
“© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including 

reprinting/republishing this material for advertising or promotional purposes, creating 

new collective works, for resale or redistribution to servers or lists, or reuse of any 

copyrighted component of this work in other works.” 

 



For Review
 O

nly

 

 

 

 

 

 

MultiScan: a Scalable Online Virus Detection System with 

Multiple Anti-virus Engines 
 

 

Journal: IEEE Consumer Electronics Magazine 

Manuscript ID CEMAG-SRI-0003-Sep-2017 

Manuscript Type: Original Article 

Date Submitted by the Author: 08-Sep-2017 

Complete List of Authors: Liu, Ming; University of Technology Sydney, School of Electrical and Data 
Engineering 
He, Yuxuan; Shanghai Jiao Tong University 
Xue, Zhi; Shanghai Jiao Tong University 
Chen, Jinjun; Swinburne University of Technology 
He, Xiangjian; University of Technology Sydney, School of Electrical and 

Data Engineering 

Keywords: 
Security < Network Technology, Privacy < Security and Rights 
Management, Trusted Computing < Security and Rights Management 

  

Note: The following files were submitted by the author for peer review, but cannot be converted to 
PDF.  You must view these files (e.g. movies) online. 

multiengineonlinevirus.tex 
mybibfile.bib 

 

 

https://mc.manuscriptcentral.com/cemag

IEEE Consumer Electronics Magazine - Article Proof



For Review
 O

nly

1

MultiScan: a Scalable Online Virus Detection
System with Multiple Anti-virus Engines

Ming Liu, Yuxuan He, Zhi Xue, Jinjun Chen, Senior Member, IEEE , and Xiangjian He, Senior Member, IEEE

Abstract—During recent years, computer viruses have evolved from traditionally simple forms to currently more sophisticated and
stealthy “advanced persistent threats”. Accordingly, the kind of virus detection systems that are composed by multiple anti-virus
engines has arisen. This variety of systems such as VirusTotal and VirSCAN can offer the users with multiple detection results.
However, those systems may save and distribute the user-uploaded samples to those security enterprises that own the anti-virus
engines, which is not acceptable for the users with high privacy requirements. Considering this issue, in this article, we provide
MultiScan, a comprehensive and scalable multi-engine online virus detection system, which incorporates 32 anti-virus engines and has
a user-friendly web interface. The proposed system can perform the “offline detection and isolated update” of the anti-virus engines.
This mechanism guarantees that the uploaded confidential samples are not exposed to the Internet, during either virus detection or
system upgrade. Furthermore, the low-coupling design of this system is highly scalable to support the distributed deployment mode.
The system testing results demonstrate that the mechanisms in MultiScan are efficient and practical.

Index Terms—Advanced persistent threat, virus detection, anti-virus engine.

F

1 INTRODUCTION

THE battle between computer viruses and the anti-virus
systems has last for decades. Nowadays, the intrusive

cyber behaviors have become more complicated and diver-
sified. Computer viruses have evolved from traditionally
simple forms to currently more sophisticated and stealthy
“advanced persistent threats (APT)”, for the sake of hiding
from the anti-virus systems. Fortunately, the anti-virus sys-
tems evolve simultaneously with the viruses. The anti-virus
organizations currently may own a variety of advanced
detection technologies and large-scale repositories of virus
samples. However, for one particular anti-virus engine, false
alarms or missed alarms during virus detection can still
occur occasionally. Consequently, it has emerged as the
concept of virus detection with a system that is composed
by multiple anti-virus engines [1] [2] [3] [4]. This kind of
system allows users to upload suspicious samples online
and then presents the users with multiple independent
detection results. Via the summarization and comparison
of these results, both of the missed alarm rate and the false
alarm rate can be reduced. The virus detection processes
are usually conducted in virtualized environments with
centralized control modules [5] [6] [7]. VirusTotal [8] and
VirSCAN [9] are two signature systems that provide this
kind of services. But these systems may save and share the
user-uploaded suspicious samples to those security enter-
prises that own the anti-virus engines. This situation may

• Ming Liu, Yuxuan He, and Zhi Xue are with the School of Cyber Security,
Shanghai Jiao Tong University, China.
E-mail: ming.liu-2@student.uts.edu.au

• Jinjun Chen is with the School of Software and Electrical Engineering,
Swinburne University of Technology, Australia.
E-mail: jchen@swin.edu.au

• Xiangjian He is with the School of Electrical and Data Engineering,
University of Technology Sydney, Australia.
E-mail: Xiangjian.He@uts.edu.au

Manuscript received ??; revised ??.

cause some privacy-leakage problems, in particular for the
samples with high confidentiality, which are not acceptable
for the users with high privacy requirements. Therefore, it is
necessary to construct a private and online virus detection
system with multiple anti-virus engines that can provide
accurate virus detection services for those users with high
privacy requirements. Considering this issue, in this article,
we provide MultiScan, a comprehensive and scalable multi-
engine online virus detection system, which incorporates
32 leading anti-virus engines. With the user-friendly web
interface, the system users can upload suspicious samples
via web browsers and the detection results from multiple
anti-virus engines can be displayed on the web interface.
The proposed system can perform the “offline detection and
isolated update” of the anti-virus engines. This mechanism
guarantees that the uploaded confidential samples are not
exposed to the Internet, during either virus detection or
system upgrade. Furthermore, the low-coupling design of
this system is highly scalable to support the distributed
deployment mode. The system accomplishes the following
aspects of functionalities:

