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Abstract 

Shaded displays of solids can be generated directly from eSG represen­
tations by a simple new algorithm that requires neither face/edge/vertex 
data nor intersection computations, and is a good candidate for hardware 
implementation. 





·Introduction 

The emerging technology of solid modelling is playing a crucial role 
in the evolution of CAD/CAM and robotic systems towards a higher level 
of automation and integration [Requicha & Voelcker 1982, 1983]. Shaded, 
color displays provide realistic visual feedback to (human) users of solid 
modelling systems, and shading is one of the currently most popular appli­
cations of solid modelling. (In fact, shading and solid modelling are often 
erroneously equated.) 

Figure 1 summarizes the principal techniques for generating shaded 
images in solid modellers. Rectangles in the figure depict representations, 
and circles depict algorithms or processors. Five representations are shown 
(see [Requicha 1980] for basic notions in solid representation). 

Shaded Displays 

Figure 1 

Representation conversion and shading of solids. 
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• 	 CSG (Constructive Solid Geometry) - Trees whose internal nodes rep­
resent Boolean operations (i.e., regularized set operations [Requicha 
1980]) and rigid motions, and whose leaves represent solid primitives. 
Typically, primitive solids are blocks, cylinders, spheres, cones, and 
tori. 

• 	 BReps (Boundary Representations) - Graphs whose nodes represent 
faces, edges and vertices, and whose arcs represent adjacency and in­
cidence relations. 

• 	 Tessellations - BReps whose faces are simple convex polygons, often 
triangles (in which case the representations are called triangulations). 

• 	 Octrees - Hierarchical structures that reflect the recursive subdivision 
of solids into variably-sized cubes [Meagher 1982]. 

• 	 Spatial Enumerations (also called voxel arrays) - Arrays or lists that 
correspond to the uniform subdivision of solids into equally-sized cu­
bical volume elements, called voxels. 

Known algorithms for converting between these representations are also 
shown in Figure 1. 

• 	 CtoB converts eSG representations into BReps, and is usually called 
a boundary evaluation algorithm [Requicha & Voelcker 1985]. 

• 	 Bto T tessellates a BRep, approximating curved faces, if any, by simple 
convex polygons (see e.g. [Wordenweber 1983]). 

• 	 CtoO and BtoO convert, respectively, eSG and BReps into octrees. A 
CtoO algorithm based on the notion of cell classification is discussed 
in [Lee & Requicha 1982] and has been used for several years in the 
PADL-2 system [Brown 1982] for computing mass properties of solids. 
A BtoO algorithm is decribed in [Tamminen et al. 1984] 

• 	 CtoE, BtoE, and OtoE convert, respectively, eSG, BReps and octrees 
into spatial enumerations. In essence they implement point membership 
classification, i.e., they determine, for each point in a 3-D grid, whether 
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the point is inside, on the boundary, or outside of a solid [Requicha & 
Voelcker 1977, Tilove 1980, Lee & Requicha 1982]. Point member­
ship classification is straightforward, and special-purpose hardware for 
converting eSG to spatial enumerations has been designed [Kedem & 
Hammond 1985]. 

Passing now to shading algorithms, the most important are shown on 
the right side of Figure 1. 

• 	 DE and DO display enumeOrations and octrees. Importantly, both have 
been implemented in special-purpose hardware. Thus, a voxel machine 
is running at the University of Pennsylvania [Goldwasser 1984)' and 
octree machines are commercially available. 

• 	 Shaded displays can be generated from BReps by a variety of visible 
surface (VS) algorithms [Newman & Sproull 1979, Foley & van Dam 
1982]. These algorithms are particularly simple when the BReps are 
tesselations, and special purpose tiling engines for displaying trian­
gulations and other tesselations are commercially available. Several 
on-going research projects on custom VLSI chips for high-speed dis­
play also are oriented to tesselations [Demetrescu 1985, Gharachorloo 
& Pottle 1985, Poulton et ai. 1985]. 

