
 

 

Differentially Private Data 
Sharing in Cloud Federa-
tion with Blockchain  

Cloud federation is an emergent Cloud-computing 
paradigm that allows services from different Cloud 

systems to be aggregated in a single pool. To support 

secure data-sharing in a Cloud federation, 
anonymisation services that obfuscate sensitive 

datasets under differential privacy have been recently 

proposed. However, by outsourcing data protection to 
the Cloud, data owners lose control over their data, raising privacy concerns. This is 

even more compelling in multi-query scenarios where maintaining privacy amounts to 

controlling the allocation of so-called privacy budget. In this paper we propose a 

blockchain-based approach that enables data owners to control the anonymisation 
process, and enhances the security of the services. Our approach relies on blockchain 

to validate the usage of privacy budget and adaptively change its allocation via smart 

contracts, depending on the privacy requirements provided by data owners. Prototype 
implementation with the Hyperledger permissioned blockchain validates our approach 

with respect to privacy guarantee and practicality.  

Cloud federation builds up interconnectivity and cooperation among already deployed clouds, 
enabling organisations to achieve various business goals, such as controlled sharing of data, ser-
vices and optimisation of computing resources usage1-3.  

To support secure sharing of federated data, anonymisation services have been proposed as a 
building component of Federation-as-a-Service (FaaS),3-4 a recent Cloud federation solution. 
This component implements differential privacy in order to obfuscate the result of statistical que-
ries towards sensitive datasets,5 enabling its privacy-preserving sharing. Offering this service in 
the context of a Cloud federation has benefits—access to multiple data sources and different ser-
vice providers—but raises significant challenges for privacy management: sensitive datasets 

Mu Yang 
University of Greenwich, UK 

Andrea Margheri 
Runshan Hu 
Vladimiro Sassone  
University of Southampton, 
UK 

 



  

 MAGAZINE NAME HERE 

from multiple owners each of which has different privacy requirements, loose control on data 
and untrusted anonymisation services.  

Traditional solutions for privacy management cannot be applied as-is in the context of Cloud 
federation. Firstly, typical management of privacy and data utility requirements must be ex-
tended to support multiple datasets and data owners.6 Secondly, to protect anonymised data from 
degradation of privacy protection, recent approaches proposed to verify privacy budget which 
determines the amount of noise produced in the obfuscation process, and stop data sharing as 
soon as the budget is used up.7 However, stopping sharing data must be avoided as much as pos-
sible to not hamper the business goals of the federation. Most importantly, due to the lack of 
trust among Cloud federation members, anonymisation services themselves cannot offer ade-
quate guarantees for controlling and tracing privacy budget, e.g. they will end up being single 
point of attack to make multi-query de-anonymisation attacks possible.  

Realising a trustworthy decentralised management of the privacy budgets is then of paramount 
importance to ensure privacy protection of sensitive datasets and, most of all, to enhance assur-
ances on the anonymisation services. To this aim, we introduce here a new solution based on 
blockchain, an innovative technology that among other fascinating properties on data integrity 
ensures full decentralised control on data and code execution.  

In the following, we first introduce a motivating example to better illustrate the limitations of 
existing approaches, then the research challenges addressed in the paper.  

Motivating Example   
Assume that a dataset containing employees’ absence information is available (from multiple-
owners) for the sharing process. A data requestor sends a statistical data request (e.g., a Mean 
query) and receives obfuscated query result by the anonymisation services deployed in the cloud 
federation. The controls on how datasets are integrated and accessed are here out of scope, our 
focus is on the privacy protection mechanism employed to anonymise the datasets.  

The dataset, shown in Table 1, contains privacy-sensitive information, such as salary and number 
of absence, and the data owner wants to prevent the leakage of the sensitive information. To this 
aim, state-of-the-art anonymisation service based on Differential Privacy5 is used. Intuitively, it 
relies on an ε parameter setting the privacy budget of a given dataset. Based on the ε, it generates 
randomised noise to the query result.  

