
Geometric algebra:
a computational framework
for geometrical applications

Leo Dorst
�
and Stephen Mann

�

Abstract

Geometric algebra is a consistent computational framework in which to de-
fine geometric primitives and their relationships. This algebraic approach con-
tains all geometric operators and permits specification of constructions in a totally
coordinate-free manner. Since it contains primitives of any dimensionality (rather
than just vectors) it has no special cases: all intersections of primitives are com-
puted with one general incidence operator.

This paper gives an introduction to the elements of geometric algebra to aid
assessment of its potential for geometric programming. It contains no really new
results, but collects known elements of relevance to computer graphics.

Keywords: Geometric algebra, geometric programming.

1 Introduction

In the usual way of defining geometrical objects in fields like computer graphics,
robotics and computer vision, one uses vectors to characterize the constructions. To
do this effectively, the basic concept of a vector as an element of a linear space is ex-
tended by an inner product and a cross product, and some additional constructions such
as homogeneous coordinates and Grassmann spaces (see [8]) to encode compactly the
intersection of, for instance, offset planes in space. Many of these techniques work
rather well in 3-dimensional space, although some problems have been pointed out:
the difference between vectors and points [7], and the affine non-covariance of the nor-
mal vector as a characterization of a tangent line or tangent plane (i.e. the normal vector
of a transformed plane is not the transform of the normal vector). These problems are
then traditionally fixed by the introduction of data structures and combination rules;
object-oriented programming can be used to implement this patch tidily [14].

Yet there are deeper issues in geometric programming that are still accepted as
‘the way things are’. For instance, when you need to intersect linear subspaces, the
intersection algorithms are split out in treatment of the various cases: lines and planes,

�
Informatics Institute, University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands�
Computer Science Department, University of Waterloo, Waterloo, Ontario, N2L 3G1, CANADA

1

2 Leo Dorst and Stephen Mann

planes and planes, lines and lines, et cetera, need to be treated in separate pieces of
code. The linear algebra of the systems of equations with its vanishing determinants
indicates changes in essential degeneracies, and finite and infinite intersections can be
nicely unified by using homogeneous coordinates. But there seems no getting away
from the necessity of separating the cases. After all, the outcomes themselves can be
points, lines or planes, and those are essentially different in their further processing.

Yet this need not be so. If we could see subspaces as basic elements of com-
putation, and do direct algebra with them, then algorithms and their implementation
would not need to split their cases on dimensionality. For instance, ����� could be
‘the subspace spanned by the spaces � and � ’, the expression ����� could be ‘the
part of � perpendicular to � ’; and then we would always have the computation rule� �	�
������������ � ������� since computing the part of � perpendicular to the span
of � and � can be computed in two steps, perpendicularity to � followed by perpen-
dicularity to � . Subspaces therefore have computational rules of their own that can
be used immediately, independent of how many vectors were used to span them (i.e.
independent of their dimensionality). In this view, the split in cases for the intersection
could be avoided, since intersection of subspaces always leads to subspaces. We should
consider using this structure, since it would enormously simplify the specification of
geometric programs.

This paper intends to convince you that subspaces form an algebra with well-
defined products that have direct geometric significance. This algebra can then be used
as a language for geometry, and we claim that it is a better choice than a language al-
ways reducing everything to vectors (which are just 1-dimensional subspaces). Along
the way, we will see that this framework allows us to divide by vectors (in fact, we can
divide by any subspace), and we will see several familiar computer graphics constructs
(quaternions, normals) that fold in naturally to the framework and need no longer be
considered as special cases.

It comes as a bit of a surprise that there is really one basic product between sub-
spaces that forms the basis for such an algebra, namely the geometric product. The
algebra is then what mathematicians call a Clifford algebra. But for applications, it is
convenient to consider ‘components’ of this geometric product; this gives us sensible
extensions, to subspaces, of the inner product (computing measures of perpendicular-
ity), the cross product (computing measures of parallelness), and the ������� and �����!
(computing intersection and union of subspaces). When used in such an obviously
geometrical way, the term geometric algebra is preferred to describe the field.

In this paper, we will use the basic products of geometric algebra to describe all
familiar elementary constructions of basic geometric objects and their quantitative re-
lationships. The goal is to show you that this can be done, and that it is compact,
directly computational, and transcends the dimensionality of subspaces. We will not
use geometric algebra to develop new algorithms for graphics; but we hope to convince
you that some of the lower level algorithmic aspects can be taken care of in an auto-
matic way, without exceptions or hidden degenerate cases by using geometric algebra
as a language – instead of using only its vector algebra part as in the usual approach.

Since subspaces are the main ‘objects’ of geometric algebra we introduce them
first, which we do by combining vectors that span the subspace in Section 2. We then
introduce the geometric product, and then look at products derived from the geometric

Geometric Algebra: a Computational Framework 3

product in Section3. Some of the derived products, like the inner and outer products,
are so basic that it is natural to treat them in this section also, even though the ge-
ometric product is all we really need to do geometric algebra. Other products (such
� � ��� , ��� � , rotation and projection through ‘sandwiching’) are better introduced in the
context of their geometrical meaning, and we develop them in later sections. This ap-
proach reduces the amount of new notation, but it may make it seem as if geometric
algebra needs to invent a new technique for every new kind of geometrical operation
one wants to embed. This is not the case: all you need is the geometric product and
(anti-)commutation.

After introducing the products in Section 3, we give some examples in Section 4
of how these products can be used in elementary but important ways. In Section 5, we
look at more advanced topics such as differentiation, linear algebra, and homogeneous
representation spaces for affine geometry.

2 Subspaces as elements of computation

As in the classical approach, we start with a real vector space
���

that we use to denote
1-dimensional directed magnitudes. Typical usage would be to employ a vector to
denote a translation in such a space, to establish the location of a point of interest.
(Points are not vectors, but their locations are [7].) Another usage is to denote the
velocity of a moving point. (Points are not vectors, but their velocities are.) We now
want to extend this capability of indicating directed magnitudes to higher-dimensional
directions such as facets of objects, or tangent planes. We will start with the simplest
subspaces: the ‘proper’ subspaces of a linear vector space, which are lines, planes,
etcetera through the origin, and develop their algebra of spanning and perpendicularity
measures. Section 5.4 uses the same algebra to treat “offset” subspaces; [10] uses it for
spheres.

2.1 Constructing subspaces

So we start with a real � -dimensional linear space
���

, of which the elements are
called vectors. We will always view vectors geometrically: a vector denotes a ‘1-
dimensional direction element’, with a certain ‘attitude’ or ‘stance’ in space, and a
‘magnitude’, a measure of length in that direction. These properties are well character-
ized by calling a vector a ‘directed line element’, as long as we mentally associate an
orientation and magnitude with it: � is not the same as ��� or 	
� .

Algebraic properties of these geometrical vectors are: they can be added, weighted
with real coefficients, in the usual way to produce new vectors; and they can be mul-
tiplied using an inner product, to produce a scalar � �� (in all of this paper, we use a
metric vector space with well-defined inner product).

In geometric algebra, higher-dimensional oriented subspaces are also basic ele-
ments of computation. They are called blades, and we use the term � -blade for a
� -dimensional homogeneous subspace. So a vector is a 1-blade.

A common way of constructing a blade is from vectors, using a product that con-
structs the span of vectors. This product is called the outer product (sometimes the

4 Leo Dorst and Stephen Mann

�
�

�

(d)

��� � � ��
�

� � �

(c)(a)

� �

(b)

origin originorigin

Figure 1: Spanning proper subspaces using the outer product.

wedge product) and denoted by � . It is codified by its algebraic properties, which
have been chosen to make sure we indeed get � -dimensional space elements with an
appropriate magnitude (area element for � � 	 , volume elements for � � � ; see Fig-
ure 1). As you have seen in linear algebra, such magnitudes are determinants of matri-
ces representing the basis of vectors spanning them. But such a definition would be too
specifically dependent on that matrix representation. Mathematically, a determinant is
viewed as an anti-symmetric linear scalar-valued function of its vector arguments. That
gives the clue to the rather abstract definition of the outer product in geometric algebra:

The outer product of vectors ����� ��� ��� �	� is anti-symmetric, associative and
linear in its arguments. It is denoted �
� � � ����� �	� , and called a � -blade.

The only thing that is different from a determinant is that the outer product is not forced
to be scalar-valued; and this gives it the capability of representing the ‘attitude’ of a � -
dimensional subspace element as well as its magnitude.

2.2 2-blades in 3-dimensional space

Let us see how this works in the geometric algebra of a 3-dimensional space
���

. For
convenience, let us choose a basis ��	����������� ��� in this space, relative to which we
denote any vector. Now let us compute � � � for ����������������������� � � � � and
� �"! � � � �#! � � � �$! � � � . By linearity, we can write this as the sum of six terms of the
form ���%!&���'��(��� or ����!��&����(��� . By anti-symmetry, the outer product of any vector
with itself must be zero, so the term with ���%!��%��� �)��� and other similar terms disappear.
Also by anti-symmetry, �'� �*��� � �+��� �*��� , so some terms can be grouped. You may
verify that the final result is

,)-/.10
0 243'576'5�893;:�6;:<8=3;>�6;>�?'-12A@%576'5�8B@�:�6�:<89@�>�6C>%?
0 243'5D@�:FE13;:�@�5�?�6'5
-/6;:G8H243;:�@�>IE13;>�@J:&?�6�:<-K6C>G8H243;>�@�5<EL3'5D@�>�?�6C>G-M6'5 (1)

We cannot simplify this further. Apparently, the axioms of the outer product permit
us to decompose any 2-blade in 3-dimensional space onto a basis of three elements.
This ‘2-blade basis’ (also called ‘bivector basis’) N� � �O� � ��� � �O� � ��� � �O� � � consists of
2-blades spanned by the basis vectors. Linearity of the outer product implies that the

Geometric Algebra: a Computational Framework 5

set of 2-blades forms a linear space on this basis. We will interpret this as the space of
all plane elements or area elements.