• 	 Shading can be accomplished directly from eSG by means of ray cast­
ing algorithms for eSG (RCC), or depth buffer (also called Z-buffer) 
algorithms for eSG (ZBC). Ray casting algorithms for eSG were pio­
neered by the Synthavision™ system [Goldstein & Nagel 1971], and 
are used in several modellers, e.g., PADL-2 and GMSolid [Boyse & 
Gilchrist 1982, Roth 1982]. Many variants of ray casting for eSG exist 
- see e.g. [Atherton 1983, Bronsvoort et ai. 1984, Okino et ai. 1984, 
Wang et al. 1984]. Z-buffer algorithms for eSG are new, insofar as 
we know, and are the main contribution of this paper. (The "extended 
Z-buffer" algorithms of [Okino et al. 1984, · Wang et al. 1984] are 
quite different from the algorithm to be described below, and are best 
classified, in our opinion, as ray casting variants.) 

It 	is clear from Figure 1 that a designer of modelling systems has many 
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options to provide shading facilities in a solid modeller. Figure 2 shows three 
of the most interesting. In Figure 2a the input data, which typically de­
scribes objects through Boolean operations on previously defined objects, 
sweeps of 2-D contours, and so on, is translated {ItoB} into an equivalent 
BRep. This is further converted into a tessellation, which is displayed by 
using a tiling engine. (The architecture of Figure 2a is becoming increas­
ingly popular, and its older version, without tessellation, has been use~ 
by several solid modellers.) Displays of existing BReps may be produced 
quickly because tessellation {BtoT} is not very time consuming (and may 
be available in hardware in the near future), and tiling engines are fast. 
However, module ItoB must produce BReps for objects that are combined 
by Boolean operations when a user defines new solids, and this can take a 
substantial amount of time for complex objects. Boundary evaluation and 
merging algorithms that operate correctly for all input objects [Requicha 
& Voelcker 1985] are not good candidates for hardware implementation 
because they are too complicated (but see [Yamaguchi & Tokieda 1985]). 
Thus, the architecture of Figure 2a suffers from what may be called the 
Boolean operation bottleneck. 

(a) 

Input --En Octree r-8--." 
Shaded Displays 

(b) 

----I8----.J eSG 

(c) 

Figure 2 

Alternative architectures for displaying shaded solids. 
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The alternatives shown in Figures 2b and 2c avoid this bottleneck. 
In Figure 2b the input is converted into (usually approximate) octrees, and 
these are displayed by an octree machine. Boolean operations on octrees can 
be executed swiftly in hardware (or even in software) and therefore rapid 
displays of solids that evolve through user editing should be achievable. 
(Insofar as we know, octree machines have not yet been used in CAD/CAM, 
possibly because of their current price.) 

Figure 2c shows in solid lines the approach adopted in most of the cur­
rent CSG-based modellers. Objects are defined primarily through Boolean 
operations, and therefore the translator ItoC need not perform any ex­
pensive geometric computation to convert the input into CSG trees. Ray 
casting in software is relatively slow, but many speed-ups are available (see 
e.g. [Roth 1982]). Importantly, ray casting machines for CSG have been 
designed and are expected to be demonstrated soon [Ked em & Ellis 1984, 
Sato et al. 1985). The major claim of this paper is that Z-buffer algorithms 
for CSG are competitive with ray casting, and therefore the alternative 
shown in dashed lines in Figure 2c is viable and sometimes preferable. 

* * * 
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A Z-buffer algorithm for CSG 

Depth- or Z-buffer algorithms that operate on BReps, and especially 
on polygonal nets, are well-known in computer graphics [Newman &- Sproull 
1979, Foley & van Dam 1982]. The basic algorithm uses two arrays J[x, y] 
and Z[x, y), with entries for each pixel in a screen. J[x, y] is the intensity 
buffer, and Z[x, y] is the depth- or Z-buffer. In pseudo-code the algorithm 
may be expressed as follows. 

ALGORITHM 1 

for each (x, y) do 
Z[x, y] +-- BigNumber 
I[x, y] +-- 0 {or background intensity} 
end {Initialization loop } 

for each face F of solid S do 
for each point p in a dense grid on F do 

(x, y) +-- ProjectOnScreen(p) 
d +-- IIv - pil { v is the viewpoint} 
if d < Z[x, y] then 

Z[x, y] +-- d 
n +-- Normal to F at p 
I[x, y] +-- CompIntens(p,n, LightSources) 
end {if} 

end {Scanning loop } 
end {Main face loop } 

Display entire array I[x, y] 

In words: Scan each face; check the distance between each point p and 
the viewpoint v; if this distance d is less than that stored in the appropriate 
Z-buffer location, write d onto the Z-buffer, compute the intensity at p 
(w hich depends on the normal n to the solid and on the light sources), 
and update the intensity buffer; at the end of the scan the intensity buffer 
contains the correct image values. Typically, the frame buffer of the display 
terminal is used to store the intensity array, and therefore the display can 
be updated incrementally by overwriting the existing value in the frame 
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buffer whenever a new intensity for a pixel is computed. 

