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Designing a blockchain-based IoT infrastructure with Ethereum, Swarm and LoRa
By Kazim Rifat Ozyilmaz and Arda Yurdakul

Today, the number of IoT devices in all aspects of life is exponentially increasing. The cities we are living in are getting
smarter and informing us about our surroundings in a contextual manner. However, there lay significant challenges of deploying,
managing and collecting data from these devices, in addition to the problem of storing and mining that data for higher-quality
IoT services. Blockchain technology, even in today's nascent form, contains the pillars to create a common, distributed, trustless
and autonomous infrastructure system. This paper describes a standardized IoT infrastructure; where data is stored on a DDOS-
resistant, fault-tolerant, distributed storage service and data access is managed by a decentralized, trustless blockchain. The
illustrated system used LoRa as the emerging network technology, Swarm as the distributed data storage and Ethereum as the
blockchain platform. Such a data backend will ensure high availability with minimal security risks while replacing traditional
backend systems with a single ”smart contract”.

I. INTRODUCTION

The Internet of Things is the backbone for creating smart buildings, smart energy systems, smart transportation and smart
health care, which are the vital components of smart cities [1]. In order to ensure safe and rapid adoption of IoT solutions, three
essential aspects should be recognized: security, trust and identity of things [2]. Blockchain technology not only addresses these
three concerns, but also shows a clear path for integrating all kinds of IoT devices to a common blockchain-based infrastructure
as well [3]] [4]. This approach defines a different role for every IoT device based on its capabilities and power requirements,
therefore conforming with mobile-edge computing vision for consumer electronic devices [5l].

IoT deployments suffer from the problem of collecting, storing, and processing data in the cloud. An IoT platform should
support multiple devices and services from different stakeholders, scale in a reliable and decentralized manner and offer
tools and support for the rapid creation of applications and their execution [6]]. Selecting a unified method that enables data
transmission from all kinds of IoT devices is another problem. In order to propose a solution, it is imperative to analyze what
the future of the IoT landscape will look like. Ericsson predicts that low-power wide-area (LPWA) technologies like LoRa
and Sigfox that operate in unlicensed band, and cellular-based NarrowBand IoT (NB-IoT) will be the great enablers for mass
deployment of low-power end devices [7]. The current paradigm of short-range (NFC, Bluetooth, Zigbee), mesh-topology
(wireless sensor networks) communication, which limits the coverage area of IoT devices, is challenged by the low-rate,
long-range communication paradigm with star topology [8]. This shift in wireless communication technology may enable
the deployment of low-power, low-cost devices with extended coverage in massive amounts. This gateway-centric approach
inherently brings the possibility of implementing software solutions on IoT gateways.

In 2008, Satoshi Nakamoto published the Bitcoin paper, which
proposed a novel digital currency based on a decentralized,
trustless infrastructure [9]. All transactions are stored on a
distributed database called blockchain and continuously verified
using public-key cryptography by all peers in the system, thus
eliminating the need for a central authority. Modifying contents
of the chain without being caught is only possible with owning
at least 33% of the total computational power [10]. Fig. 1. ToT System Overview

In this paper, a blockchain-based IoT infrastructure is described for the emerging, gateway-centric communication technolo-
gies that the majority of consumer electronic devices will use (Figure [I). We also propose different methods of integration for
various types of end devices. Our software solution aims to a) standardize the way IoT devices discover, communicate and send
data to their data repositories, b) create a peer-to-peer, fault-tolerant and DDOS-resistant infrastructure for IoT deployments,
c) facilitate a standard way to query and acquire IoT device data for the creation of next generation products and services.

In order to achieve these goals, we have investigated how a peer-to-peer network may be used to store data and code
fragments, which in turn enables IoT gateways to push data and interact with other peers by means of a unified interface.
As a proof-of-concept, a blockchain client is integrated to a LoRa gateway. A private (although not mandatory), peer-to-peer
network, which makes use of these new blockchain-enabled LoRa gateways, is set up for demonstrative purposes. The peers
in this network send data through the IoT gateway, store it in a torrent-like distributed file system, save handles of data chunks
to blockchain, interact with events, and access uploaded data using a blockchain infrastructure.
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II. Low-POWER WIDE-AREA NETWORKS (LPWAN)

Low-power wide-area networks (LPWAN) is the new wireless connectivity that introduces star networks, as opposed to
traditional wireless sensor networks properties like short-range, mesh networks. Most LPWAN technologies make use of
low-power, low-cost end devices while covering distances over kilometers because of protocol and transceiver architecture
efficiencies. It is possible to build inexpensive sensor nodes without SIM cards while having more robust gateways to connect
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and transfer data to IP-based networks. Industrial representation of LPWANS is divided into two main categories: licensed
and unlicensed band operation. Three technologies operating in the licensed band are eMTC (LTE Cat.M), EC-GSM and NB-
IoT [[11]]. Licensed technologies operate well in dense urban areas with good QoS. On the other hand, unlicensed technologies
like LoRa and Sigfox provide generally better coverage, lower power and lower cost. Their downsides include a lower QoS and
no guaranteed latency [12]]. Table[[]shows the operating frequencies, bandwidth and data rate of these LPWAN technologies [13].