1) Combination of multiple anti-virus engines. The system
incorporates 32 anti-virus engines. As the anti-virus en-
gines are closely related to the operating systems, multiple
anti-virus engines installed in the same operating system
may cause conflicts. Therefore, the anti-virus engines are
installed in different virtual machines and controlled by
customized scripts to ensure that each of them can work
independently and efficiently. After the suspicious samples
have been uploaded to the system, each engine will perform
virus scan individually and report the detection result,
hence finally 32 results will be returned to the user. The
anti-virus engines can be automatically updated.
2) User-friendly web interface. As with VirusTotal, the system
users can get access to the web interface and upload sus-

Page 1 of 15

https://mc.manuscriptcentral.com/cemag

IEEE Consumer Electronics Magazine - Article Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

2

picious samples (either separately or within a compressed
archive) via web browsers and the detection results from
multiple anti-virus engines can be displayed on the web
interface. The system administrator can get access to the
administrator’s web interface for the related functionalities.
The web interface also provides the API for the articulation
with other third-party tools.
3) Efficient user management. The system has a critical access
control mechanism. Ordinary users cannot get access to the
administrator’s web interface, with which the system ad-
ministrator can monitor some factors such as the uploaded
samples, the computational resources, the status of anti-
virus engines, and the statistics of detection results. User
information such as the username and password can be
modified by both of the user and the system administrator,
yet only the system administrator can add or delete users.
As the system is designed only for the internal usage,
registrations from the public are not allowed.
4) Fault tolerance and security. The interfaces for calling 32
anti-virus engines provided by different anti-virus enter-
prises are miscellaneous, and the update of these anti-virus
engines may alter the interfaces as well. In this case, the
system should handle all possible unstable factors properly
and report them to the system administrator. The system
includes multiple subsystems to control the anti-virus en-
gines and their update collaboratively. The detailed logs
are recorded by the system, and the error messages can
be returned to the administrator timely for troubleshooting.
Besides, the system has been scanned by a vulnerability
scanner to avoid common vulnerabilities.

The rest of this article is composed as follows. In section
2, we describe the virus detection process of the proposed
system. In section 3, we introduce the system design specifi-
cations. In section 4, we present the system testing process.
In section 5, we provide the conclusion of this article.

2 THE VIRUS DETECTION PROCESS

Upload samples

Analyze samples

Already 
scanned ? Scan again? End

Allocate tasks

Detection 
engine 2

Detection results

Summarize

Detection 
engine n

Detection 
engine 1

yn

y n

Fig. 1. The virus detection flow chart.

The system performs the virus detection process according
to the flow chart illustrated in figure 1. Users can simply get

access to the system via the web interface in the front-end.
The web interface takes the responsibility of interacting with
system users, such as accepting uploaded samples. After
logging into the system with the username and password,
a user can upload a single sample or multiple samples in
a compressed archive via the web browser, either with a
PC or a mobile device. E.g., a user can upload the newly
downloaded APK files to the system for detection. The web
interface provides JSON API, with which the third-party
applications can upload samples to the system. After the
samples are successfully uploaded, the system will perform
immediate and automatic sample analysis. For an over-sized
sample, the system can prompt an error message on the web
interface, informing the permitted size of maximum. For
an archive of samples, the system can perform the unzip
process automatically and create a batch task; if the archive
contains an excessive number of samples, the system can al-
so prompt an error message on the web interface, informing
the permitted number of maximum. If a sample has been
scanned before, the system can inform the user about this
situation and provide the detection history; the user can
also request the system to scan the sample again. For the
virus detection, the SHA-1, SHA-256 and MD5 hash values
of the samples are generated and saved. Then the detection
tasks are created based on the status of anti-virus engines.
Each anti-virus engine is independently installed in a virtual
machine and separated from other anti-virus engines, and it
is packaged with a customized management script. When a
detection task is allocated to one of the anti-virus engines,
the script calls the engine to scan. Finally, multiple detection
results are collected using the APIs of anti-virus engines,
and the results are summarized and displayed on the web
interface.

3 SYSTEM DESIGN SPECIFICATIONS

 
       HTTP protocol

HTTP proxy

VirtualBox

Detection
engine 1

                  The detection engine 
                  management subsystem 

                  The sample 
                  management subsystem

Detection
engine 2

Detection 
engine 3

The main 
server

The virtual 
machine 

server

HTTP proxy

VirtualBox

Detection
engine 4

Detection
engine 5

Detection 
engine 6

The virtual 
machine 

server

MULTISCAN

The update 
management 
subsystem

Fig. 2. The system architecture.

The system architecture is depicted in figure 2. The system
has a user-friendly web interface in the front-end and the
comprehensive anti-virus mechanisms based on virtual-
ization techniques in the back-end. Ubuntu Linux is the
primary operational environment of the proposed system
and is used for the storage of suspicious samples, as the
performance stability and security of Linux are better than
Windows for the proposed system. Apache2 is utilized for
building the web server, accompanied with Laravel PHP

Page 2 of 15

https://mc.manuscriptcentral.com/cemag

IEEE Consumer Electronics Magazine - Article Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

3

TABLE 1
Web pages of the interface and their functionalities

Class Web Page Functionalities User Types

The web pages for
virus detection

Home page Introduction of the system. All users
Upload page Upload suspicious samples. Logged-in users, system

administrator
Result page View the detection results of one user’s uploaded

samples.
The logged-in user who
uploaded the samples,
system administrator

The web pages for
system and user
management

User center page Modify the password, renew the access token, etc. Logged-in users, system
administrator

Upload history page View all uploaded samples of one user and the relevant
detection results.

