
56	 November/December	2008	 Published	by	the	IEEE	Computer	Society	 0272-1716/08/$25.00	©	2008	IEEE

VR	Software	and	Technology

Real-Time Global Illumination
for VR Applications
Jesper Mortensen, Insu Yu, and Pankaj Khanna ■ University College London

Franco Tecchia and Giuseppe Marino ■ Scuola Superiore Sant’Anna

Bernhard Spanlang ■ Universitat Politècnica de Catalunya

Mel Slater ■ ICREA—University of Barcelona

This article presents a solution for the render-
ing of immersive VR using real-time global
illumination. One of the important reasons

for using VR in an application is that participants
should respond realistically to virtual objects and
events—for example, in applications concerned
with training or rehabilitation. Therefore, investi-
gating the factors that might be critical in produc-
ing such realistic responses is an important area

of scientific investigation, with
implications for the engineering
of successful VR applications.1

An obvious factor to consider
is the realism of the illumination.
While a static globally illuminated
scene is well within the grasp of
current methods, it places limits
on the range of environments and
tasks that can be effectively repre-
sented. When scenes are rendered
with global illumination, they not
only look more realistic but also
critically have dynamic shadows
and reflections of objects, most
importantly of the virtual body of
the participant interacting in the
VR. In other words, as participants

move through the VR they would see real-time cor-
relations of their activities through not only chang-
ing object reflections but also dynamic changes of the
shadows and reflections of their body. This can have
an anchoring effect that profoundly situates the par-
ticipant within the virtual environment.2

The problems faced in rendering with real-time
global illumination, however are twofold: First,
the computational complexity of such a real-time
rendering system while achieving an acceptable
frame rate is daunting. Second, we are faced with
a choice of how this is to be achieved—one option
is to construct an ad hoc system with support for
related tasks such as tracking, display management,
and synchronization. Alternatively, a general solu-
tion requires integration of the global illumination
method within a more general rendering system,
such as Performer–CAVELib (an API for the Cave
Automatic Virtual Environment), DIVE (Distrib-
uted Interactive Virtual Environment), or XVR (Ex-
treme VR), which can again be a complex task.

In this article, we present the Virtual Light Field
(VLF) paradigm as a solution to this problem. We
discuss its potential and advantages in such an
application. Finally, we present details of our inte-
gration of the VLF rendering method within XVR3
to provide a practical real-time global illumination
solution.

Background
The key elements for visual realism are accurate
geometric models and their realistic illumination.
In this research we consider only the illumination
aspect of visual realism. Ray tracing4 and radios-
ity5 provide a partial global illumination solution
and have both been considered for VR rendering.
Whereas ray tracing extends easily to real-time
dynamics including shadows and reflections, per-
formance is limited by the complexity of the scene

Real-time	global	illumination	
in	VR	systems	enhances	scene	
realism	by	incorporating	
soft	shadows,	reflections	of	
objects	in	the	scene,	and	color	
bleeding.	The	Virtual	Light	
Field	(VLF)	method	enables	
real-time	global	illumination	
rendering	in	VR.	The	VLF	has	
been	integrated	with	the	
Extreme	VR	system	for	real-
time	GPU-based	rendering	
in	a	Cave	Automatic	Virtual	
Environment.

	 IEEE	Computer	Graphics	and	Applications	 57

and its elements as well as the required screen res-
olution and update rate. The number of primary
rays for a CAVE (Cave Automatic Virtual Environ-
ment) application running in stereo at a resolu-
tion of 1,024 × 768 at 30 frames per second is 47
million rays (Mrays) per second. The state of the
art in efficient ray tracing6 can achieve roughly 40
Mrays/sec., so even a single shadow ray per pixel
would exceed the ray budget.

Global illumination techniques such as path
tracing and photon mapping, among others, offer a
more complete illumination solution, supporting a
larger range of materials and light interactions, but
they do not easily extend to real-time rendering.
At least 20–40 rays per pixel are needed to achieve
global illumination;7 this exceeds the ray budget we
just mentioned by an order of a magnitude and will
not be applicable for CAVE rendering.

In VR applications the frame rate must be real-
time and constant; even temporary drops in frame
rate can cause the participant to lose orientation
or cause simulator sickness. A nonstable frame
rate is a weakness of many caching algorithms,
where a sudden change in viewpoint can produce
a view that is not fully represented in the cache,
causing a temporary drop in fidelity or frame rate.
Similarly, dynamic techniques such as ray tracing
for global illumination can also exhibit variable
frame rates when the viewpoint changes from a
complex region to a less complex region in terms
of illumination.