Let us show that ��� � indeed has the correct magnitude for an area element. That
is particularly clear if we choose a specific orthonormal basis �� � ��� � ��� � � , chosen such
that � lies in the � � -direction, and � lies in the

� � � ��� � � -plane (we can always do this).
Then � � ��� � , ��� ! ������� � � � ! �	��
�� � � (with � the angle from � to �), so that

��� � � � � ! �	��
�� ����� � ��� (2)

This single result contains both the correct magnitude of the area � ! �	��
� spanned by �
and � , and the plane in which it resides – for we recognize � � �M� � as ‘the unit directed
area element of the

� � � ��� � � -plane’. Since we can always adapt our coordinates to
vectors in this way, this result is universally valid: � � � is an area element of the plane
spanned by � and � (see Figure 1c). Denoting the unit area element in the

�
� � � � -plane

by � , the coordinate-free formulation of the above is

��� � � � � ! ����
�� ��� (3)

The result extends to blades of higher grades: each is proportional to the unit hyper-
volume element in its subspace, by a factor which is the hypervolume.

2.3 Volumes as 3-blades

We can also form the outer product of three vectors � , � , � . Considering each of those
decomposed onto their three components on some basis in our 3-dimensional space
(as above), we obtain terms of three different types, depending on how many common
components occur: terms like �	�%!������
��� �9�'� �=��� , like ���%!����%�<��� �(��� �=��� , and like
� � ! � � � � � � � � � � � . Because of associativity and anti-symmetry, only the last type
survives, in all its permutations. The final result is

��� � � � � � ���%!&��� � � ����! � �%� �#����!���� � � ����! � ���I�$� � !�������� � � !&����������� �L��� �1� ���
The scalar factor is the determinant of the matrix with columns � , � , � , which is pro-
portional to the signed volume spanned by them (as is well known from linear algebra).
The term � � �L� � �1� � is the denotation of which volume is used as unit: that spanned
by � � ��� � ��� � . The order of the vectors gives its orientation, so this is a ‘signed volume’.
In 3-dimensional space, there is not really any other choice for the construction of vol-
umes than (possibly negative) multiples of this volume (see Figure 1d). But in higher
dimensional spaces, the attitude of the volume element needs to be indicated just as
much as we needed to denote the attitude of planes in 3-space.

2.4 The pseudoscalar as hypervolume

Forming the outer product of four vectors ��� � � � ��� in 3-dimensional space will
always produce zero (since they must be linearly dependent). The highest order blade
that is non-zero in an � -dimensional space is therefore an � -blade. Such a blade, rep-
resenting an � -dimensional volume element, is called a pseudoscalar for that space
(for historical reasons); unfortunately a rather abstract term for the elementary geomet-
ric concept of ‘hypervolume element’.

6 Leo Dorst and Stephen Mann

2.5 Scalars as subspaces

To make scalars fully admissible elements of the algebra we have so far, we can define
the outer product of two scalars, and a scalar and a vector, through identifying it with
the familiar scalar product in the vector space we started with:

� ��� � � ���
�� � � � � � �
Since the scalars are constructed by the outer product of zero vectors, we can interpret
them geometrically as the representation of 0-dimensional subspace elements, i.e. as a
weighted points at the origin – or maybe you prefer ‘charged’, since the weight can be
negative. We will denote scalars mostly by Greek lower case letters.

2.6 The linear space of subspaces

Collating what we have so far, we have constructed a geometrically significant algebra
containing only two operations: the addition � and the outer multiplication � (subsum-
ing the usual scalar multiplication). Starting from scalars and a 3-dimensional vector
space we have generated a 3-dimensional space of 2-blades, and a 1-dimensional space
of 3-blades (since all volumes are proportional to each other). In total, therefore, we
have a set of elements that naturally group by their dimensionality. Choosing some
basis N� � ��� � ��� � � , we can write what we have as spanned by the set��� �	
������

scalars

� � � ��� � ��� �� ��� �
vector space

��� � �L� � �F� � �L� � � � � �L� �� ��� �
bivector space

�M� � �1� � �L� �� ��� �
trivector space

� ��
�� (4)

Every � -blade formed by � can be decomposed on the � -vector basis using � . The
‘dimensionality’ � is often called the grade or step of the � -blade or � -vector, reserv-
ing the term dimension for that of the vector space that generated them. A � -blade
represents a � -dimensional oriented subspace element.

If we allow the scalar-weighted addition of arbitrary elements in this set of basis
blades, we get an 8-dimensional linear space from the original 3-dimensional vector
space. This space, with � and � as operations, is called the Grassmann algebra of
3-space. In an � -dimensional space, there are

� � � � basis elements of grade � , for a
total basis of 	 � elements for the Grassmann algebra. The same basis is used for the
geometric algebra of the space.

3 The Products of Geometric Algebra

In this section, we describe the geometric product, the most important product of ge-
ometric algebra. The fact that the geometric product can be applied to � -blades and
has an inverse considerably extends algebraic techniques for solving geometrical prob-
lems. We can use the geometric product to derive other meaningful products. The most
elementary are the inner and outer products, also discussed in this section; the useful
but less elementary products giving reflections, rotations and intersection are treated
later in this paper.

Geometric Algebra: a Computational Framework 7

�

�

��� � fixed

��� � fixed

Figure 2: Invertibility of the geometric product.

3.1 The Geometric Product

For vectors in our metric vector space
���

, the geometric product is defined in terms
of the inner and outer product as

����� ��� �1� ��� � (5)

So the geometric product of two vectors is an element of mixed grade: it has a scalar
(0-blade) part ��� � and a 2-blade part � � � . It is therefore not a blade; rather, it is an
operator on blades (as we will soon show). Changing the order of � and � gives

� ��� �
� �M� � � � � ��� � � ��� �

The geometric product of two vectors is therefore neither fully symmetric (unlike the
inner product), nor fully anti-symmetric (unlike the outer product).

A simple drawing may convince you that the geometric product is indeed invertible,
whereas the inner and outer product separately are not. In Figure 2, we have a given
vector � . We have indicated the set of vectors 	 with the same value of the inner
product 	 �� – this is a plane perpendicular to � . The set of all vectors with the same
value of the outer product 	 ��� is also indicated – this is the line of all points that span
the same directed area with � (since for any point
 ��	L�� � on that line, we have

 � � �	 � � ��� ��� � ��	 � � by the anti-symmetry property). Neither of these sets
is a singleton (in spaces of more than 1 dimension), so the inner and outer products are
not fully invertible. The geometric product provides both the plane and the line, and
therefore permits determining their unique intersection 	 , as illustrated in the figure.
Therefore it is invertible.

Eq.(5) defines the geometric product only for vectors. For arbitrary elements of our
algebra it is defined using linearity, associativity and distributivity over addition; and
we make it coincide with the usual scalar product in the vector space, as the notation
already suggests. That gives the following axioms (where � and � are scalars, 	 is a
vector, �/� � � � are general elements of the algebra):

scalars � � and � 	 have their usual meaning in
���

(6)

8 Leo Dorst and Stephen Mann

scalars commute � � � � � (7)

vectors 	 � ��	 � �M� 	 � � (8)

associativity � � � ��� � � �
��� � (9)

We have thus defined the geometric product in terms of inner and outer product; yet
we claimed that it is more fundamental than either. Mathematically, it is more pure to
replace eq.(8) by ‘the square of a vector 	 is a scalar

� � 	 � ’. This function
�

can then
actually be interpreted as the metric of the space, the same as the one used in the inner
product, and it gives the same geometric algebra. Our choice was to define the new
product in terms of more familiar quantities, to aid your intuitive understanding of it.

It may not be obvious that these equations give enough information to compute
the geometric product of arbitrary elements. Rather than show this abstractly, let us
show by example how the rules can be used to develop the geometric algebra of 3-
dimensional Euclidean space. We introduce, for convenience only, an orthonormal
basis N��� � ���� � . Since this implies that ��� �������
	���� , we get the commutation rules

� � � � �

�+� � � � if ������
 if � ��� (10)

In fact, the former is equal to � � � � � , whereas the latter equals � � �J� � . Considering the
unit 2-blade � � �1� � , we find its square:

� � � �L� � � � � � � � �L� � � � � � �1� � � � � � � � � � � � � � � �
� � � � � � � � � � �+� � � � � � � � � �
 (11)

So a unit 2-blade squares to �
 (we just computed for � � � � � for convenience, but there
is nothing exceptional about that particular unit 2-blade, since the basis was arbitrary).
Continued application of eq.(10) gives the full multiplication for all basis elements in
the Clifford algebra of 3-dimensional space. The resulting multiplication table is given
in Figure 3. Arbitrary elements are expressible as a linear combination of these basis
elements, so this table determines the full algebra.