Logged-in users, system
administrator

Full history page View all uploaded samples of all users and the relevant
detection results.

System administrator

User management page Add or delete users, modify the passwords of all users,
etc.

System administrator

System status page Check the status of CPU, RAM, and network, etc. System administrator
Statistics page Check the statistics, such as the number of samples

uploaded daily; the average detection time of all
anti-virus engines, etc.

System administrator

and MySQL. The open-source software VirtualBox is uti-
lized for virtualization. The system design is low-coupling,
for the communications among the system modules are
launched with HTTP protocol. Thus the high-scalability
can be achieved. The system can execute not only on one
physical host but can be distributed to multiple hosts as
well. The troubleshooting can also be easily conducted with
this design: if a system module encounters a fatal error,
other modules will not be severely affected; after the error
has been fixed, all modules can be started up again and
execute normally. In overall, the system is composed of five
core modules, including:
• Web interface. The web interface is designed for the inter-
actions with the system users.
• Sample management subsystem. This subsystem manages
the uploaded suspicious samples and supervises the allo-
cation of virus detection tasks.
• Engine management subsystem. This subsystem controls and
communicates with the anti-virus engines and collects their
status of execution.
• Anti-virus engines. Each anti-virus engine is enclosed in
one virtual machine. These anti-virus engines can commu-
nicate with the engine management subsystem via their
customized scripts.
• Update management subsystem. This subsystem manages
the “offline detection and isolated update” process. This
subsystem controls the network connections of the virtual
machines, and it controls the creation and deletion of the
virtual machine snapshots.

3.1 The web interface

The front-end web interface is a unified API of the system
for the interactions with the system administrator, system
users, and third-party applications. After logging into the
system with the username and password via the web in-
terface, a user can upload a single suspicious sample or
multiple samples compressed in a ZIP or RAR archive.
After the samples are successfully uploaded, the system
will perform the virus detection automatically. If a sample
has been scanned before, the relevant detection history

can be retrieved, and also the sample can be re-scanned.
The detection results of multiple anti-virus engines can be
summarized and displayed in the web interface for the
users. On the management pages of the web interface,
the system administrator can check the system executional
status and conduct the user management. The design style
of the web interface is concise and similar to VirusTotal.
Figure 3 represents the web page for uploading suspicious
samples.

  MultiScan  Multi-engine anti-virus platform Engine Status User Center

MULTISCAN

Upload File

Click to choose the file to upload

Fig. 3. The web page for uploading suspicious samples.

Compatibility is the main advantage of building the sys-
tem interface on web browsers. The browser-server design
ensures that the accesses of users are not limited by the
hardware and operating systems. Users can also get access
to the system using mobile devices. E.g., if a user has an
Android smartphone, the newly downloaded APK files can
be uploaded to the system immediately for virus detection.
However, the web interface requires the PC browsers to be
Chrome, Firefox, Safari, IE8 or above. For mobile devices,
Android and iOS built-in browsers are applicable. As the
web interface is the entry of the whole system and the
control terminal for both of the regular users and system ad-
ministrator, the relevant access control mechanism is essen-
tial. In the proposed system, the web interface is composed
of multiple web pages, which have various functionalities.
The accessible web pages for regular users and the system

Page 3 of 15

https://mc.manuscriptcentral.com/cemag

IEEE Consumer Electronics Magazine - Article Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

4

administrator are different. Table 1 describes the web pages
of the interface and their functionalities. A regular user can
access limited functionalities, including:
• Check the detection history of the user-uploaded samples.
• Modify the account information and password.
• Generate the access token.
• Check the status of anti-virus engines.
Besides the above user functionalities, the system adminis-
trator can access some additional functionalities, including:
• View the uploaded samples of all users.
• Check the executional status of the whole system.
• View the statistics of samples, such as the number of
samples uploaded daily.
• Conduct user management, including add or delete users,
and modify their information or passwords.

JSON API is provided in the system for third-party ap-
plications to facilitate the process of uploading the samples
and retrieving the detection results automatically. JSON API
is based on HTTP, and the information is transmitted in
JSON format. As the proposed system utilizes RESTful API,
the third-party applications can upload samples, check the
anti-virus engine status, and retrieve the detection results
with standardized approaches. After logging-in, on the user
center page, a user can generate the access token required
for JSON API access. The code below represents the status
of anti-virus engines in JSON format.

{
"result": "success",
"engines": [
{

"name": "f-prot",
"full_name": "F-Prot",
"platform": "Windows",
"library_date": "01-05-2017",
"status": "online"

},
...
{

"name": "symantec",
"full_name": "Symantec Endpoint Protection",
"platform": "Windows",
"library_date": "02-05-2017",
"status": "online"

}]
}

The “engines” part represents the status of anti-virus
engines in the system, including the name, the operational
status (online, offline, or updating), the operating system,
and the update date of virus library. The code below repre-
sents the standardized detection results returned.

{
"results": {

"symantec": {
"result": "OK",
"full_name": "Symantec Endpoint Protection",
"library_date": "02-05-2017"

},
...