Table 1: Employee dataset  

Employee 
ID Date of Birth Absence Salary 

1 08/11/1955 16 23112.30 
2 22/07/1953 3 25388.43 
3 01/01/1966 1 17303.11 
··· ··· ··· ··· 

 

Privacy requirements. Let us assume data queries about the mean of employees’ salary. Data 
owners can set ε according to their privacy requirements, e.g. 0.1 or 0.5 for, respectively, 
stronger and weaker privacy protection that means different noise levels on obfuscated results. 
Note that the value setting of privacy budget ε can be presented to user using a Likert scale that 
ranges from “strong protection” (e.g., ε=0.1) to “weak protection” (e.g., ε=0.5) with “medium 
protection” (e.g., ε=0.25) as the neutral (default) option. Therefore, users select the desired pro-
tection strength rather than setting numeric values. The corresponding data loss due to the differ-
ential obfuscation can be visualised to users under each protection option in order to help users 
trade-off privacy protection and data utility. Notably, developing a rigorous method for choosing 



 

 SECTION TITLE HERE 

an optimal ε in practice, as well as the design of effective user interface for the privacy and data 
utility trade-offs are open research areas, and are out of the scope of the paper. Figure 1 graph-
ically shows the noise of obfuscated results over 20 queries (results correspond to the critical 
points of the lines in the figure). With ε set to 0.5 results (dotted line) are closer to the actual 
ones (solid line), while with ε set to 0.1 results (dashed line) differ more offering stronger protec-
tion, but less utility.  

 
Figure 1: Obfuscated query results  

Privacy degradation. Differential privacy suffers from privacy degradation as the number of 
queries increases. Sharing a single query result guarantees chosen privacy level (e.g., 0.1 or 0.5 
in this example), making difficult to determine what the actual average salary is. However, if we 
combine multiple obfuscated results (i.e., each of the lines in the figure), the privacy level de-
grades by cumulating ε over queries.5 For instance, executing 20 queries indicates 20ε-differen-
tial privacy. This can be visualised in Figure 1 as the sum distance between the points on the 
dotted line with the actual one tends to equalise, hence revealing the actual value. Furthermore, if 
more query types are allowed, that is, data requesters send not only Mean queries but also Max, 
Min, Quartile queries, then the data requesters can learn much more information by sending que-
ries continuously. A few studies have been investigating adaptive budget allocation strategies,8 
which inspire us on the design of our mechanism to save budget consumption. Additionally, as 
budget may be consumed by multiple privacy services and refer to multiple data owners, the 
budget management cannot be entrusted to a single anonymisation service. Instead, it requires 
adequate integrity and accountability guarantees such that all involved parties can rely on it.  

Proposed Approach  
In this paper, we propose a blockchain-based approach for privacy-preserving data sharing in 
Cloud federation. It allows data owners to control the anonymisation process, such as defining 
their own privacy requirements, tracing the data-sharing activities, and enjoying secure services 
supported by the outsourced anonymisation services. The main contributions of this paper are the 
following:  

• A blockchain-based data sharing approach to store, verify and adaptively allocate pri-
vacy budget consumptions via autonomous smart contracts according to data owner 
privacy and data utility requirements.   

• A high-level system architecture enabling the integration of any data anonymisation 
service with any smart contract blockchain solution.   

• Implementation and evaluation by means of the Hyperledger Fabric blockchain, and 
discussion on privacy and data utility enhancements.   

20
00

0
24

00
0

Queries

Sh
ar

ed
 d

at
a

2 4 6 8 10 12 14 16 18 20

Actual
e = 0.1
e = 0.5



  

 MAGAZINE NAME HERE 

PRELIMINARIES 

Differential Privacy  
Differential Privacy is proposed as a privacy technique for protecting individual records of statis-
tical databases.5 This is usually achieved by designing a mechanism that adds randomised noise 
to the query output, so that an adversary is not able to determine whether a targeted record is in-
cluded in the database or not, no matter what side information the adversary might have.  