This algorithm is relatively slow when implemented in software. But 
it is very simple, and therefore can be implemented in hardware; in fact, 
current tiling engines use depth-buffering techniques. 

Figure 3 illustrates the need for depth testing. Both PI and P2 project 
on the same pixel, but only PI is visible. The intensities that correspond to 
these two points are different, because the faces FI and F2 make different 
angles with the direction of incident light. 

Light 

Screen'­
Pixel 
(x,y) 

Figure 9 

Depth testing 

Algorithm 1 is not directly applicable to solids represented by eSG, 
because explicit representations for faces are not available. But it can be 
extended to eSG by exploiting the generate and classify paradigm that 
has been found useful in the design of many eSG-based algorithms [Lee 
& Requicha 1982, Sarraga 1982, Requicha & Voelcker 1985]. We use the 
fact that boundaries of solids are monotonically decreasing under Boolean 
operations; that is, the boundary of S = A ® B, where ® denotes one of the 
regularized set operators, must be a subset of (the union of) the boundaries 
of A and B. This implies that the boundary of a solid S must be included 
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in the union of the boundaries of all the primitives Pi in the solid's CSG 
representation. The faces of S are subsets of (unions of) faces of primitives, 
and these are easily computed from a CSG representation. Scanning the 
primitives' faces, instead of the actual solid's faces, yields a superset of 
the points needed by the Z-buffer algorithm. Some of the points must 
be discarded because they are not on the actual faces. This can be done 
by point membership classification, i.e., by an algorithm that determines 
whether any given point in space is inside, on the boundary, or outside of 
a solid. A complete Z-buffer algorithm for CSG is shown below. 

ALGORITHM 2 

for each (x, y) do 

Z[x, y] +- BigNumber 

J[x, y] +- 0 {or background intensity} 

end {Initialization loop} 


for each face F of each primitive of solid S do 
for each point p in a dense grid on F do 


(x, y) +- ProjectOnScreen(p) 

d +- /Iv - pil { v is the viewpoint} 

if d < Z[x, y] then 


CVal +- ClassPoint(p,S) 

if CVal = onS then 


Z[x, y] +- d 

n +- Normal to F at p 

J[x, y] +- CompIntens(p,n, LightSources) 

end {Classification test } 


end {Depth test } 

end {Scanning loop } 


end {Main face loop } 

Display entire array J[x, y] 


Point membership classification algorithms for CSG are simple and 
well-known. The following pseudo-code describes a simplified version of the 
basic algorithm. It assumes that each node N in a CSG tree is represented 
by a record with three fields: links N.Left and N.Right to the two subtrees 
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(sons) of N, and a field N .Op that indicates which operator or primitive 
solid is represented by the node. When N represents a motion operation, 
the left subtree of N represents the solid to be moved, and the right subtree 
is a leaf representing the rigid motion M itself. (Typically, motions are 
represented by 4 X 4 matrices.) 

ALGORITHM 3 

function ClassPoint(p,S) 
case N.Op of 

Primitive : return ClassPointWrtPrim(p,S) 
Motion Op : return ClassPoint(M- 1 (p),S.Left) 
Boolean Op: return Combine(ClassPoint(p,S .Left) , 

ClassPoint(p, S .Right), S .Op) 
end {case} 

end {ClassPoint} 

The function ClassPoint recursively classifies a point with respect to 
each subtree of a Boolean node, and combines the two results (by using look­
up tables derived from simple topological considerations [Requicha & Voel­
cker 1977, 1985, Tilove 1980]). At a motion node the motion M = S.Right 
is inverted, applied to the point, and the transformed point recursively clas­
sified with respect to the original solid S .Left. The recursion ends at the 
primitive leaves, where classification is accomplished by a primitive-specific 
procedure . In most CSG modelers the primitive solids can be expressed as 
Boolean combinations (usually intersections) of algebraic halfspaces, i.e., 
of sets of points p that satisfy an algebraic inequality J(p) < 0, where J 
is a polynomial. ClassPointWrtPrim simply classifies p against each halfs­
pace by testing the sign of f(p ), and combines the results. (In practice a 
"fuzz factor" ( must be used for comparing real numbers because of round­
off errors.) The most expensive computation carried on by Algorithm 3 
is polynomial evaluation for classifying a point with respect to primitive 
halfspaces, and this can be done very quickly. 

