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A s we navigate an era where 
the insatiable demand for 
computing power is in-
creasingly outpacing the 

capabilities of traditional computing, 
the slowing progress of Moore’s law 
poses a formidable challenge. At this 
critical juncture, quantum computing 
(QC) emerges with the potential to 
greatly extend computing capabili-
ties in key application domains. 

Unlike classical computing operat-
ing on binary information, QC rests 
on quantum bits, or qubits, exploit-
ing the nonintuitive yet powerful 
properties of quantum mechanics, 
such as entanglement and superpo-
sition. This gives QC the potential 
to perform complex calculations at 
speeds unattainable by its classical 
counterparts, toward solving prob-
lems considered intractable today. 
However, scaling up QC systems to  
these levels involves overcoming sub-
stantial engineering and scientific 
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challenges. Current efforts in QC pri-
marily concentrate on enhancing the 
performance of a single quantum pro-
cessing unit (QPU). The goal of these 
efforts is to increase both QPU size 
and precision, paving the way for QC 
to tackle real-world applications that 
were once thought beyond reach.

By contrast, our work seeks to exploit 
distributed computing that hybridizes 
quantum and classical approaches. In 
today’s commercial world, distributed 
and parallel classical computing is not 
just conceptual; it’s an integral part of 
our daily tech interactions. Distrib-
uted classical computing divides com-
plex tasks across multiple computers 
for simultaneous processing. Unlike 
the case of a single supercomputer 
handling all of the tasks, distributed 
computing spreads these tasks across 
several, or sometimes thousands of, 
CPUs, GPUs, and other units. Video 
games, high-resolution video editing, 
and artificial intelligence are just a few 
examples that leverage the collective 
power of numerous CPUs and GPUs to 
tackle tasks that would be impossible 
for a single machine.

The aim of this article is to provide 
an in-depth exploration of the emerg-
ing field of distributed QC, particu-
larly through the lens of integrating 
quantum and classical computing par-
adigms. In classical distributed com-
puting, data parallelism and model 

parallelism are two key strategies for 
processing large or complex tasks. 
Data parallelism divides a large data-
set into smaller chunks, distributing 
them across multiple nodes for paral-
lel processing. Each node works on its 
data segment independently, necessi-
tating the initial distribution of these 
data parts and possibly aggregating 
the results later. Another approach, 
model parallelism, involves splitting 
a complex model, such as a neural net-
work, across nodes, with each work-
ing on a different part. This strategy 
requires a continuous exchange of 
intermediate results among nodes for 
collaborative processing.

At first glance, distributing QC 
tasks across multiple nodes seems a 
straightforward extension of classical 
distributed computing. However, the 
field faces a unique challenge rooted 
in the fundamental laws of quantum 
physics. The quantum no-cloning 
theorem,5 a cornerstone principle in 
quantum mechanics, dictates that it 
is impossible to create an exact copy of 
an arbitrary unknown quantum state. 
This prohibition against duplicating 
quantum data presents a significant 
obstacle in developing distributed QC 
systems as it contradicts the typical 
data-sharing methodologies employed 
in classical distributed computing. 
This article plots a way forward for 
navigating this challenge, exploring 

innovative approaches to distribute 
quantum tasks without copying quan-
tum data. We examine the intersection 
of quantum and classical computing 
techniques, shedding light on how this 
hybrid model can potentially unlock 
new capabilities and applications in 
the QC landscape.

BACKGROUND
Unlike classical computers, which use 
binary 0 or 1 bits as the smallest unit 
of data, quantum computers use quan-
tum bits, or “qubits.” Qubits have the 
unique ability to exist in multiple states 
at once, thanks to a quantum phenom-
enon known as superposition. Imagine 
a coin that can spin in the air without 
ever landing—its state is a probabilis-
tic superposition of the heads and tails 
outcomes it might land as. Another 
principle is entanglement, where two 
qubits become linked in such a way 
that the state of one can instantly af-
fect the state of another, regardless of 
the distance between them. Knowing 
whether one coin lands as heads or 
tails offers the observer information 
about the state of another entangled 
coin, even if distant. These proper-
ties are not observable at the scale of 
objects like coins, but they are real 
physical properties that are measur-
able at the atomic scale. By exploiting 
these properties, quantum computers 
can perform complex calculations at 
incredible scale, potentially solving 
problems that are currently intractable 
for classical computers.