To present our approach, we first present the key concept and implementation mechanism of dif-
ferential privacy, more details are available in the differential privacy work5. 

Definition 1. (ε-Differential Privacy5). A randomised mechanism M with domain  is ε-differ-
entially private if for every set of outputs S ⊆ Range(M) and all databases D, D′ ∈ that dif-
fer in one record,  

. 

A popular technique that satisfies Definition 1 is the Laplace mechanism.5  

Definition 2. (Implementing ε-Differential Privacy: The Laplace Mechanism). Given any query 
q, the Laplace mechanism is q(D) + y where y is a random variable drawn from the Laplace dis-
tribution with scale parameter b = Sq/ε where Sq represents the l1-norm sensitivity5 of the query 
q, and location parameter µ=0.  

 

The variable y expresses how much noise should be added to the query outcome. The smaller the 
ε or the greater Sq, the greater noise generated for achieving ε-differential privacy. We use 
Lap(ε) to denote the randomised noise generated by the Laplace mechanism.  

An important property of differential privacy is the composition property, which shows how pri-
vacy degrades linearly when the number of queries on the same database increases.  

Lemma 1. (Composition5). If M1 is ε1-differentially private, and M2 is ε2-differentially private, 
then let M be another mechanism that executes M1 and M2 independently on a database, M is (ε1 
+ ε2)-differentially private.  

Blockchain and Smart Contracts  
Blockchain is a novel technology that recently came to prominence when used as a public ledger 
for the Bitcoin cryptocurrency. It consists of consecutive chained blocks, replicated and stored 
by the nodes of a peer-to-peer network. Blocks are created in a decentralised fashion by means of 
a consensus algorithm, which can range from expensive proof-of-work mechanism (e.g., 
Bitcoin’s) to lightweight Byzantine consensus algorithm (e.g., Hyperledger’s). The use of con-
sensus algorithms enables several data integrity related properties in blockchain, such as distrib-
uted control of the data on the chain, non-repudiation and persistency of transactions.  

Differently from Bitcoin, new types of blockchains have recently appeared featuring smart con-
tracts, that is, programs deployed and autonomously executed on the blockchain. Being part of 
blockchain makes contracts and their executions immutable and irreversible. The state-of-the-art 
smart contract blockchains are Ethereum and Hyperledger. Our implementation relies on the lat-
ter due to its performance and flexible architecture.  

!|D|

!|D|

Pr[M(D)∈S]≤ exp(ε)Pr[M( ′D )∈S]

f ( y)= 1
2bexp(−

| y |
b
).



 

 SECTION TITLE HERE 

BLOCKCHAIN-BASED DATA SHARING  
The objective of our blockchain-based data sharing approach is to allow data owners to control 
anonymisation processes, and to guarantee chosen privacy levels when using third-party anony-
misation services especially to protect against multi-query attacks. Secure management of pri-
vacy budget is indeed the key to ensure privacy.  

The Approach  
Our approach utilises blockchain smart contracts to store, verify and adaptively allocate privacy 
budget consumptions depending on data owner’s privacy and data utility requirements. It relies 
on the two phases below.  

At the Setup phase, data owners provide their privacy and data utility requirements which are 
then stored in the smart contract. The privacy requirement is represented by the privacy budget 
ε0, which represents the maximum amount of budget allowed on sharing data. Data utility re-
quirement is represented by a numerical variable, denoted by u ∈ R≥0, representing the maxi-
mum amount of noise allowed on the actual query result, thus to maintain adequate data utility.  