TABLE I
LPWA 10T CONNECTIVITY OVERVIEW

LoRa Sigfox NB-IoT (Rel.13) eMTC (Rel.13) EC-GSM (Rel.13)
Range <1lkm <13km <15km <11km <15km
Max coupling loss  157dB 160dB 164dB 156dB 164dB
Spectrum Unlicensed <1GHz  Unlicensed 900MHz  Licensed LTE Licensed LTE Licensed GSM
Bandwidth <500kHz 100Hz 180kHz (200KHz carrier) 1.08MHz (1.4MHz carrier)  200kHz
Data Rate <50kbps <100bps <170kbps(DL),<250kbps(UL)  <1Mbps < 140kbps

III. BLOCKCHAIN STATE OF AFFAIRS
A. Blockchain

Blockchain is a distributed database deployed in a peer-to-peer network. Nodes in the system create and broadcast transactions
continuously. Predictably, a blockchain consists of blocks, which are cryptographically linked and timestamped collections
of transactions. Nodes constantly verify blocks in the system to stand against malicious attackers trying to alter or forge
transactions. All transactions in the system are signed using public-key cryptography and their authenticity is verifiable [9].

An in-depth look at the block structure of blockchain, as shown in Figure [2] reveals that every block contains a block header
and a varying number of transactions stored in a tree structure. In addition, every block header contains a timestamp and two
hash values: one for a previous block's header and another for all the transactions that are carried within that block. Because
of this, it is possible to verify the integrity of the whole block, including all the transactions via block header.
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Fig. 3. Smart Contract Structure
Fig. 2. Blockchain Structure . . . .
In traditional blockchain-based systems, special nodes called miners try to find the next block by calculating a solution for

a hard to compute, but easy to verify, mathematical problem, where the difficulty of the problem is set as a constraint that is
continuously changing. When a new block satisfying the current difficulty constraint is found, it's propagated to the network
as the next valid block and its miner is awarded for its efforts. A total block creation and propagation mechanism keeps all
peers synchronized, i.e., in consensus. The difficulty of this mechanism is changed periodically to keep the block finding time
in a predefined interval [9].

B. Ethereum and Swarm

Ethereum is a blockchain-based infrastructure where stakeholders compile code fragments (smart contracts) that may interact
with each other or change the state of accounts on blockchain [14]. Regular Bitcoin transactions contain sender and receiver
addresses, value and a custom scripting system for verification. Ethereum extends the scripting capabilities of Bitcoin to a
fully-fledged, Turing-complete programming language aiming to create a programming environment [[14]]. As a result, Ethereum
turns out to be a distributed application platform utilizing blockchain technology where users may pick arbitrary formats for
transaction or ownership. Ethereum smart contracts are compiled virtual machine opcodes executed by the Ethereum Virtual
Machine (EVM). The smart contract's functions and events can only be accessed using the mined address of the contract and
its application binary interface (ABI) (Figure [3).

Swarm is a peer-to-peer storage service that is DDOS-resistant, zero-downtime, fault-tolerant and censorship-resistant
integrated with Ethereum [15]. It is a torrent-like service with built-in incentives to guarantee uploaded data persistence
due to high coupling with the Ethereum network layer. Hence, it is a strong candidate for a storage service targeting IoT.



C. Consensus Algorithms

Proof-of-work (PoW) is a consensus method, based on a hard to solve but easy to verify mathematical problem (one-way
function) that is used by both Bitcoin and Ethereum. Calculation of acceptable hash values average 10 minutes and 17 seconds
for Bitcoin and Ethereum respectively. With PoW algorithms, high computational power is needed to create even one block
so that forging fake blocks or orchestrating a Sybil attack cannot occur.

Proof-of-stake (PoS) is another consensus approach, where the creator of the next block is chosen randomly. The randomness
in selection is weighted by the amount of coins (i.e., stake) placed in the mechanism by the peer. PoS may increase protection
against attacks as executing an attack will be expensive. Due to reduced computational work PoS requires less energy.