At its core, a quantum program is 
expressed as a circuit composed of a se-
quence of quantum operations, known 
as gates, which act on the qubits. These 
gates, which can be single-qubit or mul-
tiqubit operations, play a crucial role in 
manipulating the states of the qubits. 
Figure 1 shows an example quantum 
circuit with five qubits. Each horizontal 
line denotes a qubit. Boxes incident on a 
single qubit wire are single-qubit quan-
tum gates, which operate on that qubit. 
Boxes incident on two qubit wires are 
two-qubit quantum gates, which operate 
on both of them.

FIGURE 1. Example of a five-qubit quantum circuit. Final measurements sample 
and compute the αT

x coefficients, or amplitudes, for each possible quantum state, 
 representing a target solution.
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As the circuit progresses, gates are 
applied in sequence, altering the col-
lective quantum states of the qubits. 
This process starts from an initial 
quantum state on the left-hand side 
and evolves toward the desired final 
quantum state on the right. To con-
trol this process, sophisticated control 
electronics are used. These electronics 
manage the timing, order, and type of 
quantum gates applied to the qubits. 
They often include precision timing 
equipment and can include microwave 
pulse generators for systems like su-
perconducting qubits, or laser systems 
for ion-trap qubits.

The process terminates with mea-
suring the qubits, which produces a 
classical binary string—a phenomenon 
known as the collapse of the quantum 
state. Because quantum states and op-
erations are probabilistic in nature, the 
quantum circuit is executed multiple 
times. This repetition allows for the ac-
cumulation of statistical data, reflect-
ing the final amplitude coefficients, 
denoted as αT

x, for all possible quantum 
states. It is through this meticulous 
and repeated application of quantum 
gates and measurements that the 
quantum circuit unveils the solution 
encoded in the target quantum state. 
The illustrated circuit requires a QPU 
with at least five “good enough qubits” 
and “accurate-enough operations” to 
execute all of the quantum gates before 
too many errors accumulate to produce 
useful results.

Toward distributed QC
Traditionally, QC has primarily con-
centrated on the development and 
optimization of a single QPU, with the 
aspiration that it will eventually be-
come sufficiently large and accurate 
to execute complex quantum circuits 
of practical significance. However, 
this approach encounters a formidable 
scalability challenge: many practical 
quantum applications require thou-
sands of high-quality qubits. These 
are either implemented logically as 
error-corrected versions of millions of 
noisy and error-prone physical qubits, 

or the underlying physical qubits must 
have sufficient fidelity to avoid the 
need for error correction. Either way, 
the scale and complexity introduces 
significant engineering obstacles, mak-
ing the realization of practical QC ap-
plications a daunting task. Against 
this backdrop, the role of distributed 
QC—which harnesses the collective 
power of multiple QPUs to share and 
process quantum workloads—has 
become increasingly crucial. By adopt-
ing a distributed framework, the scal-
ing challenges of a single-QPU system 
can be substantially mitigated, greatly 
enhancing the potential scope and 
impact of QC.

TOWARD DISTRIBUTED QC: 
WHAT IS CIRCUIT CUTTING?
Achieving the goals of QC requires a 
practical solution to its challenges by 
breaking down large, complex quan-
tum circuits into smaller, more man-
ageable subcircuits. Circuit cutting is 
an innovative technique2 that offers 
practical approaches for the individ-
ual subcircuits to be processed on 
different QPUs in parallel, and for the 
classical reconstruction phase that has 
traditionally stymied QC circuit-cut-
ting techniques.

At the heart of circuit cutting is 
the concept of decomposition: it es-
sentially involves identifying specific 
points, known as cut points, within a 
quantum circuit and then decompos-
ing the complex quantum states at 
these points into a series of classical 
components based on a mathematical 
framework known as Pauli bases. Once 
each subcircuit is run on a QPU, the 
original, full quantum state must be 
reconstructed through classical post-
processing, where the results of the 
separate subcircuits are combined in 
a specific and compute-intensive way. 
Naive implementations of classical 
reconstruction involve matrix mul-
tiplications and scale exponentially 
with factors like qubit state and cut 
points. Our work improves on these 
naive reconstruction approaches. By 
enabling QC circuit decomposition and 

by helping the subsequent reassembly 
of quantum tasks to be more tractable, 
circuit cutting effectively bridges the 
gap between the current capabilities of 
quantum hardware and the demands 
of complex quantum computations, 
making it a key technique in advanc-
ing the field of QC.