"f-prot": {
"result": "Virus",
"full_name": "F-Prot",
"library_date": "01-05-2017"

}
},
"total": 32,
"nothreatsNum": 20,
"errorNum": 0,
"detectedNum": 12

}

The “results” part represents the results of the anti-virus
engines after a sample has been uploaded to the system. If

a result is “OK”, then the sample is benign for the relevant
anti-virus engine; if a result is “TIMEOUT” or “ERROR”,
then the corresponding anti-virus engine encounters errors
or malfunctions; if a result is “Virus”, then the sample is
malicious. The “nothreatsNum” represents the number of
engines that report benign. The “errorNum” represents the
number of engines that encounter errors or malfunctions.
The “detectedNum” represents the number of engines that
report malicious.

3.2 The sample management subsystem
The sample management subsystem manages the upload-
ed samples from users. After the samples are successfully
uploaded, the sample management subsystem will perform
sample analysis instantly. For an over-sized sample, the sub-
system can prompt an error message on the web interface,
informing the permitted size of maximum. For an archive
of samples, the subsystem can perform the unzip process
automatically and create a batch task; if the archive contains
an excessive number of samples, the subsystem can also
prompt an error message on the web interface, informing
the permitted number of maximum. The SHA-1, SHA-256
and MD5 hash values of the newly-uploaded samples are
automatically generated and saved into the Linux storage
system, where the samples are searchable according to their
hash values. Then the detection tasks are generated based
on the status of anti-virus engines. Users can check the
detection status of the samples online. If a sample has
already been scanned, then the relevant detection history
can be retrieved, or the sample can be re-scanned.

3.3 The engine management subsystem
As the system is a combination of 32 anti-virus engines
from various anti-virus organizations, the most instable
factor is the condition of these anti-virus engines. As these
anti-virus engines are developed by various companies,
the functionalities are different, and they require different
operational environments. Uncertain detection results may
be generated due to the instability of execution or update.
Therefore, it is critical for the status monitoring and error
handling of these anti-virus engines to make sure that they
can execute and update efficiently and proper detection
results can be returned. The engine management subsystem
communicates with the scripts of the anti-virus engines with
HTTP protocol and manages these engines. This subsystem
can monitor and detect the errors of the anti-virus engines
and inform the system administrator timely. Information
such as the status of anti-virus engines and the versions of
the virus libraries are collected by this subsystem.

3.4 The 32 anti-virus engines and packaging scripts
The system adopts the open-source software VirtualBox as
the virtualization platform. Each of the 32 anti-virus engines
is installed in an independent virtual machine and isolated
with others so that they can execute independently and the
conflicts can be avoided. With the low-coupling design, the
system can still execute normally even if some of the anti-
virus engines fail. The virtual machines can be distributed
among multiple physical hosts. Operating systems such as

Page 4 of 15

https://mc.manuscriptcentral.com/cemag

IEEE Consumer Electronics Magazine - Article Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

5

TABLE 2
Packaging methods of 32 anti-virus engines

Anti-virus Engines Operating
System

Engine Calling Method Result Acquisition Method Library Update Date
Acquisition Method

Kingsoft, Rising Windows Command line GUI software log Configuration file
360 Windows Command line GUI software log VDF file modification date
AVG, DrWeb Windows Command line Detection report Detection report
McAfee Windows Command line Detection report Configuration file
Norman Windows Command line Detection report VDF file modification date
BitDefender, eScan Linux Command line Command line output Command line output
Avast, ClamAV, Emsisoft,
NOD32, F-Prot, F-Secure,
IKARUS, Kaspersky

Windows Command line Command line output Command line output

G-DATA Windows Command line Command line output Detection report
Comodo Linux Command line Command line output VDF file modification date
Microsoft Windows Command line System event log VDF file modification date
ZoneAlarm Windows Command line Software log VDF file modification date
Agnitum, Defenx Windows Trigger real-time protection SQLite file VDF file modification date
Avira Windows Trigger real-time protection System event log VDF file modification date
Symantec Windows Trigger real-time protection System event log Configuration file
K7, TrendMicro Windows Trigger real-time protection Software log VDF file modification date
Fortinet, Panda, Tencent Windows ShellMenu GUI software log VDF file modification date
Baidu Windows ShellMenu GUI detection report Configuration file
MalwareSecure Windows ShellMenu SQLite file VDF file modification date

Windows XP 32bit, Windows Thin PC 32bit, CentOS 6.6
64bit are installed into the virtual machines, according to
the anti-virus engines’ requirements of operating systems.
The anti-virus engines are customized according to their
features, and enclosed in packages with executable scripts,
which have the following features and functionalities:
• The scripts are saved in the main server for centralized
management and modification.
• The scripts are composed with Python and communicate
with the engine management subsystem with HTTP proto-
col.
• The scripts can monitor the anti-virus engines in real-time,
and report their status including any errors occurred to the
engine management subsystem.
• The scripts request virus detection jobs from the engine
management subsystem regularly. When a detection task
is allocated to one of the anti-virus engines, the script of
that anti-virus engine downloads the sample to the local
virtual machine and calls the anti-virus engine to scan. The
detection results are collected using the APIs of the anti-
virus engines.
• The scripts can update the virus libraries regularly and
report the virus library versions to the engine management
subsystem.

The methods for realizing the functionalities mentioned
above are various for different anti-virus engines. For exam-
ple, when calling the anti-virus engines and collecting the
results, some of the anti-virus engines use command line
interfaces whereas others use windowed ones. Therefore,
various kinds of scripts for packaging the anti-virus engines
have been developed according to their features. Table 2
illustrates the packaging methods of 32 anti-virus engines.

