.

Dynamically redeploying workflow 
components optimizes task execution 

on suitable hardware, ensuring en-
hanced cluster utilization and mini-
mized runtime. This shift toward dy-
namic deployment signifies a future of 
optimized resource allocation in com-
putational research.

There is a huge demand for GPUs 
nowadays, shifting importance from 
user workload execution to maximiz-
ing GPU utilization, which leads us to 
the next principle.

ACCELERATOR FULL 
UTILIZATION THROUGH BIN 
PACKING
A workflow task might not saturate 
the entire GPU, so exploiting acceler-
ator granularity could be increasingly 
important for HPC.8,9 To motivate 
finer accelerator granularity, we pres-
ent an experiment where we ran the 
same nano-LAMMPS workflow with 
different GPU partition sizes. We 
picked a kernel that ran more than 
6,000 times during the workflow 
execution and plotted its runtime 
with varying amounts of GPU com-
pute (GPU percentage) in Figure 5(a).  
We can see the runtime of some runs 
(0–1,000) improve when the GPU per-
centage gets higher, although not as 
much between kernels running at 
50% GPU and 100% GPU. However, the 
runtime of almost all kernels hovers 
around 5 μs and does not change re-
gardless of the GPU percentage. These 

FIGURE 4. Three distinct execution techniques for the GROMACS Lysozyme workflow.
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measurements show that the kernels 
in these workflows do not require 
100% GPU, and often 20% GPU suf-
fices. Packing the GPU with multiple 
workflows, each getting a certain GPU 
percentage, could increase the GPU 
throughput.

In another experiment, we look at 
the throughput of a bin-packed GPU 
compared to a situation where the GPU 
is not multiplexed. In Figure  5(b), we 
present the time to run five LAMMPS 
workflows. Giving each workflow its 
own “bin” with 20% GPU completes 
running all workflows 60% faster 
than running each workflow indi-
vidually with 100% GPU. This reduc-
tion in makespan stems from the 
increased throughput due to partition-
ing the GPU and running workflows 
concurrently.

Data transfer across computing 
elements [CPUs, GPUs, FPGAs, smart 
network interface cards (SmartNICs), 
etc.] is the slowest part of such work-
f lows. Therefore, optimizing this 
communication is imperative. The 
next principle discusses optimizing 
performance with peer-to-peer (P2P) 
communications.

ACCELERATORS WILL 
COMMUNICATE P2P
When accelerators consume the 
majority of an application’s com-
putation, it is necessary to enable 
faster data movement to them; 
this currently uses the Peripheral 

Component Interconnect Express 
(PCIe) interface. However, the num-
ber of PCIe lanes at the CPU socket 
level limits the number of accel-
erators at a node level. Although 
a dual-socket-based server allows 
more accelerators per server, the 
NUMA-node connectivity interface 
for communication between accel-
erators across sockets can become a 
bottleneck. This is where P2P access 
to accelerators can help.

To illustrate this technique, we 
measured transfers from a Mellanox 
InfiniBand (IB) 200 Gb/s network in-
terface controller (NIC) to a Nvidia 
A100 GPU using GPUDirect,10 which 
uses PCIe P2P transfers. We compared 
it to a host bounce back (the host buf-
fer as an intermediate data copy). We 
used OpenMPI 4.1.1, which supports 
GPUDirect transfer and point-to-point 
OSU latency and bandwidth (BW) 
benchmarks for the analysis.11

Figure 6(a) shows that GPU-to-GPU 
device communication across nodes 
through the IB NIC using GPUDirect/
P2P exhibits a 1.2–3 times higher 
BW than host bounce back. Also, the 
GPUDirect/P2P GPU device buffer 
transfer could saturate the PCIe in-
terface to the practical BW limit of 
24 GB/s (75% of the theoretical PCIe 
Gen4 ×16 BW of 32 GB/s). In addition, 
GPUDirect/P2P [Figure 6(b)] also ex-
hibits a 1.2–5 times lower latency for 
message sizes below 8 MB, but for 
message sizes larger than 16 MB the 

latency of GPUDirect/P2P transfers 
converges to the host bounce-back 
transfer latency.

With machine learning training 
workloads that rely on GPU-to-GPU com-
munication, a higher P2P transfer BW 
allows faster training speeds. For HPC 
workloads, most of the GPU-to-GPU 
communication would use small mes-
sage sizes, so lower latency using P2P 
transfer will reduce the overall appli-
cation execution time.

In addition to GPU partitioning and 
P2P optimizations, the next princi-
ple introduces operator off loading 
as another important performance 
optimization.

PERFORMANCE AT EXTREME 
SCALE WILL BE IMPORVED 
USING OPERATOR 
OFFLOADING
In addition to hardware accelerators, 
distributed HPC and AI workflows rely 
on industry-standard libraries, such as 
the Message Passing Interface (MPI), 
to effectively distribute, perform, 
and synchronize computation across 
interconnected machines. Common 
distributed operations, such as syn-
chronizing data buffers in multiple 
machines via an aggregation opera-
tion, are encapsulated in MPI collective 
communication routines, or collectives. 
The operation AllReduce collective in 
MPI parlance is a fundamental opera-
tion of AI training workloads and also 
appears in many HPC workloads.12 