Observe that point membership classificat ion does not require com­
puting intersections between geometric entities. Intersection computations 
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amount to solving systems of nonlinear equations, and are the most time 
consuming (and unreliable) components of ray casting and other algorithms 
for eSG. Z-buffer algorithms for eSG have been used at the University of 
Rochester for the past few years to produce shaded displays of blended 
solids, precisely because it is difficult to compute for blending surfaces the 
intersections that are required by other display algorithms. Figure 4 shows 
examples of blends displayed through depth buffering. (See [Rossignac & 
Requicha 1984] for additional examples.) 

Figure 4 

Shaded images of blended solids generated by depth buffering. 

The Z-buffer display algorithm generates images of good quality for 
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objects with rounded edges and corners, as in Figure 4, but suffers from 
aliasing near sharp edges. Figure 5 shows why aliasing occurs. Figures 5a 
and 5b depict two cross-sections of a solid, produced by planes normal to an 
edge of the solid. Suppose that face scanning generates points PI, P2 that 
project on a single pixel, and points P3, P4 that project on another single 
pixel. Points P2 and P3 are discarded because they are farther from the 
viewpoint than, respectively, PI and P4. Observe that, since PI and P4 lie 
in different faces, the corresponding intensities generally will be different. A 
similar situation may occur at many crossections along the edge. The result 
is a jagged appearance for the edge. Aliasing can be reduced by well-known 
filtering techniques [Newman & Sproull 1979, Foley & van Dam 1982]' and 
is not very important in most CAD/CAM applications. 

View direction View direction 

+ + 

Pixel Pixel 

(a) (b) 

Figure 5 

Edge aliasing 

Algorithm 3 may produce incorrect results when solids being combined 
by Boolean operations have overlapping boundaries. To resolve so-called 
"on/on ambiguities" one must augment classification results with neighbor­
hood information, as explained in [Requicha & Voelcker 1977, 1985, Tilove 
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1980]. Neighborhood representation and manipulation complicate the al­
gorithm and slow down its execution. One can trade speed for correctness. 
Thus, simply ignoring neighborhoods, as in Algorithm 3, produces cor­
rect results "most of the time", and occasional errors may be acceptable 
because image quality usually is not crucial in CAD/CAM applications 
when fast display generation is needed for user feedback. (Intolerable er­
rors may occur sometimes, for example when displaying a null object defined 
as S = A -* A.) 

Representing and combining neighborhoods for points that lie in the 
boundaries of several halfspaces (e.g., object's vertices) is nontrivial. (See 
[Requicha & Voelcker 1985] for details of neighborhood manipulations.) 
For the purpose of image generation by depth buffering, one can use the 
following simpler approach, which is guaranteed to produce correct results 
within the resolution of the screen. (An alternative approach that produces 
correct results almost always is described below, in the section on "Fast 
classification" .) When a point p classifies on the boundary of a halfspace H, 
represent its neighborhood by a pair (H, n), where n is a unit vector passing 
through p, normal to the halfspace boundary, and pointing towards the 
outside of the halfspace. If p is on two halfspaces with coincident boundaries 
it is easy to combine the corrresponding neighborhood representations; in 
essence, neighborhood combination amounts to determining whether the 
two normals are parallel or antiparallel (i. e., opposite), and this can be 
done quickly and easily. But what if a point p is on two halfspaces with 
distinct boundaries? Simply discard p and use a new point p' that projects 
on the same pixel as p and also is in the face being scanned. Since plies 
in the curve of intersection of two distinct halfspaces, it is always possible 
to generate a nearby p' that does not. 