At the Runtime phase, data queries are managed returning, when allowed by the privacy budget 
and requirements, anonymised results. Indeed, our approach M consists of an unbounded se-
quence of mechanisms M1, M2, ···, where Mi operates when the i-th query is received. Figure 2 
illustrates the activities involved in each mechanism Mi. Logically, it can be decomposed into 
three main test activities (i.e. the diamond boxes in the figure): Query matching, Utility-based 
approximation and Budget verification. The activity flow is reported in the figure and relies on 
data and computation offered by smart contract.  

 
Figure 2: Overview of the runtime mechanism Mi (diamond boxes relies on smart contracts)  

Query Matching  
This activity aims at determining whether a newly received query has been executed before. 
Smart contract checks the sharing history stored on the blockchain. Formally, the sharing history 
amounts to the following tuple  

 

where DsetId is a reference to a dataset (or a column of it), while εr is the remaining associated 
privacy budget. The following list of tuples forms the sharing history. Each tuple (qry1, res1) has 
as first element the function type of the query—e.g. sum, average, max, min—and as second the 
corresponding previously released result. Thus, resi are just the latest released results for each 

Query matching

Budget verfication

Pass Return 
perturbed 
old result

Fail

Fail

Utility-based 
approximation

Pass

Fail

Pass

Receive a new query

No result is 
returned

Return 
obfuscated 
new result

Update result & remaining budget
Get utility requirement & remaining budget

Get historical
queries & results

Get remaining budget
Update remaining budget
Store query & result 

(DsetId ,εr ,[(qry1 , 	res1),!])



  

 MAGAZINE NAME HERE 

query type i, hence lightweight information whose limited size makes them suitable for block-
chain storage.  

The query matching compares a newly received query qry on the dataset referred by DsetId with 
the corresponding history. The query is denoted by the tuple (DsetId, qry, ε), where the parame-
ter ε denotes the requested budget for executing the query. The value of ε can be provided by 
data consumer, or pre-defined as a fixed value by anonymisation services. Without loss of gener-
ality, we assume function types fixed and comparable by names; additional comparison parame-
ters can be set as well. Namely, given a DsetId, the test is passed when qry is equal to a qryi part 
of the history. Notably, to keep queries private to all the members part of the blockchain, the his-
tory data can be stored hashed. The comparison will be then on hash texts.  

Utility-based Approximation  
This test aims at checking whether a previous released result can approximate the result to return 
for the current query. The test pseudocode is reported in Algorithm 1. Firstly, it checks whether 
the remaining budget is enough for executing the test (Line 1), If yes, it produces an obfuscated 
version of the old result resold using a very small amount σ of the privacy budget (Line 2). Oth-
erwise, it returns false (Line 11) stating the approximation test failed. The computed obfuscated 
result is compared by a smart contract with the actual one with respect to the threshold u (Line 
3). If the approximation test passes, the new obfuscated result is set as the last returned result of 
such query (Line 4), the budget is updated accordingly (Line 5) and the approximated result is 
returned (Line 6). Otherwise, only the budget is updated (Line 7, 8) to keep tracking that σ was 
consumed by the approximation test.  

When this approximation test succeeds and resold is used, the consumed budget σ is significantly 
less than that (i.e., requested budget ε) used for returning the actual res. The obfuscation added to 
resold aims at adding randomness to the utility test. This permits dealing with the fact that adver-
saries may know how the test works and attempt to gain knowledge about the actual result res 
from the test result.  

Algorithm 1 Utility-based approximation Pseudocode  

Input: res, resold: actual and previous query results 	

u: data utility requirement; εr: remaining budget 	
σ: a small budget for performing approximation test.  
Output: res’

 
if passes; boolean value false otherwise.  

1: if εr ≥ σ then     ◃Checking budget for the test.  
2:    res′ = resold + Lap(σ);    ◃Obfuscating old result.  
3:    if |res′−res| ≤ u then 
4:        resold = res′   ◃Updating history in blockchain. 
5:        εr = εr − σ    ◃Updating budget in blockchain.  
6:        return res′.  
7:     else  
8:        εr = εr − σ    ◃Updating budget in blockchain.  
9:        return false.  
10: else  
11:    return false.  