Precomputed Radiance Transfer8 offers an ap-
proximation to global illumination for static scenes
and has been applied to rendering in a CAVE.9 The
preprocessed static scene is illuminated by dynamic
environment maps for realistic rendering. The light
field presents an image-based approach for repre-
senting and rendering radiance information from
real or virtual scenes.10,11 The advantage of such
a representation is that rendering is independent
of scene complexity—in both the number of poly-
gons and surface materials. Pankaj Khanna and his
colleagues12 utilize a direction-and-point parame-
terized (DPP) light field data structure13 storing vis-
ibility for accelerating ray tracing, and subsequently
Peijie Huang and his colleagues employed a surface
light field for that purpose, supporting rigid dy-
namics.14 Similarly, Zhong Ren and his colleagues
precompute and store visibility for fast global illu-
mination computation of low-frequency lighting at
interactive frame rates.15

The Virtual Light Field uses a 5D DPP light field
to propagate and represent global illumination in
a scene for real-time rendering.16 Unlike many
current techniques in virtual and augumented/

mixed reality applications that approximate physi-
cally based rendering, the VLF provides a true solu-
tion, representing all L(S|D) ∗ E light paths. After
propagation, this radiance information is available
for rendering and relighting. We believe such a
representation has significant potential for allow-
ing realistically illuminated virtual environments,
although the rendering method can equally be
used to represent a “real-world” light field for VR
applications at high, stable frame rates.

A Brief Overview of the VLF
We have previously presented the fundamental
VLF data structure and algorithm.16 A 2D grid of
rays all parallel to the z-axis is called the canonical
parallel subfield (PSF). This canonical PSF is inter-
sected with all objects in the scene (which requires
only a 2D rasterization algorithm). Multiple rota-

tions of the canonical PSF are formed, each again
intersected with the scene. Thus each ray in the
data structure belongs to one and only one PSF
and has a (possibly) empty sequence of surface in-
tersections along it. Any arbitrary ray through the
scene will have a set of nearest-neighbor rays in
the PSF data structure. In practice, if we take any
rectangular grid of rays, we can exploit coherence
by dividing these into smaller rectangular tiles,
and keep a set of surface identifiers within each
tile indicating the set of surfaces intersected by at
least one ray in that tile. This also helps in visibil-
ity calculations and results in a massive reduction
in memory requirement.

Ls(ω, s, t, u, v, p), where ω indicates PSFω , (s, t) is
a tile for face p, and (u, v) is a cell within this tile.
Our approach uses texture atlases for both radi-
ance and irradiance maps for improved efficiency
and compact representation.

Once the VLF data structure is built, propaga-
tion is in principle a straightforward Neumann
expansion of the rendering equation. Radiance
is emitted from light sources following the paths
provided by fixed bundles of parallel rays in the
PSFs, which are used as approximations for true
ray directions. Coherence is exploited by follow-
ing parallel bundles of rays rather than dealing

A general solution requires integration of
the global illumination method within a
more general rendering system, such as
Performer–CAVELib.

58	 November/December	2008

VR	Software	and	Technology

with individual rays. This method maps well to
the GPU, providing a very efficient light transport
step. The method can provide solutions with tens
of thousands of polygons with millions of radiance
or irradiance elements in minutes.17

Rendering the VLF in the CAVE
When the VLF propagation step has converged, the
GPU can render novel views from the data structure
by interpolating between samples stored in the dif-
fuse textures and nondiffuse view-dependent radi-
ance tiles. Diffuse surfaces can be rendered directly
using texturing with the diffuse textures available
in the irradiance texture atlases. The GPU performs
interpolation efficiently in this case.

Flat specular faces can be rendered with ray
tracing by recursively following a view ray reflected
in the specular face until it strikes a diffuse face
where the visible radiance can be collected. A simi-
lar idea, often used in real-time VR applications,
is to use the stencil buffer to render a reflected
view of the scene as seen through the specular face
and then paste this onto the face with texturing.18
These methods are efficient only if few specular
surfaces are present in the scene and do not ap-
ply to, for example, glossy bidirectional reflectance
distribution functions (BRDFs).