Practical Byzantine Fault Tolerance (PBFT) is a state-machine replication algorithm discovered to tolerate faults in
distributed, low-latency storage systems [[16]. Messages coming from the nodes are cryptographically signed and once enough
identical responses are reached, consensus is met. However, unlike PoW or PoS, PBFT requires every node to know the entire
set of its peer nodes participating in consensus [17]]. Although it is possible to have temporary blockchain forks because of
network delays in PoW and PoS based systems, PBFT systems does not allow forks, satisfying consensus finality [[17].

D. Blockchain Node Types

Miner: Miners are special nodes that pack transactions into blocks and run the consensus algorithms that satisfy system
requirements to attain a financial benefit. In PoW consensus, miners in the network possess the highest computational power.

Full node: Full nodes download the whole blockchain and verify the integrity of all transactions continuously, making the
infrastructure trustless and decentralized. Sufficient storage and computing power are required in order to run a full node.

Thin client: Thin clients only download the block headers that contain the hashes of the transactions within the block.
Therefore, it is possible to interact with the blockchain with minimal storage and computing requirements. This approach is
called Simplified Payment Verification (SPV) in Bitcoin and Light Client in Ethereum [9] [14].

Server-Trusting Client: Bitcoin Client API (BCCAPI) is proposed to make secure, light-weight clients for resource-
constrained systems. With BCCAPI, it is possible for a client to connect a server containing the blockchain and run queries
against it. Here, the server has only public keys of clients and is unable to create a transaction without a client's approval.

IV. IoT-BLOCKCHAIN INTEGRATION METHODS

Integrating IoT end devices and gateways to a blockchain infrastructure can be accomplished in many different ways
depending on the capabilities and power requirements of end devices and gateway hardware. Assuming that end devices are
either battery-powered or always-on and they are communicating with an always-on gateway connected to the internet (like a
typical LPWAN case), one of the following integration strategies can be used for [oT gateways:

Gateway as a full blockchain node: IoT gateway operates as a full node, routing data to the network and verifying integrity
at the same time. Integration is relatively easy because no changes are required in the way that end devices communicate.
However, gateways should be powerful enough to operate as a full blockchain node. With the gateway's total computing power
for defending the integrity of the system, it is possible to achieve a trustless IoT infrastructure.

Gateway as a thin client: IoT gateway operates as a thin client by routing data to network and storing only relevant data
fragments. Integration is relatively easy however the weakness here is that there should be other full nodes to defend the
integrity of the system. A trustless infrastructure can still be achieved, but only with full nodes operating at the cloud side.

End devices as regular sensors: Battery-powered end

devices may be so weak that no additional client logic

may be tolerated. In this case, no blockchain client

is integrated. Transmitted data are received by an IoT C

BE

Blockchain
Network

BE: Battery-powered end-devices
AE: Always-on end-devices
GW: Gateway

gateway and are pushed to a blockchain infrastructure.

This is suitable for extremely low-power sensors that do
nothing more than broadcast their data.

End devices as server-trusting client: A blockchain | (AE
client utilizing a BCCAPI-like interface may be inte-
grated to battery-powered end devices. This way, the

end device will interact with a blockchain node without

any storage or computational requirements.

End devices as thin client: If end devices are not
battery-powered and always on, they can operate as a Custom
thin client. Here, gateways can either be a full node or a

transparent switch to relay transactions. If both gateways

and end devices use blockchain clients, standardization Fig. 4. Blockchain Integration Methods [I8]
in terms of data collection can be achieved.

Full Node



TABLE I

ROLES AND COMMUNICATION METHODS IN LPWAN IOT INFRASTRUCTURE

Battery-powered End Device

Always-on End Device

IoT Gateway Cloud Backend

Traditional IoT Sensor with Custom Protocol

Blockchain IoT  Server-trusting Client or

Sensor with Custom Protocol

Sensor with Custom Protocol

Thin Client or
Server-trusting Client

Transparent Proxy

Full Node or
Thin Client

Centralized Core Services

Miners and Full Nodes

Table [[] shows the differences between traditional and blockchain-based IoT integration where every component acts as a
part of a trustless peer-to-peer network and contributes to this network as much as its capabilities. This way, data collection
and storage may be standardized by using blockchain client protocols. In a sample integration scenario (Figure [, gateways
operate as full nodes and various end devices connect to it using different blockchain protocols.