Budget Verification  
The budget verification test is triggered if there has been no same query executed (i.e., the query 
matching test failed), or the query result cannot be approximated (i.e., the approximation test 
failed). Thus, a new result has to be computed, as long as the remaining privacy budget is 
enough.  



 

 SECTION TITLE HERE 

This test is carried out on a smart contract that, given a query tuple (DsetId, qry, ε), compares the 
remaining budget εr of the dataset DsetId with the requested budget ε. If the test succeeds, the 
anonymisation service generates randomised noise under differential privacy to add to the actual 
query result consuming the requested budget. Otherwise, the query is rejected because it would 
violate the defined privacy requirement.  

This test ensures the satisfaction of pre-defined privacy requirement ε0 as it makes sure the con-
sumed budget does not exceed ε0. The mechanism updates the remaining budget, query function 
type (if it was not been stored before) and the generated new result in the blockchain.  

To summarise our approach, the privacy budget allocation strategy depends on the three tests 
proposed in the data sharing mechanism: query matching, approximation and budget verifica-
tion. More specifically, these tests aim to save privacy budget consumption by checking whether 
previously released results can approximate the new query result. If passes, then an approxima-
tion is returned avoiding the calculation of the new perturbed result which consumes more pri-
vacy budget. 

Adversary Model 
The ultimate goal of adversaries is to degrade privacy, i.e., to re-identify data subjects in a tar-
geted dataset. To this aim, we assume that two types of adversarial activities can be carried out.  

Firstly, we assume that adversaries can access to all perturbed query results, and are able to 
launch different types of privacy attacks based on their observations of those query results, in 
order to re-identify data subjects. Being our approach satisfying the ε0-differential privacy, the 
privacy is guaranteed. 

Secondly, we assume that adversaries are interested in tampering privacy budget, such as alter-
ing, deleting privacy budget and making it unavailable so that perturbation will not be properly 
applied on protecting dataset. Being the privacy budget managed exclusively on blockchain, it is 
guaranteed that the attacker is not able to compromise such decentralised structure to tamper 
with the anonymisation process.  

System Architecture  
To implement the proposed approach, we propose a generic system architecture for blockchain-
based data sharing. Specifically, an Anonymisation Interface (AI) is realised to integrate plugga-
ble differential privacy component with blockchain smart contracts.  

As illustrated in Figure 3, federated datasets and anonymisation services (denoted by ANM) are 
integrated via AIs, which act as mediator with blockchain smart contracts realising the control 
flow in Figure 2 previously described. Data consumers interact with any AI to query datasets. 
Then blockchain smart contracts execute the test activities to ensure privacy protection.  

Data owners federating their sensitive datasets to a Cloud federation can then trust third-party 
anonymisation services due to the principled exploitation of blockchain smart contracts. They 
store and evaluate sharing history, while enforcing utility and data privacy requirements. Non-
repudiable evidences of privacy budget consumption and released query results enhance the se-
curity guarantees on privacy-preserving data sharing processes. In particular, blockchain smart 
contracts carry out the secure management of privacy budget and carry out the test activities. The 
third-party anonymisation services only execute when there is no previously released result that 
can be used. This prevents attacks of altering, deleting budget consumptions, and improves the 
availability of anonymisation services.  

 



  

 MAGAZINE NAME HERE 

 
Figure 3: Blockchain data sharing System in a Federated Cloud (AI stands for Anonymisation 
interface, while ANM stands for Anonymisation service)  

EXPERIMENTAL EVALUATION  
We prototyped our blockchain-based data sharing approach by the Hyperledger Fabric smart 
contract blockchain and a traditional implementation of differential privacy using Laplace mech-
anism. A real-world dataset from the Italian Ministry of Economy and Finance is used, which 
contains employees’ salary information as exemplified in Table 1. Our implementation is in Hy-
perledger Fabric V0.6 on a 2.6 GHz 4 core Intel Xeon laptop running Ubuntu 14.04.5.  