3.1.1 Exponential representation

Note that the geometric product is sensitive to the relative directions of the vectors:
for parallel vectors � and � , the outer product contribution is zero, and ��� is a scalar
and commutative in its factors; for perpendicular vectors, ��� is a 2-blade, and anti-
commutative. In general, if the angle between � and � is � in their common plane with
unit 2-blade � , we can write (in a Euclidean space)

��� � ��� �L� ��� � ��� ����� ��� � ��� � � � � ����
 � � (12)

using a common rewriting of the inner product, and eq.(3). We have seen above that
� ��� �
 , and this permits the shorthand of the exponential notation (by the usual
definition of the exponential as a converging series of terms)

��� ��� ����� ��� � ��� � � � � �	��
�� � ��� ����� ��������� � (13)

Geometric Algebra: a Computational Framework 9

��� �
 ��� ��� � � ���D� � � � ��� � ��� � �

 ��� ��� � � ���D� � � � ��� � ��� � �
� � � �
 � � � �+� � � � � �+� � � �D� � � � �
��� ��� �+�'� �
 ��� � �+��� ��� � � � � � � �
� � � � � � � �+��� �
 �'� � � ��� �+��� ���D�
� � � � � � �+� � � � � �D� � �
 � � � �+� � � �+� �
� � � � � � � � ��� � � �+��� �+��� � �
 ��� � �+���
� � � � � � � � � � �+� � � � � � � �+� � � �
 �+� �
��� � � ��� � � ��� � � � � ��� � �+� � �+��� �+��� �

Figure 3: The multiplication table of the geometric algebra of 3-dimensional Euclidean
space, on an orthonormal basis. Shorthand: � � � � � � �L� � , etcetera.

All this is reminiscent of complex numbers, but it really is different. Firstly, geomet-
ric algebra has given a straightforward real geometrical interpretation to all elements
occurring in this equation, notably of � as the unit area element of the common plane
of � and � . Secondly, the math differs: if � were a complex scalar, it would have to
commute with all elements of the algebra by eq.(7), but instead it satisfies � ��� �� �
for vectors � in the � -plane. We will use the exponential notation a lot when we study
rotations, in Section 4.6.

3.1.2 Grades in the geometric product

It is a consequence of the definition of the geometric product that ‘a vector squares to
a scalar’: the geometric product of a vector with itself is a scalar.

When you multiply two blades, the vectors in them may multiply to a scalar (if they
are parallel) or to a 2-blade (if they are not). As a consequence, when you multiply two
blades of grade � and

�
, the result contains parts of grade

�
� � � �J� � � � � � 	 �J� ��� �J� � � � �� ��� 	 �J� � � � � � , just depending on how their factors align. This series of terms contains

all information about their geometrical relationships.

3.2 The inner product

In geometric algebra, the inner product is the symmetrical part of the geometric product
of two vectors:

��� � � �� � ���L� � � �
Just as in the usual definition, this embodies the metric of the vector space and can
be used to define distances. It also codifies the perpendicularity required in projection
operators. Now that vectors are viewed as representatives of 1-dimensional subspaces,
we of course want to extend this metric capability to arbitrary subspaces. The inner
product is generalized to general subspaces as:

� ��� is the blade representing the largest subspace that is contained in
the subspace � and that is perpendicular to the subspace

�
; it is linear

10 Leo Dorst and Stephen Mann

in
�

and � ; it coincides with the usual inner product � � � of
� �

when
computed for vectors � and � .

The above determines the inner product uniquely.1 It turns out not to be symmetrical
(as one would expect since the definition is asymmetrical) and also not associative. But
we do demand linearity, to make it computable between any two elements in our linear
space (not just blades).

Here we just give the rules by which to compute the resulting inner product for
arbitrary blades, omitting their derivation (essentially as in [13]). In the following � , �
are scalars, � and � vectors and � , � , � general elements of the algebra.

scalars � � � � � � (14)

vector and scalar ��� � ��� (15)

scalar and vector � � � � � � (16)

vectors ��� � is the usual inner product in
���

(17)

vector and element ��� � � � ��� � � ��� � � � � � � � � ������� (18)

distribution
� � � ��� ��� �	��� � � � ��� (19)

As we said, linearity and distributivity over � also hold, but the inner product is not
associative.

When used on blades as
��� � � � � � � � � � � � ��� , rule eq.(19) gives the inner

product its meaning of being the perpendicular part of a subspace. In words it would
read: ‘to get the part of � perpendicular to the subspace that is the span of

�
and

�
,

take the part of � perpendicular to
�

; then of that, take the part perpendicular to
�

’.
Figure 4a gives an example: the inner product of a vector 	 and a 2-blade

�
,

producing the vector 	 � � .

3.2.1 Perpendicularity and dualization

We define the concept of perpendicularity through the inner product:

� perpendicular to
� ���

��� � ���	�
It is then easy to prove that, for general blades

�
, the construction

� � � is indeed per-
pendicular to

�
, as we suggested in the previous section. This is especially useful when�

is taken as (a multiple of) the pseudoscalar � � of the surrounding space. The orthog-
onal complement or dual

�	�
of
�

is defined using the reverse of the pseudoscalar (see
Section 3.2) � � � � �

� � � (20)

We observe that we may as well write
� �

as the geometric product
�

� � since � � � � �
� for any vector � in the blade

�
. This ostentatiously invertible form is often preferred.

More about the dual in Section 4.8.
1The resulting inner product differs slightly from the inner product commonly used in the geometric

algebra literature. Our inner product has a cleaner geometric semantics, and more compact mathematical
properties, and that makes it better suited to computer science. It is sometimes called the contraction, and
denoted as ���� rather than ����� . The two inner products can be expressed in terms of each other, so this is
not a severely divisive issue. They ‘algebraify’ the same geometric concepts, in just slightly different ways.
See also [5].

Geometric Algebra: a Computational Framework 11

(a) (b)

�

	
	 � �

	 � �

�

��� 	
	

� �
� � � �

Figure 4: (a) The inner product of blades. (b) Dual and cross product. In both figures,
the corkscrew denotes the orientation of the trivector.

3.2.2 norm/magnitude

The norm of a blade
�

is a scalar, defined in terms of the inner product of
�

with itself.
In a Euclidean space, it is:

� � ��� � � �

� � (21)

where

�

is the reverse of
�

, obtained by switching its spanning factors: if
� �

��� ���	� � � ��� ���	� , then

� � ��� � ��� � ���	� ����� . The reverse of

�
differs from

�
by a

sign
�
�
 � �� ��� ��� ��� . Using it in eq.(21) keeps norms of blades real-valued in Euclidean

spaces.
For example, to compute the norm of a 2-blade � � � , we find by the inner product

rules: � � � ��� � � � � � � � � � ��� � � � � � � ��� � ��� � � � � ��� � � ��� � � � � � ��� � ��� � � � ��
� � � � � � � � � � � � � � � � � � ��� � � ��� � �
 � ��� � � � � � � � � � � ��� �	��
�� � � . So the norm is indeed

equal to the size of the area spanned by � and � .

3.2.3 Grade of inner product

The result of an inner product
� � � is an object of a lower grade than

�
:

	�
��� � ��� � � � � 	�
���� � � � � � 	�
��� � � � � � (22)

3.3 The outer product

We have already seen the outer product in Section 2, where it was used to construct the
subspaces of the algebra. Once we have the geometric product, it is better to see the
outer product as its anti-symmetric part:

��� ��� ��
�
��� � ��� �

12 Leo Dorst and Stephen Mann

This then gives the defining properties we saw before (as before, � � � are scalars, � � �
are vectors, �/� � � � : are general elements):

scalars � ��� � � � (23)

scalar and vector � � ��� � � (24)

anti-symmetry for vectors � � � � � � � � (25)

associativity
� � � � � � � ��� � � � � ��� (26)

Linearity and distributivity over � also hold.

3.3.1 Subspace objects without shape

We reiterate that the outer product of � -vectors gives a ‘bit of � -space’, in a manner
that includes the attitude of the space element, its orientation (or ‘handedness’) and its
magnitude. For a 2-blade ��� � , this was conveyed in eq.(3).

However, � � � is not an area element with well-defined shape, even though one is
tempted to draw it as a parallelogram (as in Figure 1c). For instance, by the properties
of the outer product, � � � � � � � �#� � � � , for any � , so � � � is just as much
the parallelogram spanned by � and � � � � . Playing around, you find that you can
move around pieces of the area elements while still maintaining the same sum � � � ;
so really, a bivector does not really have any fixed shape or position, it is just a chunk
of a precisely defined amount of 2-dimensional directed area in a well-defined plane.
It follows that the 2-blades have an existence of their own, independent of any vectors
that one might use to define them.

We will take these non-specific shapes made by the outer product and ‘force them
into shape’ by cleverly chosen geometric products; this will turn out to be a powerful
and flexible technique to get closed computational expressions for geometrical con-
structions.