A more general method is to resample images
from the directionally dependent radiance stored
in the nondiffuse radiance tiles. As we described in
the section “A Brief Overview of the VLF,” the data
structure can be formalized as Ls(ω, s, t, u, v, p).
This effectively references a radiance value in direc-
tion ω, from a point on p described by the intersec-
tion of the canonical ray (s, t, u, v) with p. Owing to
the discrete representation, a PSF matching exactly
the direction ω is rarely available. The three PSFs
(ω i, ω j, ωk) at the vertices of the spherical triangle
in which ω falls are used with barycentric weights
(αi, αj, αk) for an interpolated value:

Ls(ω, s, t, u, v, p) = αi ∗ Ls(ω, s, t, u, v, p)
 + αj ∗ Ls(ω j, s, t, u, v, p)
 + αk ∗ Ls(ωk, s, t, u, v, p) (1)

In order to compute the values necessary to
index into Equation 1, four off-screen passes are
rendered. A fifth and final pass performs the final
shading, producing the globally lit image. In order
to identify nondiffuse pixels in the image plane,
an optional stencil image can be produced by ren-
dering the nondiffuse polygons to an off-screen
target. This can serve to limit the computation
performed in each subsequent pass to only non-
diffuse pixels.

In Pass 1 the camera is placed at the center of the
unit sphere, and the spherical triangles are rendered
in false color to a texture. This produces the indices
of the three nearest PSFs (ωi, ωj, ωk) for each pixel.

This is repeated in Pass 2, this time setting
vertex colors for each spherical triangle to (1, 0,
0), (0, 1, 0), and (0, 0, 1). The GPU interpolates
this over each triangle, resulting in a texture with
three barycentric weights for each pixel.

Pass 3 serves to determine p, this time rendering
the scene geometry in false color, yielding a texture
with a face identifier for each visible nondiffuse
pixel.

Pass 4 renders the scene geometry again, where
each vertex is colored with its world coordinate
(WC) position; interpolation across the geometry
produces a texture with the WC position of the
intersection of the viewing ray for that pixel with
the face p. Note that ray casting could easily re-
place these last two passes. A fifth and final pass
renders the final radiances to the image. For each
pixel this is achieved by mapping the hit position
to each of the three PSFs by applying the respec-
tive MWC→PSF matrix, which maps from WCs to PSF
coordinates to the hit position, producing an (x, y,
z) value in canonical PSF coordinates where (x, z)
trivially maps to a tile/cell pair (s, t, u, v). The tiled
data structure is then looked up, and a radiance
value for each PSF is weighted by its corresponding
barycentric weight and written to the image.

Performance is dependent on the time taken
to resolve visibility (Pass 3); the remaining passes
and radiance retrieval involve a small constant
time per pixel. Either ray tracing or rasterization
can be used to resolve the visibility; here, we use
the latter. One of the main points of the VLF ap-
proach is that global illumination values can be
retrieved directly from the data structure; no fur-
ther shadow rays or sampling is necessary. This
results in stable, predictable frame rates, which is
of great utility in VR applications.

Dynamics Integration
Integrating dynamic elements in a global illumi-
nation solution is a difficult task. The computa-
tional resources needed to solve the rendering
equation numerically at real-time frame rates are
currently not readily available. Popular approaches
attempting this are ray tracing7 and hierarchical
finite-element approaches.19 At the time of writ-
ing, these cannot deliver the frame rates and reso-
lution needed for VR applications. Making some
simplifying assumptions can, however, make the
problem tractable. If we separate the scene ge-
ometry into dynamic and static elements we can

	 IEEE	Computer	Graphics	and	Applications	 59

precompute the global illumination for the static
elements using the VLF and focus on the dynamic
elements at runtime.

Dynamic elements undergoing only rigid-body
animation can be easily integrated using Precom-
puted Radiance Transfer,8 where the VLF can pro-
vide the input radiance. This approach does not
apply to elements such as virtual characters (ava-
tars) using skinned animation, which are a cru-
cial element of many VR applications. The mesh
of an avatar is typically made up of thousands
of triangles essentially undergoing unstructured
motion, making it virtually impossible to acceler-
ate through a precompute approach. However, by
breaking up the problem and attacking the modes
of transport that contribute most to the image, we
can achieve real time and still support significant
global illumination effects.