The experiments aim at evaluating, on the one hand, privacy and data-utility guarantee and, on 
the other hand, blockchain practicality. Specifically, the query function types are four—i.e. sum, 
average, max and min—the privacy requirement ε0 is set to 10, and the data-utility requirement u 
to 1500. The requested budget ε for each query is fixed at 0.5. Queries are simulated continu-
ously and randomly by uniformly choosing a query type from those four. The compared baseline 
approach is the standard differential privacy mechanism that generates randomised noise inde-
pendently for each query.  

Privacy  
As proved in the description of our approach, our mechanism always provides ε0-differential pri-
vacy. That is, the consumed privacy budget does not exceed ε0 that the pre-defined privacy re-
quirement is satisfied. In this experiment, we focus on how the budget is consumed over queries. 
Figure 4 shows the budget consumption when our and the baseline approach are implemented. It 
is clear that the remaining budget decreases linearly in the baseline approach, so that the budget 
is used up after 20 queries. The remaining budget in our approach decreases slower than in the 
baseline approach. Specifically, for the first query, it drops the same in both approaches as there 
has been no sharing history and no result can be approximated. From the second query, the de-
crease slows down as historical sharing results become available for approximation at some que-
ries. More specifically, after receiving 6 queries, the historical sharing tuple stored in the 
blockchain becomes  

 

 

 

 

 
where all four query types have been received and stored for future approximation.  

We now change the number of query types from four to two (i.e., max and average) representing 
the situation where two query types are allowed. The consumption of privacy budget is plotted 
together with the situation of four query types. Indeed, the fewer query types, the less the budget 

Federated CloudFederated Cloud

Data AI

Federated Cloud

Federated Cloud

AIANM

Smart-contract 
Blockchain

DataAI

AI ANM

Data Consumer

(DsetId = EmployeeDset ,εr =7.93,
[(qry1 =max,res1 =28643.57),
(qry2 = average,res2 =23147.29),
(qry3 =min,res3 =16127.25),
(qry4 = sum,res4 =578106.25)])



 

 SECTION TITLE HERE 

is consumed: it is more likely that historical sharing results can be used to approximate new re-
sults. Therefore, our approach is able to allow more queries executed and is more effective when 
there are fewer query types.  

 
Figure 4: Budget consumption as the number of queries increases, where “2 query types” means 
that just max and average queries are allowed, while “4 query types” also includes min and sum 
queries.  

4.2 Data Utility  
Our approach introduces less noise compared with the baseline approach after receiving more 
queries, as the approximation test takes into account the utility requirement, guaranteeing the 
amount of generated noise is bounded by u = 1500. We compute the mean of the absolute noise 
over 20 queries, and have 43331.823 for the baseline approach, 3864.97 and 3806.47 for our ap-
proach with respectively four and two query types. Therefore, our approach provides slightly 
better data utility, and the number of query types does not affect the data utility.  

Blockchain Practicality  
Storage capacity. As the data sharing history stored on each block only the latest released result, 
rather than a full list of release results, the size of the tuple that gathers such sharing history is 
suitably small and can be optimised grouping by query types. Tuples can be illustrated, e.g., as 
(DsetId, εr, [(qry1, res1), (qry2, res2)]) if two query types are allowed. Therefore, the design of 
history tuple is light and suitable for blockchain storage as testified by the extensive tests.  