* ** 


Efficiency improvements 

The Z-buffer algorithm described above, like most algorithms used in 
geometric modelling, must be supplemented with efficiency enhancement 
techniques to achieve reasonable performance when implemented in soft­
ware. The following are a few of these techniques. 
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Elimination of invisible faces. Most of the visible surface algo­
rithms for BReps immediately discard "back faces", i.e., faces whose points 
p satisfy n. (v - p) < 0, where the dot denotes inner product, v is the view­
point, and n is the normal to the face at p and pointing towards the exterior 
of the solid. Curved faces must be split at the profile, or silhouette edges, 
to ensure that all the points in each of the resulting face segments have 
normals that are consistent ly orient ed towards or away from the viewpoint. 

Because object faces are unavailable in a CSG representation, back face 
elimination in CSG requires a different approach. Consider a solid Sand 
let P be one of the primitives in S's CSG tree. A primitive face of P is a 
front face of P if the normal directed towards the exterior of the primitive 
points towards the viewpoint; otherwise it is a back face of P. Examine the 
unique path from the root of the CSG tree to P and count the number of 
times the path branches to the right at difference operators. If this number 
is even (or zero) the primitive is positive, otherwise it is negative. In the 
Z-buffer algorithm, discard the back faces of positive primitives, and the 
front faces of negative primitives; only the remaining primitive faces are 
potentially visible. This procedure is illustrated by a very simple example 
in Figure 6. 

Back faces 
of positive 
primitiveFront faces 

s 

A
A B 

(+) (-) 

v 

Figure 6 

The back faces of posit ive primitives and front faces of negative primitives 
are invisible. Potentially visible faces are shown by thicker lines. 

13 



Point rejection by depth testing. Depth testing is much cheaper 
than point membership classification, and therefore should be performed 
first, as shown in Algorithm 2. If the potentially visible primitive faces are 
sorted front to back and processed in sorted order, it is likely that a visible 
point be found in one of the first faces, and points in subsequent faces be 
rejected by depth testing only, without incurring additional classification 
costs. 

Optimal primitive face scanning. Ideally, face scanning should 
generate exactly one point for each pixel in the projection of a primitive 
face on the screen. Insufficient point density produces "holes" in the Z­
buffer; hidden faces or background incorrectly appear through these holes 
within the images of an object's true faces (see Figure 7). Too high a density 
is wasteful of computing resources. 

Figure 7 

An image containing "black holes" due to insufficient scanning density. 

For simple, e.g. planar or cylindrical, faces one can use standard scan 
conversion techniques [Newman & Sproull 1979, Foley & van Dam 1982]' 
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or solve the algebraic equation of a surface to find the 3-D point in a face 
that corresponds to an (x, y) pixel (which amounts essentially to ray cast­
ing with respect to a halfspace). For complex faces it is more fruitful to 
use the parametric equations F(u, v) of the faces, and simple estimates for 
increments ~u, ~v; this generally produces suboptimal scans but avoids 
expensive scanning computations. 

Fast classification. Many techniques are known for increasing the 
average performance of classification and other geometric algorithms. Typ­
ically they exploit locality of geometric computations, and use object enclo­
sures, sweeping (also known as "scan line") algorithms, spatial grids, and 
other spatial directories - see e.g., [Roth 1982, Tamminen et al. 1984, 
Tilove 1981b] and references therein. 

A new method for speeding-up classification by using so-called active 
zones [Rossignac & Voelcker 1985] can increase substantially the perfor­
mance of Z-buffer algorithms for CSG. A so-called I -zone is associated 
with each primitive P in the CSG representation of a solid S. An I -zone is 
represented by a modified subset of the solid's CSG tree. The intersection 
of 8P, the boundary of a primitive P, with its I-zone contains the contribu­
tion of P to the boundary of S, and therefore those portions of 8 P outside 
the I-zone may be discarded. We refer the reader to [Rossignac & Voelcker 
1985] for a detailed explanation of the theory and algorithms. Here we give 
a simple example, and note that the theory implies that no classification 
is needed when objects are defined solely by union operations, because all 
the I-zones are empty. Consider the object of Figure 8a, defined by the 
CSG tree of Figure 8b, which represents a combination of five rectangular 
primitives. The I-zone of A in this example is simply C. In the Z-buffer 
algorithm it suffices to scan only C n 8A, the subset of the faces of A within 
the I-zone, and to classify the points generated only with respect to C. 
Therefore classification with respect to D and E can be avoided entirely. 
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B 

(a) 

A 

(b) 

B D 

Figure 8 


An example of classification using I-zones. 