3.4.1 Engine calling methods
• Command line. In Windows and Linux, some engines sup-
port command line interfaces for calling.
• ShellMenu. In the Windows system resource manager,
each file has its shell context menu, and an anti-virus engine

often adds in its menu item. Windows provide calling
functions to a file’s shell context menu. Therefore, for some
engines which do not support command line interfaces, the
ShellMenu method is utilized for calling the engines for
virus detection.
• Trigger real-time protection. Most of the engines have real-
time protection mechanisms. Whenever a file is copied into a
hard-disk, it will trigger the real-time protection. Therefore,
for those engines that do not support the command line
or ShellMenu methods, the real-time protection triggering
method is utilized.

3.4.2 Result acquisition methods

• Command line output. Most engines can return the stan-
dardized detection results in the command lines with the
command line calling method.
• System event log. For some engines, the detection results
are recorded into the system event logs. This method is often
applied on those engines that utilize the calling method of
real-time protection triggering.
• Software log. Some engines save the detection results into
software logs or user application data logs.
• SQLite file. Some engines save the detection results into
SQLite databases.
• Detection report. Some engines generate the detection re-
sults as official detection reports.
• GUI software log. For some engines, instead of outputting
text-based detection results directly, graphical windows are
displayed for the results. For those engines, the scripts will
try to acquire the results by simulating the manual ma-
nipulating processes, such as software-clicking, keyboard-
typing, screen-shotting, and image matching. The acquired
results are text-based software logs.

3.4.3 Virus library update methods

• Automatic update. Most engines can check the network
connections and communicate with the official update

Page 5 of 15

https://mc.manuscriptcentral.com/cemag

IEEE Consumer Electronics Magazine - Article Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

6

servers. When there are available update packages, the virus
libraries will be automatically updated.
• Command line calling. Some engines have independent
functions for calling to start the update processes.
• Offline update package installation. Due to the network
conditions, the online update of some engines may fail. In
this case, the relevant offline update packages need to be
downloaded from the official websites for the update.

3.4.4 Virus library update date acquisition methods
• Command line output. Some engines have command line
interfaces, from which the dates can be acquired.
• Configuration file. Some engines record the dates into the
configuration files.
• Detection report. Some engines record the dates into the
official detection reports.
• VDF file modification date. For those engines whose update
dates cannot be acquired from the above methods, the
modification dates of the VDF files are regarded as the
relevant virus library update dates.

3.5 The update management subsystem
Due to the privacy requirements of the system users, the
samples should not be uploaded to the anti-virus enter-
prises. The “offline detection and isolated update” is an
update technique that can perform the virus library update
with the Internet connection, but the samples are isolated
with the anti-virus enterprises. When scanning samples,
the anti-virus engines are isolated from the Internet; and
when updating, the anti-virus engines are isolated from the
samples. With this technique, the anti-virus engines can be
updated on a daily basis and there is no privacy leakage
for the samples. This technique is monitored by the update
management subsystem, which controls the operational sta-
tus of the virtual machines, such as:
• The boot and shut down of the virtual machines.
• The network connection of the virtual machines (Internet
or host only).
• The creation/deletion of the virtual machine snapshots.

This subsystem takes the snapshots named “scanner”
from the virtual machines in which the anti-virus engines
are installed and then sets the network configurations of the
scanners to “host only” to block the Internet connections.
For scanners, the packaging scripts will request virus detec-
tion jobs from the engine management subsystem regularly.
During detection, all of the uploaded samples are only
scanned by the anti-virus engines in these scanners. The
original virtual machines are named “updater”. The up-
daters have the Internet connections, but they are isolated to
the uploaded samples. For updaters, the packaging scripts
will launch the engine update processes on a daily basis
to update the relevant virus libraries, and report the virus
library versions to the engine management subsystem. After
the virus libraries of the anti-virus engines in the updaters
are updated, new scanners are generated from these up-
daters. The old scanners are then replaced by the new ones.
This mechanism ensures that those anti-virus engines that
connect to the Internet are isolated to the uploaded samples,
and those anti-virus engines with the uploaded samples
cannot get access to the Internet. Checkpoints are set during

these operations, thus if some errors occur, they can be fixed,
and the related error messages can be sent to the system
administrator timely. Figure 4 demonstrates the complete
process of the “offline detection and isolated update”.

              VirtualBox Snapshots

Host only

Internet accessible

Detection Engine
(Snapshot)

Detection Engine
(Snapshot with samples)

Detection Engine
(Snapshot updated)

Suspicious 
Samples

Update virus library

Detection Engine Detection Engine
(updated)

Create 
snapshot

Create 
snapshot

Fig. 4. The complete process of the “offline detection and isolated
update”.