Blockchain performance. The performance of smart contract computation is shown in Figure 5a 
when the number of stored query types changes from 2 to 4 and 8. The computation on Hy-
perledger Fabric is very efficient as the maximum time is 0.09 second. There is a slightly in-
crease in time when the size of the sharing history tuple increases. As the number of peers 
deployed in the Hyperledger blockchain increases, the computation time increases. This is be-
cause it takes more time to allow all peers to confirm the computation result (i.e., adding a new 
block). We now simulate more query requests at a single timestamp, particularly from 20 to 200 
and 2000 requests. As shown in Figure 5b, the time increases and the maximum time becomes 
90 seconds when there are 2000 requests received at the same time. Therefore, implementing our 
approach in Hyperledger Fabric offers good performance, and is able to handle great number of 
requests.  

 
           (a) Number of allowed query types                           (b) Workload 

0
2

4
6

8
10

Queries

R
em

ai
ni

ng
 B

ud
ge

t

0 2 4 6 8 10 12 14 16 18 20

baseline
2 query types
4 query types

0.
03

0.
05

0.
07

0.
09

Number of stored queries

Ti
m

e 
(s

ec
)

2 4 8

4 peers
8 peers
16 peers 0

20
40

60
80

Number of requests

Ti
m

e 
(s

ec
)

20 200 2000

4 peers
8 peers
16 peers



  

 MAGAZINE NAME HERE 

Figure 5: Smart contracts performance.  

Permissioned blockchain. Our prototype implementation relies on Hyperledger Fabric, which 
enables us to deploy a private blockchain with control on operating users. Data owners are the 
default users who are allowed to access the blockchain but only manage the anonymissation pro-
cess of their own datasets. Additional access rules can be negotiated with data owners supported 
by the function of smart contract.  

RELATED WORK  
A considerable body of research has been devoted to address the data privacy issues in cloud 
computing. Because of the openness and multi-tenant characteristic of the cloud, traditional pri-
vacy-preserving approaches (such as anonymisation techniques9) by their own cannot ensure the 
protection of personal data. Cryptographic approaches have been proposed to encrypt data before 
uploading to the cloud,10,11 and data can only be decrypted by authorised data consumers. These 
approaches rely on novel access control models to support various access request from federated 
clouds.12  
In order to equip data owners with more control and accountability over data protection, block-
chain-based proposals utilise blockchain to store data and control data sharing as a data manage-
ment platform.13,14 More specifically, Enigma,13 a peer-to-peer network supports different parties 
to jointly store and run computations on data while guaranteeing the privacy of data. This pro-
posal combines blockchain with multi-party computation techniques and examines a mobile ap-
plication data sharing scenario. The other proposals, such as the work by Ekblaw et al.,14 aim to 
protect patient health records, and ensures the immutable, quick access, confidential properties of 
such data storage and access. While these approaches focus on storing sensitive data directly on 
blockchain, our solution stores the process of anonymisation services which provides stronger 
data privacy guarantee and requires only light configuration for implementing our solution in 
cloud federation.  

CONCLUSION  
Our blockchain-based data sharing approach allows data owners to control the privacy protection 
of their datasets while enjoying the anonymisation services provided in a cloud federation. Fu-
ture work includes examining practical deployment issues in a cloud federation, integrating with 
security components (e.g., access control) and developing an effective user interface to support 
the control of the anonymisation services.  

REFERENCES  
1. A. Celesti, F. Tusa, M. Villari, and A. Puliafito, “How to enhance cloud architectures 

to enable cross-federation,” in CLOUD. IEEE, 2010, pp. 337-345.  
2. T. Kurze, M. Klems, D. Bermbach, A. Lenk, S. Tai, and M. Kunze, “Cloud 

Federation,” in Cloud Computing, GRIDs, and Virtualization, 2011, pp. 32-38.  
3. F. P. Schiavo, V. Sassone, L. Nicoletti, and A. Margheri (Eds.), “FaaS: Federation-as-

a-service,” CoRR, vol. abs/1612.03937, 2016.  
4. A. Margheri, M. S. Ferdous, M. Yang, and V. Sassone, “A distributed infrastructure 

for democratic cloud federations,” in Cloud Computing, 2017 IEEE 10th International 
Conference on, 2017, pp. 688-691.  