A QC circuit-cutting example
Figure 2 illustrates the process of 
circuit cutting using the straightfor-
ward quantum circuit example from 
 Figure  1. In this example, circuit cut-
ting is applied by making a strategic 
cut, denoted by a red cross, effectively 
dividing the original circuit into two 
smaller subcircuits.

The real power of circuit cutting 
is showcased in the next step, where 
these subcircuits are assigned to multi-
ple three-qubit QPUs. These three-qubit 
QPUs only need to support the smaller 
subcircuits, hence placing fewer require-
ments on hardware quality. In addition, 
this approach introduces flexibility and 
efficiency as these QPUs can operate the 
subcircuits independently and in par-
allel, without the need for direct quan-
tum communication between them. 
This independence is possible because 
the subcircuits are entirely decoupled 
by the cut.

What does a cut actually mean? At the 
red X, circuit cutting requires us to math-
ematically decompose the quantum state 
at the cut point into its four Pauli bases in 
{I, X, Y, Z}. This mathematical decomposi-
tion then allows classical computing to 
reconstruct the quantum state after QPU 
execution. Circuit cutting is thus char-
acterized by making vertical cuts across 
the qubit wires, effectively segmenting 
a large quantum circuit into several 
smaller parts. In more complex scenar-
ios, a large circuit might be divided using 
multiple cuts, further breaking down the 
computational task into even smaller 
subcircuits. This technique not only 
makes quantum computations more fea-
sible on current quantum hardware but 
also significantly expands the range of 
problems that can be tackled using avail-
able QC resources.



COMPUTING ARCHITECTURES

134 C O M P U T E R    W W W . C O M P U T E R . O R G / C O M P U T E R

Classical reconstruction 
postprocessing
As previously noted, straightforward or 
naive classical reconstruction methods 
are computationally expensive, border-
ing on intractable. For example, early 
proposals for circuit cutting,2,4 while 
straightforward in approach and fea-
sible to implement, involve a series of 
computationally intensive steps. Con-
sider the method of Tang et al.,4 which at 
its core requires the computation of the 
tensor product of the outputs from each 
subcircuit corresponding to a specific 
Pauli basis. This process is not a one-off 
calculation but must be repeated for every 
possible combination of Pauli bases. Once 
these tensor products for each Pauli ba-
sis combination are calculated, the next 
step involves summing up all of these 
intermediate results to achieve the final 
output. The complexity of this method 
becomes evident when considering the 
number of Pauli bases involved: with 
four Pauli bases associated with each 
cut, the total number of tensor product 
calculations needed grows exponen-
tially with the addition of each cut.

Challenges
Circuit cutting hence encounters two sig-
nificant challenges. The first challenge 
lies in the scalability of the approach. 
The initial theoretical proposal2 for cir-
cuit cutting included a reconstruction 

formula for reassembling the final 
quantum state from the subcircuits that 
scales exponentially with the number of 
cuts made in the circuit. This exponen-
tial scaling poses a significant obstacle 
to the practical implementation of cir-
cuit cutting, especially for very large 
and complex quantum circuits.

Second, identifying optimal cut 
points within large quantum circuits 
is a complex task. The process involves 
not just splitting the circuit, but doing 
so in a manner that ensures each re-
sulting subcircuit is computationally 
manageable and capable of being pro-
cessed independently. This requires a 
careful balance between the complex-
ity of individual subcircuits and the 
overall efficiency of computation.

The current state of circuit cutting
The first comprehensive implementation 
of circuit cutting4 marks a significant 
advancement in this field by introduc-
ing an automated solver algorithm. This 
algorithm is designed to determine the 
minimal number of cuts necessary to di-
vide a large quantum circuit into smaller 
subcircuits, which can then be pro-
cessed on available smaller scale QPUs. 
To achieve this, the problem of finding 
these optimal cuts is formulated as a 
mixed-integer programming problem, 
enabling a more systematic and efficient 
approach to circuit segmentation.