4 SYSTEM TESTING APPROACHES

The objective of system testing is to guarantee that the
system can work according to the requirements analysis.
The system should present acceptable performance of fault-
tolerance and privacy-preservation, and it should be defen-
sive when confronted with regular cyber attacks. Via long-
term testing, the stability of the anti-virus engines can be
enhanced. The hardware requirement of the system can also
be obtained via testing; thus the recommended hardware
configuration can be correspondingly provided for the de-
ployment in an enterprise. We have tested the system under
the following hardware environment:
• Server: Lenovo ThinkServer TD340
• CPU: Xeon E5-2420 v2 2.2GHz 4 cores*2
• RAM: 32GB DDR3 1600MHz
• Hard-drive: Samsung 256GB SSD*2; 1TB 7200rpm HDD*2

We use unit testing and end-to-end testing to guarantee
the comprehensiveness of the testing process and thus the
best performance of the system.
• Unit testing is the testing process of the subsystems, aims
to ensure that each of the subsystems can execute normally
and has no errors. Each of the five modules of the system
has been tested.
• End-to-end testing simulates the behaviors of a system
user, such as uploading samples and checking the detection
results, aims to ensure that the system can execute all
functions and processes normally in regular conditions.

For testing of the Web interface, we have simulated
the user activities such as logging in, uploading samples,
viewing the detection process, visiting the user center, and
retrieving the detection history. The results have shown
that the web interface layout is correct and the website
can normally be accessed; all other functions can execute

Page 6 of 15

https://mc.manuscriptcentral.com/cemag

IEEE Consumer Electronics Magazine - Article Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

7

normally. Figure 5 represents the screenshot of part of the
detection result page.

MD5 Hash: 69630e4574ec6798239b091cda43dca0 

SHA1 Hash: cf8bd9dfddff007f75adf4c2be48005cea317c62

SHA256 Hash: 131f95c51cc819465fa1797f6ccacf9d494aaaff46fa3eac73ae63ffBdfd8267

Detection result: 24/30 

Detection engine Detection result Library date

K7 found the Trojan (000139291) 30-04-2017

Defenx EICAR_test_file 30-04-2017

IKARUS EICAR-ANTIVIRUS-TESTFILE 30-04-2017

ZoneAlarm ElCAR-Test-File 03-05-2017

Emsisoft EICAR-Test-File (not a virus) (B) 30-04-2017

Agnitum Outpost EICAR_test_file 29-04-2017

Detection complete

Fig. 5. The detection result of an uploaded sample.

For testing of the sample management subsystem, we
have uploaded repeated samples, over-sized samples, and
archived samples to the system. The results have shown
that for a repeated sample, the system can inform the user
and provide the detection history; if the user requests to
scan the sample again, then the system will perform another
detection process. For an over-sized sample, the system can
prompt an error message with the permitted largest size.
For an archived sample, the system can perform the unzip
process automatically and create a batch task; if an archive
contains an excessive number of samples, the system can
also prompt an error message.

Status of Engines

Engine Name Operating System Date of Virus Library Status

360 Antivirus Windows 20/04/2017      Online

Avira Server Security Windows 26/04/2017      Online

Malware Secure Windows 26/04/2017      Online

TrendMicro PC-cilin Windows 24/04/2017      Online

Rising Antivirus Windows 25/04/2017      Online

Microsoft Security Essentials Windows 27/04/2017      Online

F-Prot Windows 24/04/2017      Online

Baidu Windows 22/04/2017      Online

Tencent Windows 21/04/2017      Online

Fortinet Windows 22/04/2017      Online

Norman Antivirus Windows 22/04/2017      Online

Panda Antivirus Windows 21/04/2017      Online

Avast Windows 22/04/2017      Online

Fig. 6. The status of anti-virus engines.

For testing of the engine management subsystem, we
have designed multiple testing cases based on the anti-virus
engines’ status (online, updating, or offline). The results
have shown that the subsystem can correctly obtain the anti-
virus engines’ status; via the collaboration with the sample
management subsystem, the engine management subsys-
tem can accurately assign detection tasks to the anti-virus
engines, according to the anti-virus engines’ status. This
subsystem can record the error messages about the anti-
virus engines and report them to the system administrator.
Figure 6 represents the status of anti-virs engines collected
by this subsystem.

For testing of the update management subsystem, a set
of operations have been applied to the virtual machines,

such as the generation and deletion of the virtual machine
snapshots. The results have shown that the virtual machines
can be started up sequentially; the snapshots can be gener-
ated and deleted properly. If the system is overloaded, no
new snapshots will be created, and the related information
can be sent to the system administrator.

For testing of the anti-virus engines and their packag-
ing scripts, we have uploaded the malicious and benign
samples and obtained the detection results. Benign files
(such as Windows system files), EICAR Standard Anti-Virus
Test File, and other suspicious samples collected from the
Internet are used to test the accuracy and performance of
the anti-virus engines. The results have shown that the anti-
virus engines can normally work in regular conditions. The
packaging scripts can detect errors of the anti-virus engines
and return the error messages timely to the engine manage-
ment subsystem for troubleshooting. The average overall
detection time for a single uploaded file is 60 seconds, and
70 percent of the anti-virus engines can return the results in
30 seconds. For a batch task, the average overall detection
time is 24 seconds per sample. Figure 7 demonstrates the
average detection time of the 32 engines.

40.0s

30.0s

20.0s

10.0s

 0.0s

Fig. 7. The average detection time of the 32 engines.