V. PROOF OF CONCEPT

For the proof-of-concept implementation, LoORaWAN is selected due to being an unlicensed-band LPWAN technology with an
affordable concentrator and end device hardware. In a previous implementation, a battery-powered LoRa end device's position
data was sent to a LoRa gateway, which then routed this data stream through the official Go-lang-based Ethereum client Geth
to a private Ethereum network using a smart contract [[18]. This paper extends the preliminary work by a) storing IoT data not
in blockchain but in the Swarm storage service, therefore eliminating the need for a private Ethereum network b) defining a
clear way to access and retrieve data using Swarm and Ethereum smart contracts for additional applications like user interface
services (e.g. data dashboard) or machine learning systems [19].

A prototype system uses a LoRa end device, built
with an RPi 2 connected to a Dragino LoRa/GPS
Hat and a LoRa gateway, built with an RPi 3
connected to a LoRa concentrator board named
iC880A from IMST. IoT gateway runs LoRa pro-
tocol software to communicate with low-power
end devices. LoRa protocol software consists of
a concentrator card driver and a network daemon
to forward data packets into a local proxy server.
This local server, called smart proxy, receives data
from the packet forwarder and acts as a mediator to
push data into the blockchain-based infrastructure.
Finally, Swarm and Ethereum clients complete the
data flow. (Figure [3)
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Fig. 5. LoRa Gateway Software Architecture

LoRa end devices wait for their turn and send their data without the need of establishing a connection to any specific party.
Always-listening network daemon on the LoRa gateway picks up the transmission and forwards it to the smart proxy. After
data is received, it is pushed into the Swarm file storage network using HTTP. A file hash is received and that same file hash
will be used to access that particular data in the future (Figure [6).

A smart proxy may communicate with the Ethereum client by means of its JSON-RPC interface, however, to enable a real
interaction with the Ethereum network, a smart contract should be deployed first. After being compiled into bytecode, smart
contracts are sent just like any other transaction, to be mined by miners. When a smart contract is mined, its address and
application binary interface (ABI) are used to interact with it.

1 // IoT ic

2 struct device_: data {

3 // link for detecting devices

4 uint index;

5 // bloch n

6 uint[] timestamps;

7 // map t tamp values to swarm file }
8 mapping (uint => string) filehashes;

9}

10 // device id array of all received id's

11 address][] prlvate device_index;

12 // map device id's to their data

13 mapping (address => device_data) private device_logs;
14 // event to log action

15 event log_action (address indexed device_id,
16 uint index,

17 uint timestamp,

18 string filehash);

ile for

ce device

2, han
a hatr

1

2 function set dev1ce data (address device_id,
3 string filehash)

4 public returns (uint index,

5 uint timestamp) {

6 // get current block timestamp

7 ts now;

8 // store data receive time (block times <
9 device_logs[device_id].timestamps.push(ts);
10 // store swarm handle

11 device logs[dev1ce id].filehashes|[ts] =

12 // store d 1

13 device logs[dev1ce id] .index =

14 // trigger event, si ng received da

15 log_. actlon(deVJ.ce 1d dev1ce index. lengthf

+

and timestar

17 return(dev1ce 1ndex length 1, ts);

filehash;

, ts,

device_index.push (device_id) -

filehash);

Listing 1: Smart Contract Data Structure

Listing 2: Smart Contract: Store Swarm File Hash



Our smart contract code contains one event,

which is log_action, and six functions named i Swarm Client E‘gﬁ;en‘:m A'g:f;st
as is_device_present(), get_device_count(), 1 T T
get_device_at_index(), get_device_timestamps(),

get_device_data() and set_device_data(). All functions
except set_device_data() are constant functions that do
not change the contract state. Only set_device_data()
adds data to blockchain, thus a transaction should be set
up. Listing [I] shows the actual code fragment declaring
how device identifications, timestamp values and Swarm log_action (device_id, index, timestamp, filehash)
file hashes are connected. IoT gateways and their stored oo
file hashes in the blockchain can be easily enumerated :
and accessed by using get device_timestamp() and :

:

1

get_device_at_index (index)
1

get_device_data() functions. set_device_data() is the
actual smart contract function (Listing [2)) that creates and
maps a Swarm file hash to the current block timestamp.
As soon as new data is added, log_action event is
fired and all peers that are listening to that event get
a callback. Ethereum smart contract and LoRa proxy
code used for this implementation can be found on the
"Bether’ project page [19]. Fig. 6. IoT Data Store and Access Scenario

VI. EVALUATION
A. Resource consumption

There are at least three different types of Ethereum node configurations in our setup to accommodate underlying hardware
resources. The usage statistics below are given, a) for a one-month-old, private Ethereum installation (around 200k blocks), b)
for the public Ethereum blockchain. Peak memory consumption may vary from setup to setup due to synchronization speed:

Mining Full Node: With an active Swarm client, these nodes use between 1.2GB and 1.5GB of memory in private Ethereum
network. In public network they need at least 4GB of memory; it is expected that this requirement will go up in time. These
nodes are powerful servers deployed in the cloud.