We can separate the problem into three main
modes of transport contributing to the image and
focus on solving them:

field radiance scattered off the avatar toward the
eye,
soft shadows cast by the avatar, and
specular reflections of the avatar.

This does not solve for diffuse reflections of the
avatar; thus, color bleeding caused by the avatar
will not be accounted for. However, the magnitude
of illumination that has undergone multiple dif-
fuse reflections is generally low and will add little
to the image.

In order to solve the field radiance problem, we
need to be able to rapidly provide the irradiance
at an arbitrary spatial position; a shader program
can then use this to calculate the surface shad-
ing at points on the mesh. In order to provide ir-
radiance calculations at real-time frame rates, we
introduce another precomputed data structure de-
rived from the VLF. The bounding volume of the
scene is subdivided into a set of voxels. A voxel
stores irradiance retrieved from the VLF projected
to a spherical harmonic; owing to the properties
of spherical harmonics, they can be calculated at
arbitrary positions by trilinear interpolation of the
eight nearest voxels. Such irradiance volume was
suggested by Ravi Ramamoorthi and Pat Hanra-
han20 and by Gene Greger and his colleagues,21
albeit in a different form.

Physically correct soft shadows are notoriously
difficult to calculate. However, perceptually cor-
rect soft shadows can be rendered in real time us-
ing the GPU. Percent Closer Soft Shadows samples
a standard shadow map stochastically to provide

■

■

■

approximate umbra and penumbra regions of a
shadow due to an area light source.22 In order to
combine this with the physically correct soft shad-
ows (cast by static elements) already present in
the scene, the visibilities of shadow-mapped light
sources are also stored as texture maps in the VLF.
This information is trivially available during the
VLF precompute.

Reflections (and caustics) are already appropri-
ately accounted for in the VLF for the static parts
of the scene, but this obviously does not include
the dynamic elements. Also, depending on the res-
olution of the VLF and the BRDF of the surface,
they might benefit from reconstruction using the
scene geometry. This can easily be achieved in real
time using a reflection rendering pass, rendering
the visible scene onto a reflective surface.18 This
can be extended to curved surfaces using tradi-
tional environment-mapping techniques.

The effect of these techniques used in con-
junction is quite striking. The dynamic elements
merge well with the surrounding scene, featuring
impinging color bleeding and caustics and casting
soft shadows, as well as being visible in reflective
surfaces (see Figure 1a). In contrast, to obtain the
OpenGL rendering (see Figure 1b), the ambient

Figure	1.	Integrating	dynamic	elements	into	a	static	scene:	(a)	a	
virtual	character	in	a	globally	lit	scene	showing	color	bleeding,	
caustics,	and	soft	shadows,	as	well	as	specular	reflection;	and	(b)	
an	OpenGL	rendering.	Note	the	realistic	appearance	due	to	global	
illumination	effects,	in	contrast	to	standard	OpenGL	rendering,	which	is	
commonplace	in	VR	research.

(a)

(b)

60	 November/December	2008

VR	Software	and	Technology

terms and other direct-lighting coefficients had
to be painstakingly adjusted to obtain the overall
warm look of the globally lit image. Even then,
the image looks flat owing to missing soft shadows
and color-bleeding effects.

Implementation
A system for real-time rendering in a VR system
such as a CAVE requires more than a suitable ren-
dering algorithm. Operating system, networking,
synchronization, and tracking issues must all be
combined into one overall application that affords
not just real-time rendering but also the creation
of a coherent VR. The VLF rendering method has
been integrated into XVR,3 which is a stand-alone
integrated development environment for the rapid
development of complex VR applications. The XVR
Network Renderer module has been used in order
to distribute the graphic load on a local-area net-
work (LAN).

The XVR Framework
We chose XVR as our implementation framework
because in addition to real-time graphics render-
ing, it includes the ability to handle many collat-
eral aspects of VR programming, such as sound,
haptics, and interaction. To allow for CAVE appli-
cations development, XVR has a dedicated module
called the Network Renderer.23 This module allows
for cluster-based rendering of XVR applications fol-
lowing a “sort-first” approach.24 By using a cluster
of workstations, the rendering load is distributed
among several machines. In particular, we let each
PC of the cluster manage the rendering of a differ-
ent screen of the CAVE system.