Classification calculations for depth buffering algorithms can be sim­
plified as follows. Consider a binary classifier that outputs true when a 
point p is inside or on the boundary of S, and false when p is outside of S. 
(That is, it computes the characteristic function of the set S.) Classification 
with respect to halfspaces, and hence with respect to primitives, requires 
less comparisons in this approach, and (ignoring neighborhoods) the proce­
dure for combining classification results simply applies to them the logical 
operators or, and, and not and. If the binary classification of a point p 
with respect to a solid S is true the point need not be on the boundary 
of S. This causes no errors in a depth buffering algorithm because there 
must be some visible point q on the boundary of S that is in front of p, 
and therefore p will eventually by rejected by a depth test - see Figure 
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9. If binary classification is used together with the ordering of depth tests 
discussed earlier, few unnecessary classifications are likely to be performed. 

S 

A B 


Figure 9 

The binary classification of p with respect to S = A u B 

is true and p is not on the boundary of S. But P 


will be rejected when its depth is compared with that of q. 


We noted earlier that neighborhood manipulations may be ignored in 
point membership classifiers used in Z-buffer algorithms if correctness for 
all inputs is not very important, and we also described a relatively simple 
and correct approach. The following is an alternative approach, which is 
fast and fails very rarely. Suppose that a point p is on two subsolids A and 
B. To classify p with respect to S = A ® B we select a point p' at a small 
distance 8 behind p, and classify p' with respect to S. If p' is on S or on 
two subsolids of S, ignore p', select another point, and classify it. If p' is 
in S then p is in or on S; in either case, p can be added to the Z-buffer. 
If p' is out of S then p is out of S or on a back face of S; in either case p 
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can be discarded. Figure 10 illustrates various possibilities. The procedure 
has an intrinsic "resolution" of 8. It is clear from Figure 10e that incorrect 
answers may be produced near certain edges or if the object has a wall of 
thickness less than 8 in the vicinity of p. Since pi can be chosen so as to 
avoid on/on cases, its classification can be accomplished by using I-zone 
techniques without neighborhoods. 

p p' (a) 

(b) 
p p' 

p • p' (c) 

.'. (d)
p p' 

p (e) 

Figure 10 

Inferring the classification of p by classifying a point pi behind p. 
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Sampling and recursive refinement. The running time of Z-buffer 
algorithms is directly proportional to the number of points generated and 
tested. This number can be decreased substantially through sampling tech­
niques similar to those used in ray casting algorithms for eSG [Roth 1982]. 
Thus, scan faces at a coarser resolution and interpolate results when, say, 
four adjacent points in the same primitive face are found to have the same 
classification. If classification values for adjacent points are not the same, 
subdivide by decreasing the sampling interval and recurse. Sampling may 
cause errors when objects have. features that are small compared with the 
sampling interval, but has dramatic effects on performance. 

Use of generators. The curves of constant u and v parameters in 
a parametrically defined primitive face F(u, v) are called generators. They 
are linear or circular for the faces of the common primitives - blocks, cylin­
ders, cones, spheres, and tori. Instead of classifying points on a face, one 
can classify entire generators and then consider only points that lie in the 
"on" subsets of the generators, and therefore are "on" the solid as well. This 
replaces classification of many points with classification of the generators 
in which they lie, and may lead to significant speed-ups. However, clas­
sification of generators requires the computation of intersections between 
generators and surfaces, and therefore negates one of the advantages of 
depth buffering algorithms. 

* * * 


Comparison with ray casting 

Ray casting and the Z-buffer algorithm introduced in this paper both 
operate directly on eSG representations, and therefore avoid the Boolean 
operation bottleneck. To compare the two approaches let us first review 
the basic ray casting algorithm. 
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ALGORITHM 4 

for each Pixel in Screen do 
R +- CreateRay(ViewPoint,Pixel) 
RwrtS +- ClassLine(R, S) 
if RinS = 0 then I+-O {or background intensity} 
else p +- FirstPoint (RinS) 

n +- Normal to S at p 
I +- CompIntens(p, n, LightSources) 
end {else clause} 

Display (I ,Pixel) 
end {do loop } 

In words: cast a ray R between the viewpoint and each pixel; classify 
it with respect to the solid S; extract the first point p of RinS, the subset 
of R that classifies inside of Sj compute the intensity I at p by using an 
illumination model, and output I to the screen. Typically, relatively simple 
illumination models are used in CAD/CAM (but see [Clark 1985]) and the 
most expensive computation in Algorithm 4 is line/solid classification ­
function ClassLine - which involves intersecting the line with the faces of 
all the primitives in the CSG tree of S. 