Non-mining Full Node: With an active Swarm client, these nodes use between 300MB and 400MB of memory in private
Ethereum network. In public network they need at least 2GB of memory to properly sync with blockchain. These nodes may
be IoT vendor servers, network provider servers or powerful IoT gateways.

Non-mining Light Node: With an active Swarm client, these nodes use around 300MB of memory, whereas Ethereum
client only uses around SOMB (200MB in public Ethereum). Because Swarm has no light client mode to limit bandwidth or
memory usage at the moment, the memory benefit is minimal. These nodes may be regular IoT gateways and end devices.

B. Data Throughput

Data throughput in blockchain systems depends on various metrics and varies in different implementations. Bitcoin imposes
throughput limits with its 10-minute average block time and fixed 1MB block size. In Ethereum's case, there is no fixed block
size but a gas limit per block (i.e., amount of resource to be used by transactions). Similar to resource statistics, throughput
statistics are given, a) for one-month-old, private Ethereum installation, b) for the public Ethereum blockchain.

Our private Ethereum network has a gas limit of 4,712,388 gas/block and the average gas price is 21k gas, therefore, a
block may only contain 224 transactions. Considering that the average block time is 14 seconds for the private system, the
throughput will be 16 transactions per second (or around 1k transactions per minute). The public Ethereum is in the middle of
a difficulty increase as of September 2017. At the time of writing, the public Ethereum system has a gas limit of 6,718,904
gas/block, an average gas price of 21k gas and an average block time of 30 seconds. Data throughput will in turn be 320
transactions per block, which is 10.6 transactions per second (or 640 transactions per minute).

Though transaction throughput seems low to support a full-scale deployment today, it is imperative to note that transactions
are created only by IoT gateways and every gateway may serve hundreds of thousands of end devices. Proposed infrastructure
can support tens of thousands of IoT gateways (and millions of end devices) pushing data periodically every 15 minutes.

VII. DISCUSSION

This section deals with which parts of blockchain systems may be improved for a better IoT integration.
Inefficiency: Bitcoin and Ethereum use PoW algorithms that guarantee every mined block is backed by a certain amount
of computational work. This approach is inherently inefficient because every miner in the system is doing hard calculations



individually. In the IoT blockchain, a PoS based consensus may be much more suitable as discussed in Section PoS
algorithms may create monopolies due to concentration of stake, but in the case of IoT, this "bug” may be used as a “feature”.
Empowering certain trusted parties like system integrators or regulators may indeed be beneficial.

Encryption and Access Control: Blockchain based systems store clear data although transactions are signed with public-key
crypto. When an IoT system is dealing with sensitive data, either payload must be encrypted before pushed into blockchain,
or sophisticated mechanisms to conceal critical data should be used. As an example Zcash payments are published on a public
blockchain, but the sender, recipient, and the amount of a transaction remain private by utilizing zero-knowledge proofs [20].

Bandwidth: Gateways in LPWANSs are the point of transmission to the cloud for connected end devices. All LPWANs
consider that gateways to be connected to a fast communication link, either wired or wireless. If gateways operate as a full
node, bandwidth requirements will increase considerably because of the messaging and synchronization traffic of blockchain.

Real-Time Systems: Due to their trustless nature, blockchain-based systems may be able to store data only after a certain
period of time, which is determined by the block creation interval. In order to support real-time applications, data propagation
delay should be minimized by proposing new types of consensus functions that are fine-tuned for IoT scenarios.

VIII. CONCLUSION

Internet of Things is the key to smarter cities, transportation systems, energy systems, and healthcare. In order to deal with
the increasing number of IoT devices, it is necessary to standardize the method of communication for IoT gateways and create
a common IoT backend. Using blockchain's decentralized, trustless nature in combination with DDOS-resistant, fault-tolerant
data storage, a new type of IoT backend may be created. In this way, all kinds of IoT end devices may be integrated to this
infrastructure based on their computing and storage capabilities. Such an achievement will lead to data-centric business models
where application development and data processing can be massively conducted by using smart contracts as demonstrated with
our proof-of-concept Bether [19].
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