The Network Renderer is totally transparent to
the original XVR application: each of the OpenGL
calls performed by the master application is inter-
cepted by the module, which catches all the infor-
mation about the calls and stores them into an
internal memory buffer. Each time that it is nec-
essary, and according to the rules of an internal
synchronization protocol, XVR’s Network Driver
module sends the content of the buffer to a set
of remote executables, called graphic slaves, which
run on the machines composing the cluster.

In order to minimize the network load, data is
sent through broadcast or multicast datagrams.
In addition, before sending, all data is com-
pressed using the LZO (Lempel/Ziv/Oberhumer)
algorithm.25 Each of the slaves then executes the
OpenGL calls received from the master. In order
to assure the consistency of the master applica-
tion state, the OpenGL calls are performed on
the master side too, once they are intercepted and
information about them is collected. It should be
noted that following this approach, the output
resolution of the OpenGL context on the master
machine is completely unrelated to the resolution
of the slaves.

Network traffic generated by the Network Driver
has soft real-time requirements and is not tolerant
of data loss. Consequently, proper functioning of
the Network Renderer requires a fast LAN, lim-
ited network delay, and a reliable transport layer
with guaranteed in-order arrival. Typical XVR net-
work rendering uses isolated, monohop Ethernet
networks, where the MAC (media access control)
data-link protocol provides the required guaran-
tees against data loss; in this scenario, UDP (User
Datagram Protocol) datagrams can be used to
transport the network data.

In order to manage the high-level data transmis-
sion, two application layer protocols were devel-
oped, each of them dealing with a different aspect
of the communication. NOGLP (Network OpenGL
Protocol), the higher layer, manages the informa-
tion exchange, per-frame synchronization, and
data compression. FDP (Fragmented Datagram
Protocol), the lower layer, handles the fragmen-
tation of those NOGLP packets exceeding UDP’s
maximum transmission unit (MTU); FDP also
prevents data loss due to slave-side buffer overflow,
through the introduction of acknowledgement
messages. In order to obtain a consistent visualiza-
tion and avoid inconsistencies between CAVE wall
images, per-frame synchronization of the graphic
slaves has to be performed by the Network Ren-
derer. The per-frame synchronization includes the
Master Node too; that is the only computer actu-
ally running the whole application.

The immersive capabilities provided by a CAVE
system include three main factors: stereo graphics
rendering, head tracking, and the fact that the par-
ticipant is surrounded by the visual display (apart
typically from the ceiling and back wall, although
there do exist six-sided CAVEs). All these factors
must be considered in order to make the visual-
ization system work properly and in a consistent
way. In particular, it is necessary to calculate the
proper perspective projection matrix for each of

We chose XVR because, in addition to
real-time graphics rendering, it includes

the ability to handle many collateral
aspects of VR programming.

	 IEEE	Computer	Graphics	and	Applications	 61

the screens, according to the position and the ori-
entation of the participant’s viewpoint and head
direction. Performing all these operations is a task
independent of the specific application running,
and it can be exactly defined given the specifica-
tions of the particular CAVE in use.

For these reasons, the Network Renderer relieves
the application programmer from being concerned
with these issues. The programmer needs to render
only monoscopic images, and XVR takes care of
properly rendering in stereo and onto the CAVE
screens. The conversion from mono to stereo is
achieved by buffering the commands composing
a frame during the execution of the left eye and
executing them again for the right eye with the
specified distance between the eyes. The value of
the projection matrix takes into consideration the
data coming from the head-tracking device. In our
CAVE setup, four rendering clients drive the front,
left, right, and floor projections, respectively.

Virtual Characters in the VLF
As we stated in the introduction, one of the poten-
tial advantages of real-time global illumination in
a VR is that the virtual body of the participant can
itself have shadows and reflections. This requires
that virtual characters, including their movements
and deformations, must be rendered in real time
(for example, in a CAVE), which is a challenging
task in itself. This is particularly true if the real-
istic appearance of characters is important and if
they are therefore represented by a large number
of polygons.

The description of our virtual characters is based
on the Cal3D (3D character animation library,
https://gna.org/projects/cal3d) XML file format.
Cal3D enables us to describe a bone weighted mesh
in which each vertex has a weighted influence of
one or more bones of the character’s skeleton. In
addition to weights, the mesh vertices contain ma-
terial, normal, and texture coordinate information.
The skeletal structure, material, and animation are
also described in separate Cal3D files for each char-
acter. Cal3D provides exporter plug-ins, in source
code, for Autodesk (www.autodesk.com) Maya and
3D Studio Max and for the open source 3D modeler
Blender (www.blender.org). The Autodesk filmbox
format can be used to transfer animations created
within Autodesk’s Motionbuilder system to Cal3D
via Max or Maya. At the moment, we are using
hand-rigged characters from aXYZ design (www.
axyz-design.com) that are represented by about
5,000 to 10,000 polygons.