Besides, we have specially tested the performance and
security of the system. For the performance of the web
interface, we used the Apache Benchmark to launch the
tests. The results have shown that the website is available
for hundreds of user accesses simultaneously. For the perfor-
mance of the anti-virus engines and virtual machines, firstly
all anti-virus engines are started up, then some archives (zip
or rar) with more than one hundred samples are uploaded
to the system for testing. The results have shown that for an
archive with 119 samples, it takes 48 minutes to complete
the task. The average detection speed is 24 seconds per
sample. Although the load average of the system can exceed
the number of CPU cores, the anti-virus engines can still
work normally. According to the test results, for the overall
performance of the system, the hardware environment in
our testing only fulfills the lowest requirement. Thus, the
recommended hardware configuration for the system is
that each virtual machine should be allocated at least one
CPU core and 1.5 GB RAM. Adequate storage space is
recommended for the backup of virtual machine files. For
the system security, we used the Acunetix Web Vulnerability
Scanner to scan the system to guarantee that the system has
no high-risk vulnerabilities. Besides, we audited all of the
codes to avoid SQL injection and XSS vulnerabilities. We
have simulated the unauthorized accesses of attackers. We
also have simulated XSS and SQL injection attacks to the

Page 7 of 15

https://mc.manuscriptcentral.com/cemag

IEEE Consumer Electronics Magazine - Article Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

8

system and tried to obtain the uploaded samples from the
Internet. The results have shown that the system is defensive
to these attacks.

Based on the above descriptions about testing, for the
overall detection speed, the main limitation is the speed of
each engine. As various companies have different engine
design, the detection time varies enormously. It can be as
quick as a few seconds and as slow as tens of seconds.
Besides, some anti-virus engines use GUI interaction meth-
ods, which lower the speed. Therefore, according to the
testing results, the system performance can be enhanced in
three aspects, i.e., the improvement of web interface; the
upgrade of system hardware; and the selection of more
stable enterprise-edition anti-virus engines.

5 CONCLUSION AND FUTURE WORK

We have proposed a multi-engine online virus detection
system that can perform the “offline detection and isolated
update”. This mechanism guarantees that the uploaded
confidential samples are not exposed to the Internet. With
the user-friendly web interface, the system users can gain
a comprehensive security evaluation of the suspicious sam-
ples based on the detection results from multiple anti-virus
engines. The web interface also supports JSON API, thus
the system can be integrated with other systems such as the
intrusion detection system (IDS) or other security analytics
software. Furthermore, the system is highly scalable to sup-
port the distributed deployment mode. The virtualization
techniques used in the system facilitate the installation
and execution of various types of anti-virus engines. The
virtual machines can be scaled and installed to multiple
physical hosts. As the system can collect and store the
suspicious samples, in the future, we will further improve
the system functionalities so that the system can analyze the
distribution patterns of different kinds of malicious samples.
Moreover, as the low-coupling design of the system shows
ideal scalability, we will modify and build the system among
several virtual machines in an IaaS cloud with cluster-based
big data tools to further improve the system performance.

ACKNOWLEDGMENT

The authors would like to thank CSC for the support.

REFERENCES

[1] A. Gilder, R. Herbst, and S. Shah, “Scan engine manager with
updates,” Nov. 6 2009, uS Patent App. 12/613,569.

[2] K. Shyamsunder, T. Tonn, R. Thomas, A. Holmes, J. Krahulec,
and S. Sunkara, “Systems and methods for malware detection and
scanning,” Dec. 30 2010, uS Patent App. 12/982,540.

[3] M. D. McDougal, W. E. Sterns, and R. S. Jennings, “System and
method for malware detection using multiple techniques,” Apr. 14
2015, uS Patent 9,009,820.

[4] P. N. Yarykin and I. B. Godunov, “System and methods of per-
forming antivirus checking in a virtual environment using different
antivirus checking techniques,” Jan. 19 2016, uS Patent 9,239,921.

[5] ——, “System and methods of distributing antivirus checking tasks
among virtual machines in a virtual network,” Mar. 24 2015, uS
Patent 8,990,946.

[6] R. Thomas, M. LaPilla, T. Tonn, G. Sinclair, B. Hartstein, and
M. Cote, “Systems and methods for malware detection and scan-
ning,” May 17 2016, uS Patent 9,344,446.

[7] J. Liu, X. Ouyang, and Q. Bo, “Dynamic malware analysis of a
url using a browser executed in an instrumented virtual machine
environment,” Aug. 9 2016, uS Patent 9,413,774.

[8] VirusTotal, “Virustotal-free online virus, malware and url scanner,”
Online: https://www.virustotal.com/, 2017.

[9] VirSCAN, “Virscan-on-line scan service,” Online:
http://www.virscan.org/, 2017.

Ming Liu (ming.liu-2@student.uts.edu.au) is a joint PhD student at the
School of Electronic Information and Electrical Engineering, Shanghai
Jiao Tong University, China, and the Faculty of Engineering and IT, Uni-
versity of Technology Sydney, Australia. His research interests include
cyber threat intelligence, intrusion detection systems, data analytics,
and cloud security.

Yuxuan He (max.yuxuan.he@gmail.com) received his master’s degree
from Shanghai Jiao Tong University in 2015. Currently, he is a lead soft-
ware engineer at Hypereal. His research interests include iOS develop-
ment, cloud computing, GPU parallel computing, and network defense
technologies.

Zhi Xue (zxue@sjtu.edu.cn) is a professor at the School of Electronic
Information and Electrical Engineering, Shanghai Jiao Tong University,
China, and the associate dean of the School of Cyber Security in
the same university. He received his bachelor’s degree from Shanghai
Jiao Tong University in 1992, and was a visiting scholar in the Bell
Laboratories of United States in 1997, and received his PhD degree from
Shanghai Jiao Tong University in 2001. His research interests include
wireless network security, cloud security, cryptography, and cyber threat
intelligence.