3.3.2 Grade law for outer product; zero element

The grade of a � -blade is the number of vector factors that span it. It obeys the simple
rule

	�
���� � � � � � � � 	�
���� � ��� �G� 	�
��� � � � � � (27)

Of course the outcome may be � , so this zero element of the algebra should be seen
as an element of arbitrary grade. There is then no need to distinguish separate zero
scalars, zero vectors, zero 2-blades, etcetera.

3.3.3 Linear (in)dependence

Note that if three vectors are linearly dependent, they satisfy

� , � , � linearly dependent
� �

� � � � � ��� �
We interpret the latter immediately as the geometric statement that the vectors span
a zero volume. This makes linear dependence a computational property rather than a

Geometric Algebra: a Computational Framework 13

predicate: three vectors can be ‘almost linearly dependent’. The magnitude of � � ��� �
obviously involves the determinant of the matrix

�
� � � � , so this view corresponds with

the usual computation of determinants to check degeneracy.

4 Basic geometric constructions

In the previous two sections, we showed how to construct subspaces, and introduced the
geometric product and the inner and outer products. In this section, we will show how
to use these products to perform geometric computations. We begin with a discussion
of using the geometric product to manipulate algebraic equations involving subspaces.
This algebraic manipulation typically has a strong geometric meaning, examples of
which are illustrated in the remaining parts of this section.

4.1 Algebraic manipulation

The common procedure to find computational formulas for geometric objects in geo-
metric algebra is as follows: we know certain defining properties of objects in the usual
terms of perpendicularity, spanning, rotations etcetera. These give equations typically
expressed using the derived products. You combine these equations algebraically, with
the goal of finding an expression for the unknown object involving only the geometric
product; then division (permitted by the invertibility of the geometric product) should
provide the result.

Let us illustrate this by an example.

Suppose we want to find the component 	�� of a vector 	 perpendicular to
a vector � . The perpendicularity demand is clearly

	 � � � � � �

A second demand is required to relate the magnitude of 	�� to that of 	 .
Some practice in ‘seeing subspaces’ in geometrical problems reveals that
the area spanned by 	 and � is the same as the area spanned by 	�� and � .
This is expressed using the outer product:

	 � � � ��	 � � �

These two equations should be combined to form a geometric product. In
this example, it is clear that just adding them works, yielding

	 � � �M� 	 � � � ��	 � � ��	 � � �

This one equation contains the full geometric relationship between 	 , �
and the unknown 	�� . Geometric algebra solves this equation through
division on the right by � :

	 � � � 	 � � � � � � � 	 � � � � �<� � (28)

14 Leo Dorst and Stephen Mann

We rewrote the division by � as multiplication by the subspace � � � to
show clearly that we mean ‘division on the right’. This is an example of
how the indefinite shape 	��� spanned by the outer product is just the right
element to generate a perpendicular to a vector � in its plane, through the
geometric product. Figure 5a illustrates the geometry.

Another technique is the exploitation of the non-commutativity of the geometric
product, by the ‘sandwiching’ blades which we will use below. It is also often useful
to select the required grades of expressions to reduce them to simpler, solvable expres-
sions. We will not do so much in this paper; the technique is applied with great skill
in [3].

4.2 Invertibility of the geometric product

The geometric product is invertible, so ‘dividing by a vector’ has a unique meaning.
We will usually do this through ‘multiplication by the inverse of the vector’. Since
multiplication is not necessarily commutative, we have to be a bit careful: there is a
‘left division’ and a ‘right division’. As you may verify, the unique inverse of a vector
� is

� �<� � �
� � � �

�
� ��� �

since that is the unique element that satisfies: � � � � �
 � ��� � � . So this makes
eq.(28) computable. In general, a blade

�
(of which the norm should not be zero) has

the inverse
� �<� �

�
� �

� �

�

� � � �
where

�
is the reverse of Section 3.2.

4.3 Projection of subspaces

The availability of an inverse gives us an interesting of way of decomposing a vector 	
relative to a given blade

�
using the geometric product. This uses 	 � ��	 � � � 	� � ,

a straightforward provable generalization of eq.(8). The decomposition is

	 � � 	 � � � � � � � 	 � � � � � � � � 	 � � � � � �
(29)

The first term is a blade fully inside
�

: it is the projection of 	 onto
�

. The second
term is a vector perpendicular to

�
, sometimes called the rejection of 	 by

�
. The

projection of a blade � of arbitrary dimensionality (grade) onto a blade
�

is given by
the extension of the above, as

projection of � onto
�

: ����
�
��� � � � � �

Geometric algebra often allows such a straightforward extension to arbitrary dimen-
sions of subspaces, without additional computational complexity. We will see why in
Section 5.2.

Geometric Algebra: a Computational Framework 15

� 	 � � � � �

	

�

(a) (b)

� 	 � � � � �

� 	 � � �

	

�

	 � �

Figure 5: (a) Projection and rejection of 	 relative to � . (b) Reflection of 	 in � .

4.4 Reflection of subspaces

The reflection of a vector 	 relative to a fixed vector � can be constructed from the
decomposition of eq.(29) (used for a vector �), by changing the sign of the rejection
(see Figure 5b). This can be rewritten in terms of the geometric product:

� 	 � � � � � � � � 	 � � � � �<� � � ��� 	 � ����	 � � � � � � 	 � � � � (30)

So the reflection of 	 in � is the expression � 	 � � � , see Figure 5b; the reflection in a
plane perpendicular to � is then � � 	 � �<� ,

We can extend this formula to the reflection of a blade � relative to the vector � ,
this is simply

reflection in vector � : ���� � � � � � �
and even to the reflection of a blade � in a � -blade

�
, which turns out to be

general reflection: ���� �
�
�
 � � � � � � � �

Note that these formulas permit you to do reflections of subspaces without first decom-
posing them in constituent vectors. It gives the possibility of reflecting a polyhedral
object by directly using a facet representation, rather than acting on individual vertices.

4.5 Vector division

With subspaces as basic elements of computation, we can directly solve equations in
similarity problems such as indicated in Figure 6:

Given two vectors � and � , and a third vector � , determine 	 so that 	 is
to � as � is to � , i.e. solve 	 � � � � � � .

In geometric algebra the problem reads

	 � � � � � � �<� �
and the solution is immediate

	 � � ��� � � � � � (31)

16 Leo Dorst and Stephen Mann

�

�

�	

Figure 6: Ratios of vectors

This is a computable expression. For instance, with � � ��� , � � �'�'� ��� and � � ��� in
the standard orthonormal basis, we obtain 	 � � � ��� � ��� ��� � �� �7����� �
 � ���
��� �D��� �
��� � ��� .

4.6 Rotations

Geometric algebra handles rotations of general subspaces in
���

, through an interest-
ing ‘sandwiching product’ using geometric products. We introduce this construction
gradually in this section.

4.6.1 Rotations in 2D

In the problem of Figure 6, if � and � have the same norm then we know that 	 must
be related to � by a rotation in the plane of � , � and � . We then obtain, using eq.(13)

	 � �

��� � �
�
� � �<� � � � � ���

� � �
� ��� � � � � �	��
�� � � �
� � � � � (32)

Here � � is the angle in the � plane from � to � , as in eq.(13), so �� � is the angle from �
to � . Apparently we should interpret ‘pre-multiplying by � � � � ’ as a rotation operator
in the � -plane. The full expression of eq.(31) denotes a rotation/dilation in the � -plane.

Let us consider the geometrical meaning of the terms of this rotation op-
eration when re-expressed into its components:

� � � � � � � ��� � � � � � ���
�� � � ��� ��� � � � ���
 �
What is � � ? Introduce orthonormal coordinates ���������� � in the � -plane,
with ��� along � , so that � � � �	� . Then ��� ��� �=��� � �'� ��� . Therefore� � � � �'� �'�%��� � � ��� : it is � turned over a right angle, following the
orientation of the 2-blade � (here anti-clockwise). So � ��� � � � � � ���
�� is ‘a
bit of � plus a bit of its anti-clockwise perpendicular’ – and those amounts
are precisely right to make it equal to the rotation by � , see Figure 7.

The vector � in the � -plane anti-commutes with � : � � � �� � . Using this to switch �
and � in eq.(32), we obtain

�

��� � � � � ��� � � � ����� � (33)

The planar rotation is therefore alternatively representable as a post-multiplication.

Geometric Algebra: a Computational Framework 17

���

�

� �����	��
����������
�

� -plane

Figure 7: Coordinate-free specification of rotation.

4.6.2 Angles as geometrical objects

In eq.(32), the combination � � is a full indication of the angle between the two vectors:
it denotes not only the magnitude, but also the plane in which the angle is measured,
and even the orientation of the angle. If you would ask for the scalar magnitude of the
geometrical quantity � � in the plane �� (the plane ‘from � to � ’ rather than ‘from �
to � ’), it is � � ; so the scalar value of the angle automatically gets the right sign. The
fact that the angle as expressed by � � is now a geometrical quantity independent of
the convention used in its definition removes a major headache from many geometrical
computations involving angles. We call this true geometric quantity the bivector angle
(it is just a 2-blade, of course, not a new kind of element – but we use it as an angle,
hence the name).