We developed a dynamic link library, which we
embedded into the XVR framework. Different GLSL

(OpenGL Shading Language) shaders can be loaded
from the XVR scripting language (S3D) to perform
the virtual-character skin deformation by using
standard matrix or dual-quaternion blending tech-
niques26 on the GPU. Once the information of each
character’s vertex weighted mesh is distributed to
vertex buffer objects of each GPU, character anima-
tion is performed by transmitting only the trans-
formation matrix or dual quaternion of each bone
of the characters’ skeletons for every animation up-
date. Because skin deformations are computed on
the GPU and only skeletal transformation informa-
tion and no vertex information is transmitted by
the network renderer, animating our characters is
highly efficient, requiring little bandwidth.

For motion capture or keyframe animation, we
extend the abstract Cal3D mixer class, which en-
ables us to blend and loop different sequences. To
perform interactive animations based on real-time
tracking data, we can change the transformations

of every bone of a character from within S3D. We
developed a simple inverse-kinematics (IK) func-
tion that enables characters to perform shoulder
and elbow rotations of the left and the right arm
so that, for example, a character’s hand position, if
it is within reach, coincides with the positional in-
formation of real-time tracking data. By using this
IK function we can achieve realistic-looking arm
movements based only on the positions read from
the trackers. Head rotations and body positions
are directly applied from the appropriate tracking
data in order to mirror the gaze and location of
the participants in our immersive dynamically and
globally illuminated virtual environments.

For CAVE applications the virtual character is
used only for rendering of shadows and reflec-
tions because the participant’s own body is visible
when using shutter glasses. In HMD applications
this is not the case, and the virtual character’s
body but not the head must also be rendered for
direct viewing.

Results
Timings were obtained on an Intel Core 2 Quad
(QX6700) 2.66-GHz processor with a GeForce

One of the potential advantages of
real-time global illumination in a VR is
that the virtual body of the participant
can itself have shadows and reflections.

62	 November/December	2008

VR	Software	and	Technology

8800 GTX, 768 Mbytes of graphics memory, and
4 Gbytes of host memory. Resolution was fixed at
1,024 × 768, with 2,000 directions on the sphere
and 2562 radiance maps. The scenes considered
here have a relatively large nondiffuse area, and
we are using a perfectly specular BRDF, which
is the worst-case scenario for a light field with
discrete directions. Other less directionally de-
pendent BRDFs would require fewer directions
and would render with fewer visible artifacts. No
stencil buffer was used, such that the interpola-
tion computation was always performed for all
pixels in the view, yielding a worst-case but stable
frame rate.

The Atenea scene (containing a statuette of
Athena) in Figure 2a is composed of 9,410 poly-
gons with a single emitter. The wall opposite the
statuette is specular with a slight bluish diffuse
component. The scene contains approximately 30.6
million nondiffuse elements and approximately
2.4 million diffuse elements and is propagated
in approximately 16.3 minutes with six itera-
tions. The data structures consume 22.3 Mbytes
of memory compressed on disk or 142 Mbytes of
texture memory on the GPU. The Grotto scene
in Figure 2b is composed of 318 polygons with
three emitters, of which two are textured. The
scene contains approximately 9.2 million nondif-
fuse elements and approximately 1 million diffuse
elements and is propagated in approximately 2.5
minutes with six iterations. The data structures
consume 8.1 Mbytes of memory on disk or 31
Mbytes of texture memory on the GPU. Although
this scene has a small number of polygons, its il-
lumination complexity is high, and it is used as a
standard scene in global illumination research.27

The frame rates quoted in Figure 2 were sus-
tained from all viewpoints, even when the nondif-
fuse polygons filled the entire image.

The scene used in Figure 1, including a dynamic
character, rendered with all effects enabled at approx-
imately 25 frames per second (fps) in the CAVE. By
far the most expensive part of the rendering was the
soft-shadowing technique requiring a floating-point
shadow map and many texture samples for each vis-
ible fragment. The rendering costs of the VLF, stencil
reflections, and character relighting were negligible,
reducing the frame rate by only a few frames per
second. Without the soft-shadow technique enabled,
the application ran at approximately 40 fps. We be-
lieve that this is limited mainly by synchronization
issues with the CAVE hardware.