5. C. Dwork, “Differential privacy,” in Proceedings of the 33rd International Conference 
on Automata, Languages and Programming, 2006, pp. 1-12.  

6. B. C. M. Fung, K. Wang, R. Chen, and P. S. Yu, “Privacy-preserving data publishing: 
A survey of recent developments,” ACM Comput. Surv., vol. 42, no. 4, pp. 1-53, 2010.  



 

 SECTION TITLE HERE 

7. F. D. McSherry, “Privacy integrated queries: An extensible platform for privacy-
preserving data analysis,” in Proceedings of the 2009 ACM SIGMOD International 
Conference on Management of Data, 2009, pp. 19-30.  

8. G. Kellaris, S. Papadopoulos, X. Xiao, and D. Papadias, “Differentially private event 
sequences over infinite streams,” Proc. VLDB Endow., vol. 7, no. 12, pp. 1155-1166, 
2014.  

9. M. Yang, V. Sassone, and K. O’Hara, “Anonymisation: managing data protection risk 
code of practice,” UK Information Commissioner’s Office, 2012.  

10. C. Esposito, A. Castiglione, and K. K. R. Choo, “Encryption-based solution for data 
sovereignty in federated clouds,” IEEE Cloud Computing, vol. 3, no. 1, pp. 12-17, 
2016.  

11. C.Wang, Q.Wang,K.Ren,andW.Lou,“Privacy-preservingpublic auditing for data 
storage security in cloud computing,” in Infocom, 2010 proceedings ieee, 2010, pp. 1-
9.   

12. D. Chen and H. Zhao, “Data security and privacy protection issues in cloud 
computing,” in Proceedings of the 2012 International Conference on Computer 
Science and Electronics Engineering Volume 01, 2012, pp. 647–651. 

13. G. Zyskind, O. Nathan, and A. S. Pentland, “Decentralizing privacy: Using blockchain 
to protect personal data,” in Proceedings of the IEEE Security and Privacy Workshops, 
2015, pp. 180-184.  

14. A. Ekblaw, A. Azaria, J. D. Halamka, and A. Lippman, “A case study for blockchain 
in healthcare: “medrec” prototype for electronic health records and medical research 
data,” in Proceedings of IEEE Open & Big Data Conference, vol. 13, 2016, pp. 13.   

ABOUT THE AUTHORS 
Mu Yang is a Lecturer in the Department of System Management and Strategy at the Uni-
versity of Greenwich, UK. Her research interests include cloud computing, data privacy and 
security, blockchain technology. She has a PhD in Computer Science from the University of 
Southampton, UK. Contact her at m.yang@greenwich.ac.uk.   

Andrea Margheri is a Senior Research Fellow in the Department of Electronics and Com-
puter Science at the University of Southampton, UK. His research interests are in the area of 
cyber security of modern computing systems. He has a PhD in Computer Science from the 
University of Pisa, Italy. Contact him at a.margheri@soton.ac.uk.   

Runshan Hu is a PhD student in the Department of Electronics and Computer Science at the 
University of Southampton, UK. His research interests include data privacy, anonymisation, 
and machine learning. Contact him at rs.hu@soton.ac.uk.   

Vladimiro Sassone has worked at the University of Southampton since 2006, where he is a 
Professor in Cyber Security, the Roke/Royal Academy of Engineering Research Chair in 
Cyber Security, the Head of the Cyber Security Group, the Director of the GCHQ/EPSRC 
Academic Centre of Excellence for Cyber Security Research (ACE-CSR), the Director of 
the Cyber Security Academy (CSA), His recent research include resource access control 
over untrusted networks, trust management systems, predictive trust-and-reputation models, 
anonymity and privacy in the presence of trust and attackers’ belief systems. Contact him at 
vsassone@soton.ac.uk.  

 