4.6.3 Rotations in � dimensions

The above rotates only within a plane; in general we would like to have spatial rota-
tions. For a vector 	 , the outcome of a rotation

�

��� should be:

�

� � 	 �	 �9�
�

� � 	����
where 	 � and 	�� are the perpendicular and parallel components of 	 relative to the
rotation plane � , respectively. We have seen that the separation of a vector into such
components can be done by commutation (as in eq.(29) and eq.(30)). As you may
verify, the following formula effects this separation and rotation simultaneously

rotation over � � : 	 �� �

��� 	
�
� � ����� � 	 ������� � (34)

The operator � � ����� � , used in this way, is called a rotor. In the 2-dimensional rotation
we treated before, 	 � � �� 	 , so moving either rotor ‘to the other side of 	 ’ retrieves
eq.(33) if 	 is in the � -plane.

Two successive rotations
� � and

� � are equivalent to a single new rotation
�

of
which the rotor � is the geometric product of the rotors � � and � � , since

� � ��� � ��� 	 ����� � �O� 	�� �<�� ��� � �� � � ������� � 	 � � ���O��� � � ��� 	�� �<� �
with ����� � � � . Therefore the combination of rotations is a simple consequence of
the application of the geometric product on rotors, i.e. elements of the form � � � ��� � �

18 Leo Dorst and Stephen Mann

������� � 	 � � ����
 �
�
	 , with � � � �
 . This is true in any dimension greater than 1 (and

even in dimension 1 if you realize that any bivector there is zero, so that rotations do
not exist).

Let’s see how it works in 3-space. In 3 dimensions, we are used to speci-
fying rotations by a rotation axis � rather than by a rotation plane � . The
relationship between axis and plane is given by duality: � � � �

� � � �� � �

(you may wish to verify that this indeed gives the correct orientation).
Given the axis � , we find the plane as the 2-blade � � � � � �<�� � � � � �
� � � . A rotation over an angle � around an axis with unit vector � is there-
fore represented by the rotor � � ��� � ��� � .

To compose a rotation � � around the � � axis of �
�
	 with a subsequent

rotation � � over the � � axis over �
�
	 , we write out their rotors:

�O� �
� � ��� ���	� �
 �
 � ��� �
�
	

�
�� ����� � � ��� ���� �
 �
 � � � �
�
	

The total rotor is their product, and we rewrite it back to the exponential
form to find the axis:

� ��������� � �� �
 � ��� � � �
 � � � � � � �� �
 � ��� � � � � � � �'� � �
� �� � ��

� � � � ���I�$��� �#� �� � �
� � ��� ��� � �

Therefore the total rotation is over the axis � � � �	� �$��� �$� � � � � � , over
the angle 	��

� �
.

Again, geometric algebra permits straightforward generalization to the rotation of higher
dimensional subspaces: a rotor can be applied immediately to an arbitrary blade through
the formula

general rotation: � �� � � � �<�
This enables you to rotate a plane in one operation, for instance

� � ��� �L��� � � �<� � �
 �
 � ��� � � � � � � ��� � ����� � �
 �$��� � �$� � �I�$���D� � � ��� �
There is no need to decompose the plane into its spanning vectors first.

4.7 Quaternions: based on bivectors

You may have recognized the example above as strongly similar to quaternion compu-
tations. Quaternions are indeed part of geometric algebra, in the following straightfor-
ward manner.

Choose an orthonormal basis N��� � ���� � . Construct out of that a bivector basis ��	� ������� � ��� � � � .
Note that these elements satisfy: � � � � � � �� � � � �� � � �
 , and � � � � � � � � � � (and
cyclic) and also � � � � � � � � � �
 . In fact, setting � � � � � , � � �+� � � and � ��� � � , we
find � � � � � � � � ��� � �
� �
 and � � � � and cyclic. Algebraically these objects
form a basis for quaternions obeying the quaternion product, commonly interpreted as

Geometric Algebra: a Computational Framework 19

some kind of ‘4-D complex number system’. There is nothing ‘complex’ about quater-
nions; but they are not really vectors either (as some still think) – they are just real
2-blades in 3-space, denoting elementary rotation planes, and multiplying through the
geometric product. Visualizing quaternions is therefore straightforward: each is just a
rotation plane with a rotation angle, and the ‘bivector angle’ concept of Section 4.6.2
represents that well.

So in geometric algebra, quaternions can be combined directly with vectors and
other subspaces. In that algebraic combination, they are not merely a form of ‘complex
scalars’: quaternion products are neither fully commutative nor fully anti-commutative
(e.g. ����� � �'� � , but ����� � �+��� �). It all depends on the relative attitude of the vectors
and quaternions, and these rules are precisely right to make eq.(34) be a rotation of a
vector.

4.8 Dual representation

The dualization of eq.(20) enables manipulation of expressions involving ‘spanning’ to
being about ‘perpendicularity’ and vice versa.

A familiar example in a 3-dimensional Euclidean space is the dual of a
2-blade (or bivector). Using an orthonormal basis N� � � ���� � and the corre-
sponding bivector basis, we write:

� � !N�%��� �O� � �(!&�%� � �O�����(! � � � �O��� .
We take the dual relative to the space with volume element � � � ��� �M��� �
� � (i.e. the ‘right-handed volume’ formed by using a right-handed basis).
The subspace of � � dual to

�
is then

� �

� � � � � � � � �L� � �#� � � � � � � �$� � � � �1� � � � � � � �1� � �1� � �

� �'�%��� �#������� �$� � � � � (35)

This is a vector, and we recognize it (in this Euclidean space) as the normal
vector to the planar subspace represented by

�
, see Figure 4b. So we

have normal vectors in geometric algebra as the duals of 2-blades, if we
would want them – we will see in Section 5.2.2 why we prefer the direct
representation of a planar subspace by a 2-blade rather than the indirect
representation by normal vectors.

We can use either a blade or its dual to represent a subspace, and it is convenient to
have some terminology. We will say that a blade

�
represents a subspace � if

	���� ��� 	 � � ��� (36)

and that a blade
� �

dually represents the subspace � if

	���� ��� 	 � � � ��� � (37)

Switching between the two standpoints is done by the duality relation eq.(19), used for
a vector 	 and a pseudoscalar � :

� 	 � � � �

� ��	 � � � �

���J� (38)

20 Leo Dorst and Stephen Mann

and by a converse (but conditional) relationship which we state without proof

� 	 � � � �

� ��	 � � � �

��� if 	 � � ��� � (39)

If 	 is known to be in the subspace of � , we can write these simply as
� 	 � � �

�
��	 � � �

and
� 	 � � �

�
��	 � � �

, which makes the equivalence of the two representations above
obvious.

4.9 The cross product

Classical computations with vectors in 3-space often use the cross product, which pro-
duces from two vectors � and � a new vector ����� � � � perpendicular to both (by the
right-hand rule), proportional to the area they span. We can make this in geometric
algebra as the dual of the 2-blade spanned by the vectors, see Figure 4b:

����� � � 	 � � ��� 	 � �

� � � (40)

You may verify that computing this explicitly using eq.(1) and eq.(35) indeed retrieves
the usual expression

����� � � 	
� � ����� � � � � ��� �'�'� � � � � �
� �H����� � ����� � � ���������H����� � ��� � (41)

Eq.(40) shows a number of things explicitly that one always needs to remember about
the cross product: there is a convention involved on handedness (this is coded in the
sign of � �); there are metric aspects since it is perpendicular to a plane (this is coded
in the usage of the inner product ‘ � ’); and the construction really only works in three
dimensions, since only then is the dual of a 2-blade a vector (this is coded in the 3-
gradedness of � �). The vector relationship � � 	 does not depend on any of these
embedding properties, yet characterizes the

�
� � 	 � -plane just as well. In geometric

algebra, we therefore have the possibility of replacing the cross product by a more
elementary construction. In Section 5.2.2 we will see the advantages of doing so.

5 More advanced geometric algebra

5.1 Differentiation

Geometric algebra has an extended operation of differentiation, which contains the
classical vector calculus, and much more. It is possible to differentiate with respect
to a scalar or a vector, as before, but now also with respect to � -blades. This enables
efficient encoding of differential geometry, in a coordinate-free manner, and gives an
alternative look at differential shape descriptors like the ‘second fundamental form’
(it becomes an immediate indication of how the tangent plane changes when we slide
along the surface). We show two examples of differentiation.

Geometric Algebra: a Computational Framework 21

5.1.1 Scalar differentiation of a rotor

Suppose we have a rotor � � � � � ��� � (where � � is a function of �), and use it to produce
a rotated version � � � ����� �<� of some constant blade ��� . Scalar differentiation
with respect to time gives (using chain rule and commutation rules)���� � �

���� � � � ����� � ����� � ��� � �
� � ��

���� � � � � � � � � ��� � ����������� � �<� �� � � � ����� � ������� ��� � � ���� � � � �
� �� � �

���� � � � � � ���� � � � � � �
� � �

���� � � � � (42)

using the commutator product � defined in geometric algebra as the shorthand � �� ��� � ��� � � � � ; this product often crops up in computations with Lie groups such as the
rotations. The simple expression that results assumes a more familiar form when � is
a vector 	 in 3-space, the attitude of the rotation plane is fixed so that

���� � ��� , and we
introduce a scalar angular velocity � � ���� � . It is then common practice to introduce

the vector dual to the plane as the angular velocity vector � � � � , so � � � ���	� � �
 � � �
� � � � � .
We obtain���� 	 �	 �

���� � � � � �	 �
� � � � ��� � � ��	 � � � � � ��� � � � � 	 ���� � ����� � ����� � � � � � � 	

where � � � � � is the vector cross product. As before when we treated other operations, we
find that an equally simple geometric algebra expression is much more general; here
eq.(42) describes the differential rotation of � -dimensional subspaces in -dimensional
space, rather than merely of vectors in 3-D.