A key aspect of this implemen-
tation is its adoption of a relatively 
straightforward method for the classical  
reconstruction of the quantum state 
postcomputation. However, minimiz-
ing the number of cuts becomes a criti-
cal objective. The reason is that beyond a 
certain circuit complexity level in terms 
of size or connectivity, the time and re-
sources required for classical postpro-
cessing overshadow the benefits gained 
from dividing the circuit, turning it into 
a computational bottleneck. The success 
of this implementation, therefore, hinges 
on striking a delicate balance—optimiz-
ing the circuit to fit smaller QPUs through 
the fewest possible cuts while keeping the 
postprocessing demands manageable to 
make circuit cutting a viable and practi-
cal approach in QC. Specifically, the work 
of Tang et al.4 demonstrates running  
circuits up to 100 qubits.

Circuit cutting with tensor contraction
The state-of-the-art circuit-cutting tech-
nique3 proposes to integrate distributed 
QC with classical tensor networks to ex-
ponentially improve the postprocessing 
process, hence eliminating the major 
obstacle for practical circuit cutting. 
Tensor networks have been widely used 
in classical simulations of quantum 
systems.1 At its core, a tensor network 
consists of tensors (multidimensional 
arrays of numbers) connected by edges, 

FIGURE 2. Example of cutting a five-qubit quantum circuit with one cut that divides it into two smaller subcircuits. (a) The red cross 
indicates the cutting point. Subcircuit 1 is shaded dark, and subcircuit 2 is shaded light. (b) Subcircuit 1 with measurements and sub-
circuit 2 with initialization in each one of the Pauli bases. The two subcircuits require no quantum communications and are executed 
independently in any order on multiple three-qubit QPUs. 

q0 Y

Y Y

Y

H

H

H

H

H

HX

X

X

X

Z Z Z X

X H

H

Measure

Subcircuit 1
e ∈ {I,X,Y,Z }

Subcircuit 2

Initialize

X

XZ

Z

Z

Z

Z

q1

q2

q0

q1

q2

q ′2

q ′3

q ′4

q3

q4

(a) (b)



 A P R I L  2 0 2 4  135

where each edge represents a shared di-
mension or index between the tensors.

Tensor network contraction is a com-
putational process in which the tensors in 
a network are systematically combined, or 
“contracted,” according to specific rules. 
This contraction involves summing over 
shared indices or dimensions between 
connected tensors, effectively reduc-
ing the network into a single tensor 
to represent the results of the original 
network. On the other hand, classical 
reconstruction for circuit cutting also 
involves multiplying the subcircuit re-
sults across their shared cut qubit wires 
and taking the summation. Figure  3 
shows the mathematical equivalence 
between the two processes.

Utilizing tensor network contraction 
in circuit cutting offers an exponential 
computational advantage over the sim-
ple brute-force reconstruction method, 
primarily because of its efficiency in 
managing high-dimensional data. In 
brute-force reconstruction, the process 
involves calculating and summing the 
tensor products for each possible com-
bination of Pauli bases across all cuts, 
leading to an exponential increase in 
computations with the addition of each 
cut. By contrast, tensor networks con-
tract the subcircuit tensors along their 
shared dimensions; this method effec-
tively consolidates the network, step by 
step, into a single tensor.

This approach dramatically reduces 
the number of operations required as it 
eliminates the need to compute every 
possible combination of tensor products 
independently. Consequently, tensor net-
work contraction transforms what would 
be an exponential problem in the brute-
force method into a much more tractable 
one, providing a scalable and efficient 
way to reconstruct the quantum state 
in circuit-cutting scenarios, particularly 
those involving a large number of cuts.

Figure 4 provides an overview of the 
practical application of circuit cutting, 
showcasing its runtime across a diverse 
range of QC benchmarks. These bench-
marks include tasks from quantum op-
timization algorithms and entangled 
states generation to key subroutines in 

quantum number factoring algorithms, 
all of which are pivotal in demonstrat-
ing the real-world applicability of QC.  
In these experiments, each benchmark 
circuit is constrained to a maximum of 
half the qubits and gates compared to  
its original, uncut counterpart, with the  
largest circuits tested on a 100-qubit 
QPU for benchmarks designed for up 
to 200 qubits. Notably, using tensor 
networks in circuit cutting (ScaleQC) is 
more than 1 billion times less classical 
post-processing overhead than brute  
force (CutQC).