Depth buffering has a major advantage over ray casting: point mem­
bership classification is inherently simpler and faster than line membership 
classification. In particular, no intersection calculations are required for 
classifying points. Intersection procedures for complex primitives are diffi­
cult to write, costly to execute, and sometimes numerically unreliable. 

Which of the two shading algorithms is faster? Ignoring speed-ups, 
ray casting classifies 8 rays, where 8 is the number of screen pixels, with 
respect to a solid having p primitives. The worst case complexity of line 
classification is quadratic on p [Tilove 1981a], and therefore the complexity 
of ray casting is proportional to 8.p2. In a worst case each face of the object 
covers almost all the screen and the Z-buffer algorithm must generate in 
the order of 8 points per primitive face. Since the number of faces is in the 
order of p and point classification is linear in p [Tilove 1981a], the overall 
complexity of depth buffering also is proportional to 8.p2. This worst-case 
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analysis is too crude to be practically useful, but it suggests that ray casting 
and depth buffering have comparable performances, which differ mainly in 
multiplicative constants. 

Intuitively one expects Z-buffering to be faster than ray casting when 
there are many complicated primitives (e.g. tori), for which intersection cal­
culations are expensive. This expectation is confirmed by the experimental 
data summarized in Table 1. The table shows the ratio of the running times 
of ray casting and Z-buffer algorithms for the test objects shown in Figures 
11, 12, and 13. The Z-buffer algorithm used in the tests was not coded 
for speed. It uses a binary classifier with I-zones and no neighborhoods, 
but has no other speed-ups. The ray caster is part of the PADL-2 system, 
and uses spatial directories, a special-purpose classification procedure, sam­
pling, and several other efficiency-enhancement techniques. We turned off 
sampling in the PADL-2 ray caster to provide a fairer comparison, since 
sampling can also be used in depth buffer algorithms. The data show that 
even a non-optimized Z-buffer shader is competitive with current ray cast­
ers. Depth buffering is much faster than ray casting for solids whose faces 
lie in complex surfaces and project on a small area of the screen. For exam­
ple, the object of Figure 13 is rendered 25 times faster by Z-buffering than 
by ray casting. 

Test Object ZB/RC 

A 1.1 

B .47 

C .04 

Table 1 

Ratio of Z-buffer (ZB) to ray casting (RC) execution times for test objects. 
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Figure 11 


Test object A 

Figure 12 


Test object B 
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Figure 13 

Test object e 

Conclusions 

The depth- or Z-buffer shading algorithm presented in this paper op­
erates directly on eSG representations. It does not require BRep infor­
mation, i. e., explicit face, edge and vertex representations, and therefore 
avoids expensive boundary merging and evaluation computations for dis­
playing objects defined through Boolean operations. 

The algorithm's performance compares favorably with that of ray cast­
ing, which is the shading algorithm used by most of the current eSG-based 
modellers . Depth buffering is easier to implement than ray casting. While 
ray casting requires computing intersections of lines with surfaces by solv­
ing nonlinear systems of equations, Z-buffering only requires polynomial 
evaluations to classify points wit h respect to halfspaces . 

The main components of the basic Z- buffer algorithm for eSG are 
face scanning, depth testing in the Z- buffer, and point membership classi­
fication. Suboptimal face scanning is relatively straightforward, hardware 
implementations of Z- buffers exist, and VLSI chips fo r p oint membership 
clasification have been designed [Kedem & Hammond 1985]. Therefore 
depth-buffer algorithms for eSG are very good candidates for VLSI imple­
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mentation, and are likely to lead to simpler machines than those currently 
being fabricated for ray casting [Ked em & Ellis 1984]. The ability to gen­
erate displays at high speed directly from eSG representations may have a 
profound impact on the architecture of solid modellers, because BReps in 
current modellers are required primarily for fast display. 

* * * 
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