5.1.2 Vector differentiation of spherical projection

Suppose that we project a vector 	 on the unit sphere by the function 	 ���� � 	 � �
	 � � 	 � . We compute its derivative in the � direction, denoted as

�
� ����� ��� � 	 � or � � � 	 � , as

a standard differential quotient and using Taylor series expansion. Note how geometric
algebra permits compact expression of the result, with geometrical significance:

�
����� � � 	� 	 � � � ������ �
� � 	 � � �

� 	 � � ��� �
	
� 	 ��� ��� � ���� �
� � 	*� � �

� 	 � �
 � 	 � � � 	 � � � 	� 	 ���
� � ������ � � 	1� � � � �
 � � ��� 	 � � � � 	� � 	 � � � � 	 � ��� 	 � � �

� 	 �
�

�
��� 	 � 	 �<�

� 	 �
We recognize the result as the rejection of � by 	 (Section 4.3), scaled appropriately.
The sketch of Figure 8 confirms the outcome. You may verify in a similar manner that�
���!� � � 	 � � � � 	 � � � 	 � � , and interpret geometrically.

For more advanced usage of differentiation relative to blades, the interested reader
is referred to the tutorial of [3], which introduces these differentiations using examples
from physics, and the application paper [12].

22 Leo Dorst and Stephen Mann

�
� � � 	 �� � 	 � 	

Figure 8: The derivative of the spherical projection.

5.2 Linear algebra

In the classical ways of using vector spaces, linear algebra is an important tool. In
geometric algebra, this remains true: linear transformations are of interest in their own
right, or as first order approximations to more complicated mappings. Indeed, linear al-
gebra is an integral part of geometric algebra, and acquires much extended coordinate-
free methods through this inclusion. We show some of the basic principles; much more
may be found in [3] or [11].

5.2.1 Outermorphisms: spanning is linear

When vectors are transformed by a linear transformation on the vector space, the blades
they span can be viewed to transform as well, simply by the rule: ‘the transform of a
span of vectors is the span of the transformed vectors’. This means that a linear trans-
formation � �

� � � � �
of a vector space has a natural extension to the whole geo-

metric algebra of that vector space, as an outermorphism, i.e. a mapping that preserves
the outer product structure:

�
�
� � � � � � � ����� � � � ��� � � � � ��� � � � � �
��� � ��� � � � � �

Note that this is grade-preserving: a � -blade transforms to a � -blade. We supplement
this by stating what the extension does to scalars, which is simply �

� � ��� � . Geo-
metrically, this means that a linear transformation leaves weighted points at the origin
intact.

The fact that linear transformations are outermorphisms explains why we can gen-
eralize so many operations from vectors to general subspaces in a straightforward man-
ner.

5.2.2 No normal vectors or cross products!

The transformation of an inner product under a linear mapping is more involved (for-
mula given in [11]). Therefore one should steer clear of any constructions that involve

Geometric Algebra: a Computational Framework 23

the inner product, especially in the characterization of basic properties of one’s ob-
jects. The practice of characterizing a plane by its normal vector – which contains the
inner product in its duality, see Section 4.8 – should be avoided. Under linear transfor-
mations, the normal vector of a transformed plane is not the transform of the normal
vector of the plane! (this is a well known fact, but always a shock to novices). The
normal vector is in fact a cross product of vectors, which transforms as

�
�
� ����� � � � (43)

where � is the adjoint, defined by �
�
� � � � � � � � � � � , and ����� � ��� is the determinant

defined by ����� � � � ��� � � � � � �<�� with � � the pseudoscalar of
���

(they are equivalent to
the transpose and determinant of the matrix of �).

The right hand side of eq.(43) is usually not equal to �
�
� � � � � � � � � � � , so a linear trans-

formation is not an ‘innermorphism’. It is therefore much better to characterize the
plane by a 2-blade, now that we can. The 2-blade of the transformed plane is the
transform of the 2-blade of the plane, since linear transformations are outermorphisms
preserving the 2-blade construction. Especially when the planes are tangent planes
constructed by differentiation, 2-blades are appropriate: under any transformation � ,
the construction of the tangent plane is only dependent on the first order linear approx-
imation mapping � of � . Therefore a tangent plane represented as a 2-blade transforms
simply under any transformation (and the same applies of course to tangent � -blades in
higher dimensions). Using blades for those tangent spaces should enormously simplify
the treatment of object through differential geometry, especially in the context of affine
transformations.

5.3 Intersecting subspaces

Geometric algebra also contains operations to determine the union and intersection of
subspaces. These are the �����! and � � � � operations. Several notations exist for these in
literature, causing some confusion. For this paper, we will simply use the set notations�

and � to make the formulas more easily readable.

5.3.1 Union of subspaces: �����
The ����� of two subspaces is their smallest superspace, i.e. the smallest space contain-
ing them both. Representing the spaces by blades

�
and

�
, the � � � is denoted

� � �
.

If the subspaces of
�

and
�

are disjoint, their �����! is obviously proportional to
� � �

.
But a problem is that if

�
and

�
are not disjoint (which is precisely the case we are

interested in), then
� � �

contains an unknown scaling factor that is fundamentally
unresolvable due to the reshapable nature of the blades discussed in Section 2.2 (see
Figure 9; this ambiguity was also observed by [15]. Fortunately, it appears that in all
geometrically relevant entities that we compute this scalar ambiguity cancels.

The ��� � is a more complicated product of subspaces than the outer product and in-
ner product; we can give no simple formula for the grade of the result (like eq.(27)), and
it cannot be characterized by a list of algebraic computation rules. Although computa-
tion of the ��� � may appear to require some optimization process, finding the smallest
superspace can actually be done in virtually constant time [1].

24 Leo Dorst and Stephen Mann

�

�

�

� �

�
�

�

Figure 9: The ambiguity of scale for ��������� and � � � �� of two blades
�

and
�

. Both
figures are acceptable solutions.

5.3.2 Intersection of subspaces: �������
The ��� � � of two subspaces

�
and

�
is their largest common subspace. Given the �����

� � � � �
of
�

and
�

, we can compute their � � � � � � �
by the property that its dual

(with respect to the ��� �) is the outer product of their duals (this is a not-so-obvious
consequence of the required ‘containment in both’). In formula, this is

� � � � � �

� � � � �

� � � ��� �

� � �	� � � � � �

�
� � � � � �

with the dual taken with respect to the ��� �
� .2 This leads to a formula for the � � � � of�
and

�
relative to the chosen ����� (use eq.(38)):

� � � � � � �

� � � � � (44)

Let us do an example.

The intersection of two planes represented by the 2-blades
� � �� � �����

��� � � � ���+� � � � and
� � ��� �9��� . Note that we have normalized them

(this is not necessary, but convenient for a point we want to make later).
These are planes in general position in 3-dimensional space, so their � � �
is proportional to � � . It makes sense to take � � � � . This gives for the
� � ��� :
� � � � ��

� � � � �L� � � � � � � � � � �L� � � � � � � � � �#� � � � � � � �$� � � �
� �� � � � � � � � �$� � � �L� � �
� � ��

� � � �$� � � � �

�
	
� � � �$� �

�
	
� (45)

(the last step expresses the result in normalized form). Figure 10 shows
the answer; as in [15] the sign of

� � �
is the right-hand rule applied to

the turn required to make
�

coincide with
�

, in the correct orientation.

Classically, one computes the intersection of two planes in 3-space by first converting
them to normal vectors, and then taking the cross product. We can see that this gives

2The somewhat strange order means that the ���� ��� can be written using the ��������� in the factorization
������� �"! 5$#	% � % ���&! 5 � # , and it corresponds to [15] for vectors.

Geometric Algebra: a Computational Framework 25

� �
�

� �� �
�

� � �

Figure 10: An example of the �������

the same answer in this non-degenerate case in 3-space, using our previous equations
eq.(39), eq.(38), and noting that

� � � �� � :

� � �

� � � � � � � � � � �

� � � �

� � � �
 � � � � � � �
 � � ��� �
 � � � � � � �
 � � � � � � �
 � � ��� ��� �
� � � �

� � � �

� ��� �
 � � � � � � � � � � �
 � � � � � � � � � �

So the classical result is a special case of eq.(44), but that formula is much more gen-
eral: it applies to the intersection of subspaces of any grade, within a space of any
dimension. Again we see the power of geometric algebra in compact expressions valid
for any grade or dimension.

The norm of the � � � � gives an impression of the ‘strength’ of the intersection. Be-
tween normalized subspaces in Euclidean space, the magnitude of the ��� � � is the sine
of the angle between them. From numerical analysis, this is a well-known measure for
the ‘distance’ between subspaces in terms of their orthogonality: it is 1 if the spaces are
orthogonal, and decays gracefully to 0 as the spaces get more parallel, before changing
sign. This numerical significance is very useful in applications.