Jinjun Chen (jchen@swin.edu.au) is a professor at the School of Soft-
ware and Electrical Engineering, Swinburne University of Technology,
Australia. He received his PhD degree from the same university in 2007.
Currently, he is the deputy director of the Swinburne Data Science
Research Institute. His research interests include data science, scalable
data analytics, privacy preservation technologies, and cyber security.
His research outcomes have been published in more than 100 articles in
high-quality journals and conferences. He received the Swinburne Vice
Chancellor’s Research Award for early career researchers (2008), the
IEEE Computer Society Outstanding Leadership Award (2008-2009),
the IEEE Computer Society Service Award (2007), and the Swinburne
Faculty of ICT Research Thesis Excellence Award (2007).

Xiangjian He (Xiangjian.He@uts.edu.au) received the Bachelor of Sci-
ence degree in Mathematics from Xiamen University in 1982, the Master
of Science degree in Applied Mathematics from Fuzhou University in
1986, the Master of Science degree in Information Technology from
the Flinders University of South Australia in 1995, and the PhD de-
gree in Computing Sciences from the University of Technology Sydney,
Australia in 1999. Currently, he is a full professor and the Director of
Computer Vision and Pattern Recognition Laboratory at the Global Big
Data Technologies Centre (GBDTC) and a co-leader of the Network
Security research team at the Centre for Real-time Information Networks
(CRIN) at the University of Technology Sydney. He has many high-
quality publications and has received various research grants including
four national Research Grants awarded by Australian Research Council
(ARC) as a Chief Investigator. He is an IEEE Senior Member and an
IEEE Signal Processing Society Student Committee member. He has
served as a guest editor for various international journals.

Page 8 of 15

https://mc.manuscriptcentral.com/cemag

IEEE Consumer Electronics Magazine - Article Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

Upload samples

Analyze samples

Already 
scanned ? Scan again? End

Allocate tasks

Detection 
engine 2

Detection results

Summarize

Detection 
engine n

Detection 
engine 1

yn

y n

Page 9 of 15

https://mc.manuscriptcentral.com/cemag

IEEE Consumer Electronics Magazine - Article Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

 
       HTTP protocol

HTTP proxy

VirtualBox

Detection
engine 1

                  The detection engine 
                  management subsystem 

                  The sample 
                  management subsystem

Detection
engine 2

Detection 
engine 3

The main 
server

The virtual 
machine 

server

HTTP proxy

VirtualBox

Detection
engine 4

Detection
engine 5

Detection 
engine 6

The virtual 
machine 

server

MULTISCAN

The update 
management 
subsystem

Page 10 of 15

https://mc.manuscriptcentral.com/cemag

IEEE Consumer Electronics Magazine - Article Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

  MultiScan  Multi-engine anti-virus platform Engine Status User Center

MULTISCAN

Upload File

Click to choose the file to upload

Page 11 of 15

https://mc.manuscriptcentral.com/cemag

IEEE Consumer Electronics Magazine - Article Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

              VirtualBox Snapshots

Host only

Internet accessible

Detection Engine
(Snapshot)

Detection Engine
(Snapshot with samples)

Detection Engine
(Snapshot updated)

Suspicious 
Samples

Update virus library

Detection Engine Detection Engine
(updated)

Create 
snapshot

Create 
snapshot

Page 12 of 15

https://mc.manuscriptcentral.com/cemag

IEEE Consumer Electronics Magazine - Article Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

MD5 Hash: 69630e4574ec6798239b091cda43dca0 

SHA1 Hash: cf8bd9dfddff007f75adf4c2be48005cea317c62

SHA256 Hash: 131f95c51cc819465fa1797f6ccacf9d494aaaff46fa3eac73ae63ffBdfd8267

Detection result: 24/30 

Detection engine Detection result Library date

K7 found the Trojan (000139291) 30-04-2017

Defenx EICAR_test_file 30-04-2017

IKARUS EICAR-ANTIVIRUS-TESTFILE 30-04-2017

ZoneAlarm ElCAR-Test-File 03-05-2017

Emsisoft EICAR-Test-File (not a virus) (B) 30-04-2017

Agnitum Outpost EICAR_test_file 29-04-2017

Detection completePage 13 of 15

https://mc.manuscriptcentral.com/cemag

IEEE Consumer Electronics Magazine - Article Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

Status of Engines

Engine Name Operating System Date of Virus Library Status

360 Antivirus Windows 20/04/2017      Online

Avira Server Security Windows 26/04/2017      Online

Malware Secure Windows 26/04/2017      Online

TrendMicro PC-cilin Windows 24/04/2017      Online

Rising Antivirus Windows 25/04/2017      Online

Microsoft Security Essentials Windows 27/04/2017      Online

F-Prot Windows 24/04/2017      Online

Baidu Windows 22/04/2017      Online

Tencent Windows 21/04/2017      Online

Fortinet Windows 22/04/2017      Online

Norman Antivirus Windows 22/04/2017      Online

Panda Antivirus Windows 21/04/2017      Online

Avast Windows 22/04/2017      Online

Page 14 of 15

https://mc.manuscriptcentral.com/cemag

IEEE Consumer Electronics Magazine - Article Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

40.0s

30.0s

20.0s

10.0s

 0.0s

Page 15 of 15

https://mc.manuscriptcentral.com/cemag

IEEE Consumer Electronics Magazine - Article Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


	2019 IEEE
	CEMAG-SRI-0003-Sep-2017_Proof_hi