This approach highlights the signif-
icant role of circuit cutting in enabling 
quantum computations that were pre-
viously unattainable because of hard-
ware limitations. Without the use of 
circuit cutting, existing QC methods 
are restricted to executing quantum 
programs of considerably smaller 
scale. Moreover, the complexity and 
size of these benchmarks far exceed 
the capabilities of classical simulators; 
underlining the crucial enhancement 
that circuit cutting brings to the field 
of QC, particularly in bridging the gap 
between current quantum hardware 

limitations and the demands of ad-
vanced quantum algorithms.

Industry acceptance
The industry’s embrace of circuit-cut-
ting technology is underscored by its 
integration into IBM’s Qiskit software 
development kit, a toolkit used by more 
than half a million users globally. This 
significant move was further high-
lighted at IBM’s 2022 annual quantum 
summit, showcasing the company’s 
commitment to this innovative ap-
proach. Moreover, IBM has announced 
plans to develop its future quantum 
infrastructure around circuit cutting, 
signaling a major shift in the landscape 
of QC. The technology’s potential and 
versatility have also attracted the atten-
tion of multiple companies, all actively 
exploring various use cases to leverage 
its capabilities. This widespread inter-
est is further validated by the numerous 
grants and awards received, indicating 
a strong confidence in the practical ap-
plications and future prospects of cir-
cuit cutting in the QC industry.

FIGURE 3. Reconstructing two subcircuits 
is equivalent to a pairwise tensor contrac-
tion. (a) Reconstructing a pair of subcircuits 
means multiplying and summing over the 
cut edges in between. (b) A pairwise tensor 
contraction with one shared index j, which 
is the inner dimension being contracted. i, k 
are the outer dimensions of the resulting 
big tensor C.
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THE FUTURE OF 
DISTRIBUTED HYBRID 
COMPUTING
QC circuit cutting makes possible a 
novel hybrid CPU–QPU computing 
paradigm, fostering multidisciplinary 
collaborations and driving real-world 
applications far beyond mere proof 
of concept. The growing industry ac-
ceptance of these works underscores 
distributed hybrid computing’s emer-
gence as a pivotal aspect of QC. Looking 
ahead, there are exciting multidisci-
plinary opportunities to advance prac-
tical distributed hybrid computing. 
They include the following:

1. Integrating classical high-per-
formance computing techniques: 
Bridging the gap between cur-
rent quantum workloads and 
state-of-the-art distributed 
QC requires advancements 
in tensor network computing 
and the use of parallel GPUs, 
application-specified inte-
grated circuits, and field-pro-
grammable gate arrays. For 
example, practical bench-
marks may require between 
1015 to 1020 f lops of classical 
postprocessing. As a compar-
ison, GPT-3 training requires 
about 1023 f lops.

2. Designing future hybrid QPU–
CPU computing data centers: 
The advent of cloud computing 
data centers for QC opens new 
avenues in distributed systems, 
such as optimizing for reduced 
latency and increased through-
put. This involves tackling 
challenges in load balancing 
and resource allocation.

3. Co-designing application and 
distributed hybrid CPU–QPU 
computing back ends: Recog-
nizing distributed QC as the 
standard back end for running 
workloads, domain experts 
across various fields are well 
positioned to develop more so-
phisticated and efficient algo-
rithms, specifically optimized 

for these advanced computing 
platforms.

4. Analyzing hybrid QPU–CPU 
computing complexity: The 
future development of hybrid 
computing relies on a compre-
hensive theoretical under-
standing of its advantages and 
limitations beyond empirical 
evidence. Theory research-
ers should take the charge 
to study the complexities of 
hybrid systems and guide the 
development of efficient sys-
tems and applications.

5. Addressing hybrid data security 
challenges: Hybrid computing re-
quires communications between 
quantum and classical back ends 
and hence may be susceptible 
to new data leakage channels. 
Hybrid data security will be the 
key to enabling trustworthy 
distributed hybrid computing.

In conclusion, distributed hybrid 
QPU–CPU computing represents a 
transformative path forward for 

QC, bridging the gap between current 
quantum hardware capabilities and 
the demands of advanced quantum 
algorithms. Circuit cutting represents 
the key methodology for making these 
distributed hybrid approaches possi-
ble. By enabling the execution of large 
quantum circuits on smaller scale 
QPUs, this technique not only makes 
quantum computations more feasible 
but also expands the range of solvable 
problems. The integration of classi-
cal computing and QC through this 
method underscores a pivotal shift to-
ward practical, scalable, and efficient 
QC solutions, setting the stage for a 
future where complex quantum tasks 
are more accessible. 
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