5.4 Caseless computations through blades

So far we have been treating only homogeneous subspaces of the vector spaces, i.e. sub-
spaces containing the origin. We have spanned them, projected them, and rotated them,
but we have not moved them out of the origin to make more interesting geometrical
structures such as lines floating in space. We construct them now. by extending the
thoughts behind ‘homogeneous coordinates’ to geometric algebra. It turns out that
these elements of geometry can also be represented by blades, in a representational
space with an extra dimension. The geometric algebra of this space then turns out to
give us precisely what we need. In this view, more complicated geometrical objects

26 Leo Dorst and Stephen Mann

do not require new operations or techniques in geometric algebra, merely the standard
computations in a higher dimensional space.

5.4.1 The affine model

The affine model in geometric algebra extends the usual geometric model from linear
algebra, which works merely on vectors. That model is often described as augmenting
a 3-dimensional vector � with coordinates

��� ��� � �C� � � � � to a 4-vector
��� ��� � ��� � � �
 � � .

That extension makes non-linear operations such as translations implementable as lin-
ear mappings.

Following the approach of this paper, we have to give the
�
� �
 � -dimensional

space into which we embed our � -dimensional Euclidean space a full geometric al-
gebra. We will call this space ‘homogeneous space’ (the affine model is sometimes
called the ‘homogeneous model’ though recently that term has been preferred for an
even more homogeneous representation of Euclidean space [10]). Let the unit vector
for the extra dimension be denoted by � . This vector must be perpendicular to all reg-
ular vectors in the Euclidean space

���
, so ��� 	�� � for all 	 � � � . We let � denote

‘the point at the origin’. A point at any other location
 is made by translation of the
point at the origin over the Euclidean vector
 . This is done by adding
 to � . This
construction therefore gives the representation of the point � at location
 as the vector� in

�
� �
 � -dimensional space: � �
� �

This is just a regular vector in the
�
� �
 � -space, now interpretable as a point. It

is of course no more than the usual ‘homogeneous coordinates’ method in disguise.
We will denote points of the � -dimensional Euclidean space in script, the vectors
in the corresponding vector space in bold, and vectors in the

�
� �
 � -dimensional

homogeneous space in italic. You can visualize this construction as in Figure 11a
(necessarily drawn for � �).

These vectors in
�
� �
 � -dimensional space can be multiplied using the products

in geometric algebra. Let us consider in particular the outer product, and form blades.
We compute � ��� � � � �
 � � � � �	� � � �� � � �
 � �
 ���
We recognize the vector � �
 , and the area spanned by
 and � . Both are elements
that we need to describe an element of the directed line through the points � and
 .
The former is the direction vector of the directed line, the latter is an area that we will
call the moment of the line through � and � . It denotes the distance to the origin, for
we can rewrite it to a rectangle spanned by the direction

� � �
 � and any vector on the
line, such as
 or �� �
L��� � or the perpendicular support vector � :

 ��� ��
 � � � �
 � � �� �
(��� � � � � �
 � � �
� � ��
 � (46)

where ��� �
 ��� � � � �
 � �<� is the rejection of
 by � �
 .
So the 2-blade � �� can be interpreted as a directed line element for the line ��
 .

However, note that � ��� is not a line segment: neither � nor � can be retrieved from� �� . The 2-blade is just a line element of specified direction and length, somewhere

Geometric Algebra: a Computational Framework 27

(c)

�
� � �

��
(a) (b)

�
� �� � �� �

�
� �

�

� �

�� ���

Figure 11: Representing offset subspaces of
� �

in
�
� �
 � -dimensional space. In (c),

� � � �
 .

along the line through � and
 (in that order). Geometrically, a point
�

lies on the
line through � and
 if the vector � in the affine model lies in the plane spanned by �
and � , so satisfies � � � ��� � � . This is depicted in Figure 11b,c.

This way of making offset planar subspaces extends easily. An element of the
oriented plane through the points � ,
 and � is represented by the 3-blade � � � ��� , and
so on for higher dimensional ‘offset’ subspaces – if the space has enough dimensions
to accommodate them. The blades we construct in this way can always be rewritten
in the form � ��� � , where

�
is purely Euclidean, and � is of the form �K� � ,

with � a Euclidean vector. We should interpret
�

as the direction element, and its
grade therefore denotes the dimensionality of the flat subspace represented by � . The
vector � represents the closest point to the origin (so that � is the perpendicular support
vector).

But the affine model also contains other blades, namely the purely Euclidean � -
blades of the form

�
. These should be interpret as � -dimensional directions (think of

a tangent space at an arbitrary point), or alternatively (but less usefully) as � -spaces
at infinity. Even a � -blade (i.e. a scalar) is useful: it is the representation of a scalar
distance in the Euclidean space (with a sign, but without a direction), as we will see
in the next section. Such distances are of course elements of geometry as well, so it
is satisfying to find them on a par with position vectors, direction vectors and other
elements of higher dimensionality as just another case of a representing blade in the
affine model of a flat Euclidean subspace.

Having such a unified representation for the various geometrical elements implies
that computations using them are unified as well: they have just become operations
on blades in

�
�#�
 � -space, blissfully ignorant of what different geometrical situations

these computations might represent.

5.4.2 Application: universal incidence computations

The ������� and ��� � operations that we introduced in the context of a general geometric
algebra in Section 5.3 can be applied immediately to blades in the affine model. This
is a universal and simple computation, independent of what those blades represent,
and there is no need to consider different cases in performing the calculation. Yet
as we interpret the result, we find that we may have to render the various outcomes
differently, and this is where the cases appear.

Let us see how the incidence of two lines in a 3-dimensional Euclidean space with

28 Leo Dorst and Stephen Mann

pseudoscalar � � would be treated using geometric algebra. These lines are encoded in
the affine model as the 2-blades � ��� and � � � in

�
�#�
 � -dimensional space. Their

������� is the element
� � � � ��� � � � � � � �

and if we wish we can compute further with it, and with the corresponding ����� . There
are no cases in this outcome or the continued computation – for whether the outcome
is a scalar, vector or 2-blade is immaterial,

However, if we desire, at this point, to draw the ��� � � (or the �����!), the drawing rou-
tines are different depending on how � is interpreted, and this depends its grade and
stance in the representation space. The grade can be 0, 1 or 2, and the stance may be
special relative to the exceptional � -direction. As we consider these, we obtain all rec-
ognizable situations from the traditional case-based computations. As a nice surprise,
the ��� � � and ����� also contain numerical stability measures, in the same computational
effort.

� skew lines:
If the lines are in general position, then

� � ��� � � � � � � � ���� (read this as: � is
not in the plane ��� � � � spanned by � and � from
). In this case, that 4-blade
can be used as the ��� � in homogeneous space. Using � � � � ��

� � � ��� � � � � � � �
� � � �
 � , this can be rewritten to � � �
 � � � ��� � � � , so this is proportional to
� � � , a split into purely Euclidean and representational parts of unit magnitude.
Using that as the join, we find the � � � � by a fairly straightforward computation.
The outcome is:

� � � � � � proportional to � ��� ��� ��� �
� � �
 � � � ��� � � � � �
� � � �
 � � � ��� � � � �

(with duality relative to � �). This scalar � � ��� is proportional to the perpendicular
signed distance between the two lines, weighted by a factor � � � � � . The latter
can be interpreted as denoting the numerical significance of the outcome.

� intersecting lines:
When � ��� ���� but

� � ��� � � � � � � � ��� , the lines intersect. Their ��� � is now
proportional to the common plane �
� � ����� ����� � � . Let the unit blade
representing this be

	
. Their � � � � is then explicitly (after some rewriting)

� � 	 �
proportional to � �
� � � �

� � � � � � � � � � � � � � � � � � �
 � � � � �1� �� � �
L�	� � ��� � � �
�

with duality relative to ��� , the unit blade of � � � . This vector in homogeneous
space is interpreted as a weighted point in Euclidean space, since it can be written
in the form ����� � � � � � � ��� with

� ��� � � �
� � � � �

 ���
� ��� �

��
�
L�	� � ��� � �

� � �
Note how the result is constructed in a coordinate-free manner from an amount
of � , of � and of a vector perpendicular to both. The proportionality factor

Geometric Algebra: a Computational Framework 29

�
� � � �

�
of � in the expression for � is the ‘weight’ of the point at � . It indicates

the numerical stability of the intersection, and may be used as a measure of the
significance of the interpretation as an intersection point.

� parallel lines:
If the lines are parallel but not coincident, then � � � ��� while � ��� ��� �� � .
The ����� is then the representation of the Euclidean plane containing them. We
get (after some rewriting)

� � � � � � proportional to � ��� ��� � � � �
 � � � ��� � � �
� � � � � �
 � ��� � � � �

The ������� is again a vector in
�
�$�
 � -space, but now purely Euclidean. This is

interpretable as the common directional part � weighted by a scalar magnitude
proportional to the distance of the lines, with proportionality factor � � � .

� coincident lines:
If the lines are coincident, then ��� � � � and � � � � � � � . The ��� � is
therefore one of the lines, say � � � – no need to normalize to a unit blade. The
computation of the � � ��� is straightforward

� � � � �
� � � ���

In this case the intersection is therefore interpretable as the original line.