FIGURE 6. (a) Unidirectional internode GPU-to-GPU BW. (b) Unidirectional internode GPU-to-GPU latency.
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Driving these critical communication 
operations using the CPU or an ac-
celerator, such as the GPU, consumes 
valuable computation and memory 
bandwidth, slowing down the appli-
cation performance.13 Other than MPI 
collectives, operators, such as data 

sorting, filtering, and encrypting/de-
crypting,14 are also ubiquitous in HPC 
and AI workflows. Since all of these 
critical and high-frequency operators 
depend on network communication, 
freeing CPU and GPU BW by offload-
ing operators to network hardware, 

such as NICs and switches, presents a 
great opportunity to improve the per-
formance of HPC and AI workflows.15

When pushing AI and HPC work-
flows toward extreme scales, for ex-
ample, systems with tens or hundreds 
of thousands of GPUs, it becomes 
extremely hard to hide communica-
tion operations behind computation 
operations. Figure 7 presents the re-
sults of analytical simulations and 
modeling of the distributed training 
of convolutional neural networks 
(CNNs) and large language models 
(LLMs) in extreme-scale systems. 
The figure highlights the large im-
pact that driving communication has 
on GPU bandwidth, especially when 
increasing the message size of MPI 
collectives. We modeled analytically 
and simulated the use of AllReduce 
operations in AI workflows with-
out NIC offloading (shown in green 
lines), with NIC offloading (shown in 
blue lines), and with NIC offloading 
plus full gradient caching (red lines). 
This last scenario is impractical in 
real hardware since the necessary 

FIGURE 8. Performance histograms for four example applications from the Rodinia HPC benchmark suite, run 1,000 times each on a 
single machine with no interference. These applications represent distributions that are (a) approximately near constant, (b) right tailed, 
(c) left-tailed, and (d) symmetric.
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in extreme-scale systems, highlighting the large impact that driving communication has 
on GPU bandwidth.
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cache size would be too expensive, 
but it can serve as a basis for compar-
ison for increasing NIC cache sizes 
from the feasible scenario shown on 
the blue lines. We simulated real AI 
training workloads, from ResNet200 
to GPT-4, highlighting the total 
AllReduce size involved in training 
each neural network. These simula-
tions and models demonstrate that, 
after saturation, driving communi-
cation during training would leave 
only around 30% of GPU memory BW 
free for computation, while offload-
ing the AllReduce to a capable NIC 
would leave up to 87% GPU memory 
BW free, which represents an expres-
sive amount of computing power at 
extreme scales.

The seven optimization mech-
anisms and operation principles  
described so far emphasize heteroge-
neity in hardware in software, which 
complicates performance evaluation, 
as discussed next.

ACCOUNT FOR THE 
NONDETERMINISTIC 
PERFORMANCE OF 
LARGE-SCALE HPC AND AI 
WORKLOADS
The combination of large-scale and het-
erogeneous software, middleware, and 
hardware means that every time we 
measure system performance we could 
be getting a different result (as shown 
for illustration in Figure 8). Some vari-
ability could be reduced or controlled, 
but likely not all of it. If the observed 
performance differences are relatively 
large and unpredictable, this nonde-
terministic behavior obfuscates the 
actual performance of the underlying 
system. It therefore becomes increas-
ingly harder to answer critical business 
questions, such as: Does system A per-
form better than system B? What is the 
cost/performance of a system? Did its 
performance regress or improve?

The key to answering such ques-
tions is to handle performance like 
every other nondeterministic factor 
using statistical tools for distribu-
tions, similar to the research tools 

used in social and medical sciences. 
These tools can range from simple 
hypothesis testing and quantification 
of uncertainty to more advanced top-
ics, such as divergence metrics and 
causality analysis. Although these 
tools carry an implicit penalty, both 
in additional work and additional ex-
pertise, they also carry the promise of 
better performance reproducibility, 
correct interpretations, and action-
able insights.

PREDICTING APP/SERVICE 
PERFORMANCE ON ANY 
CONFIGURATION WILL BE 
CRITICAL FOR QOS
The nondeterministic behavior of 
complex system performance brings 
to light the need for accurate estimates 
of performance and its distribution. 
For example, performance models of 
key applications have always been crit-
ical in the design and procurement of 
future computer systems,16 but these 
models often assume a homogeneous 
workload and architecture.

As another example, when mak-
ing scheduling decisions on a shared 
cluster, understanding the expected 
tail and outliers of the performance 
distribution of an application can im-
pact the timing of its scheduling to 
maintain service-level agreements for 
other jobs.

Together with collaborator Izzat 
el Hajj at the American University of 
Beirut (AUB), we have been developing 
performance prediction mechanisms 
based on a machine learning model 
trained on low-level performance 
metrics. This model has been success-
fully demonstrated in tasks such as 
predicting the performance of known 
applications on new hardware config-
urations,17 which can be applied to the 
problem of selecting new hardware 
without benchmarking on all available 
choices. These techniques were also 
successful in predicting when appli-
cations are near the end of their exe-
cution as a very useful prediction for 
supercomputer and mission-critical 
schedulers.

We presented nine principles 
of convergence of HPC, 
AI, and workflows. These 

end-to-end principles cover workflows 
through middleware to hardware. 
Nevertheless, there are many other 
missing aspects where this conver-
gence can apply.18,19,20 We did not even 
touch on nonfunctional aspects, such 
as security, reliability, scale, avail-
ability, etc. Each of these represents a 
considerable challenge but also an op-
portunity for improved usability, de-
velopment, and delivery of converged 
HPC, AI, and workflows. 
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