We reiterate that in all situations, the cases occur in the interpretation, not in the com-
putation, which is simply to invoke the ��� � � and ��� � operators. This unification at
the computational level is an enormous advantage of the geometric algebra approach
to incidence. The computational caselessness should lead to new methods that take full
advantage of it, leaving the interpretation (and with it, the occurrence of cases) to the
very last step of any calculation.

The directional outcomes are accompanied by numerical factors relating to the nu-
merical significance of the computation. We showed that they are an intrinsic part of
the computation of the object, not just secondary aspects that need to be thought of sep-
arately (with the danger of being ad hoc) or that need be computed separately (costing
time).3

5.5 The homogeneous model

An embedding of Euclidean space into a representational space of 2 extra dimensions
and its geometric algebra has been recently shown to be very powerful and simplifying
[10]. This homogeneous model of Euclidean space gives a useful semantics to the
derived product of vectors representing points.

3Although to separate the outcomes into scalar geometric measures such as distance and into the numer-
ical significance measures, one also needs to compute the � ��� � of the directional parts separately (in the
examples above, � � %�� # �

).

30 Leo Dorst and Stephen Mann

� The inner product provides the Euclidean distance: � � � � � �� � � �
�� � . That
means the space has a rather special metric, since it follows that � � � ��� for any
vector � .

� The outer product constructs � -spheres: a � -blade represents a Euclidean
�
� �
 � -

sphere. As a consequence, � �� is the ordered point pair
� �*�
 � , � � � � � the

circle through � ,
 and � . The dual of the
�
� �
 � -blade representing an � -

sphere in
� �

is a homogeneous vector which immediately provides center and
radius of the sphere. Flat subspaces are represented as spheres through infinity,
and this is possible because one of the two extra representational dimensions
is a vector representing the point at infinity (the other, as in the affine model,
represents the point at the origin).

� The sandwiching by the geometric product gives not only rotations, but all con-
formal mappings, including translation and inversion. (This is why the homoge-
neous model is sometimes called the conformal model.)

� The � � � � of two blades is interpretable as intersecting � -spheres in � -space, and
again reduces the cases that would need to be distinguished.

This model looks appropriate for many computer graphics applications, and we are
currently looking at developing it further for practical usage.

6 Conclusion

This introduction of geometric algebra intends to alert you to the existence of a small
set of products that appears to generate all geometric constructions in one consistent
framework. Using this framework can simplify the set of data structures representing
objects since it inherently encodes all relationships and symmetries of the geometrical
primitives in those operators (an example was eq.(46)). While there are many interest-
ing facets to geometric algebra, we would like to highlight the following:

� Division by subspaces; having a geometric product with an inverse allows us
to divide by subspaces, increasing our ability to manipulate algebraic equations
involving vectors.

� Subspaces are basic elements of computation; thus, no special representations
are needed for subspaces of dimension greater than 1 (e.g., tangent planes), and
we can manipulate them like we manipulate vectors.

� Generalization; expressions for operations on subspaces are often as simple as
those for vectors (especially true for linear operations), and as easy to compute.

� Caseless computation; degenerate cases are computed automatically, and the
computation allows us to test the numerics of the solution.

� Quaternions; in geometric algebra, quaternions are subsumed and become a nat-
ural part of the algebra, with no need to convert between representations to per-
form rotations.

Geometric Algebra: a Computational Framework 31

This paper only covers some of what we felt to be the most important or useful ideas
of geometric algebra as it relates to computer graphics. Many topics have been left out,
including a description of more geometries (the affine model implements and general-
izes the Grassmann spaces of [8], the homogeneous model implements and generalizes
projective spaces); the fact that the homogeneous model requires the use of negative
signatures (with some unit vectors squaring to �
) which have some peculiarities; and
a lot more can be said about differentiation and coordinate-free differential geometry.
The reader may be able to glean the connections from the suggested further reading
(see below), but an accessible explanation for computer graphics of such issues still
needs to be given.

That such a system exists is a happy surprise to all learning about it. Whether it is
also the way we should structure our programming is at the moment an open question.
Use of the affine model would require representing the computations on the Euclidean
geometry of a 3-dimensional space on a basis of 	 ��� � �
�� elements, rather than just 3
basis vectors (plus 1 scalar basis). It seems a hard sell. But you often have to construct
objects representing higher order relationships between points (such as lines, planes
and spheres) anyway, even if you do not encode them on such a ‘basis’. Also, our
investigations show that perhaps all one needs to do all of geometry are blades and
operators composed of products of vectors; the product combinations of this limited
subset can be optimized in time and space requirements, with very little overhead for
their membership of the full geometric algebra. That automatic membership enables
us to compute directly with lines and planes (and in the homogeneous model of [10],
circles and spheres) and their intersections without needing to worry about special or
degenerate cases, which should eliminate major headaches and bugs. We also find the
coordinate-free specification of the operations between objects very attractive; relegat-
ing the use of coordinates purely to the input and output of geometric objects banishes
them from the body of the programs and frees the specification of algorithms from de-
tails of the data structures used to implement them. Such properties make geometric
programs so much more easy to verify, and – once we have learned to express ourselves
fluently in this new language – to construct.

Further reading

There is a growing body of literature on geometric algebra. Unfortunately much of the
more readable writing is not very accessible, being found in books rather than journals.
Little has been written with computer science in mind, since the initial applications
have been to physics. No practical implementations in the form of libraries with algo-
rithms yet exist (though there are packages for Maple [2] and Matlab [6] that can be
used as a study-aid or for algorithm design). We would recommend the following as
natural follow-ups on this paper:

� GABLE: a Matlab package for geometric algebra, accompanied by a tutorial [6].

� The introductory chapters of ‘New Foundations of Classical Mechanics’ [9].

� An introductory course intended for physicists [3].

32 Leo Dorst and Stephen Mann

� An application to a basic but involved geometry problem in computer vision,
with a brief introduction into geometric algebra [12].

� Papers showing how linear algebra becomes enriched by viewing it as a part of
geometric algebra [4, 11].

Read them in approximately this order. We are working on texts more specifically
suited for a computer graphics audience; these may first appear as SIGGRAPH courses.

References

[1] T.A. Bouma, L. Dorst, H. Pijls, Geometric Algebra for Subspace Op-
erations, submitted to Applicandae Mathematicae, preprint available at
http://xxx.lanl.gov/abs/math.LA/0104159.

[2] A. Lasenby, M. Ashdown et al., GA package for Maple V, 1999, at
http://www.mrao.cam.ac.uk/˜clifford/software/GA/

[3] C. Doran and A. Lasenby, Physical Applications of Geometric Algebra, 2001, at
http://www.mrao.cam.ac.uk/˜clifford/ptIIIcourse/

[4] C. Doran, A. Lasenby, S. Gull, Chapter 6: Linear Algebra, in: Clifford (Geomet-
ric) Algebras with applications in physics, mathematics and engineering, W.E.
Baylis (ed.), Birkhäuser, Boston, 1996.

[5] L. Dorst, Honing geometric algebra for its use in the computer sci-
ences, in: Geometric Computing with Clifford Algebra, G. Som-
mer, editor;, Springer ISBN 3-540-41198-4, 2001. Preprint available at
http://www.wins.uva.nl/˜leo/clifford/

[6] L.Dorst, S.Mann, T.A.Bouma, GABLE: a Geometric AlgeBra Learning Environ-
ment, www.science.uva.nl/˜leo/clifford/gable.html

[7] R. Goldman, Illicit Expressions in Vector Algebra, ACM Transactions of Graph-
ics, vol.4, no.3, 1985, pp. 223—243.

[8] R. Goldman, The Ambient Spaces of Computer Graphics and Geometric Model-
ing, IEEE Computer Graphics and Applications, vol.20, pp. 76–84, 2000.

[9] D. Hestenes, New foundations for classical mechanics, 2nd edition, D. Reidel,
Dordrecht, 2000.

[10] D. Hestenes, Old wine in new bottles, in: Geometric Algebra: A Geometric Ap-
proach to Computer Vision, Quantum and Neural Computing, Robotics and En-
gineering, Bayro-Corrochano, Sobczyk, eds, Birkhäuser, 2001, Chapter 24, pp.
498-520.

[11] D. Hestenes, The design of linear algebra and geometry, Acta Applicandae Math-
ematicae 23: 65-93, 1991.

Geometric Algebra: a Computational Framework 33

[12] J. Lasenby, W. J. Fitzgerald, C. J. L. Doran and A. N. Lasenby. New Geometric
Methods for Computer Vision, Int. J. Comp. Vision 36(3), p. 191-213 (1998).

[13] P. Lounesto, Marcel Riesz’s work on Clifford algebras, in: Clifford numbers and
spinors, E.F. Bolinder and P. Lounesto, eds., Kluwer Academic Publishers, 1993,
pp.119–241.

[14] S. Mann, N. Litke, and T. DeRose, A Coordinate Free Geom-
etry ADT, Research Report CS-97-15, Computer Science De-
partment, University of Waterloo, June, 1997. Available at:
ftp://cs-archive.uwaterloo.ca/cs-archive/CS-97-15/

[15] J. Stolfi, Oriented projective geometry, Academic Press, 1991.