We have presented a GPU VLF rendering
method capable of rendering full global il-

lumination for VR applications at real-time frame
rates. Rendering performance is independent of
illumination complexity and geometric complex-
ity, assuming that visibility can be resolved in real
time. The global illumination shading adds only a
small constant time operation per pixel, through
accessing the DPP light field stored on the GPU.

We have constructed a complex application
that is the basis for further experimentation of
the influence of global illumination on people’s
responses within VR. The application places the
participant in a library, which includes a plant,
a telephone, many books on shelves, and a large
mirror on one wall. The application runs in a four-
screen CAVE-like system (specifically, a Trimen-
sion ReaCTor) and includes books falling from

Figure	2.	Scenes	used	for	rendering	the	performance	tests:	(a)	the	Atenea	scene	(containing	a	statuette	of	Athena),	rendered	at	
120	frames	per	second	mono	(60	fps	stereo)	and	(b)	the	Grotto	scene,	rendered	at	121	fps	mono	(60.5	fps	stereo).	These	images	
illustrate	real-time	performance	for	rendering	scenes	with	complex	illumination	involving	specular	reflections.

(a) (b)

	 IEEE	Computer	Graphics	and	Applications	 63

the shelves with appropriate dynamics. The par-
ticipant is endowed with a complex virtual body.
Because the participant is in a CAVE, his or her
own body can be seen, so that the virtual body
is not visible, but it is reflected in the mirror (see
Figure 3). We had tracking on the head and one
hand so that inverse kinematics were used to ap-
proximately map the movements of the virtual
body from the movements of the participant. The
experiment, recently completed, suggests together
with the results reported earlier2 that the critical
element for high presence in the virtual scenario is
the dynamic shadows and reflections rather than
the overall quality of illumination. However, this
is a tentative result awaiting further analysis, and
is in any case application specific.

Directions for future work include integrating
the dynamic objects further by considering also
radiance and irradiance reflected from dynamic
objects onto the static objects. Also, better support
for more complex materials for both the static and
dynamic objects would be another avenue worth
pursuing. Finally, by moving to an approach where
all direct lighting and shadows are computed us-
ing graphics hardware, it might be possible to
interactively update a low-resolution VLF in the
background supporting dynamic light sources and
materials, and fully dynamic geometry.

Acknowledgments
The Engineering and Physical Sciences Research Coun-
cil funded this research through grant EP/C511824/1,
Presence in the Virtual Light Field. The European Sixth
Framework Program, Future and Emerging Technolo-
gies project Presence: Research Encompassing Sensory
Enhancement, Neuroscience, Cerebral-Computer In-
terfaces and Applications (Presenccia, contract num-
ber 27731), together with support from the Spanish
Ministry of Science and Innovation, supported the
virtual character research.

References
 1. M.V. Sanchez-Vives and M. Slater, “From Presence

to Consciousness through Virtual Reality,” Nature
Reviews Neuroscience, vol. 6, no. 4, 2005, pp. 332–339.

 2. M. Slater et al., 2008. “Visual Realism Enhances
Realistic Response in an Immersive Virtual
Environment,” to be published in IEEE Computer
Graphics and Applications, www.cs.ucl.ac.uk/staff/
m.slater/Papers/pitroom.pdf.

 3. M. Carrozzino et al., “Lowering the Development
Time of Multimodal Interactive Application: The
Real-Life Experience of the XVR Project,” Proc.

2005 ACM SIGCHI Int’l Conf. Advances in Computer
Entertainment Technology (ACE 05), ACM Press,
2005, pp. 270–273.

 4. T. Whitted, “An Improved Illumination Model for
Shaded Display,” Proc. Siggraph, ACM Press, 1979,
pp. 343–349.

 5. C.M. Goral et al., “Modeling the Interaction of
Light between Diffuse Surfaces,” Proc. Siggraph,
ACM Press, 1984, pp. 213–222.

 6. A. Reshetov, A. Soupikov, and J. Hurley, “Multilevel
Ray Tracing Algorithm,” ACM Trans. Graphics (Proc.
Siggraph), vol. 24, no. 3, 2005, pp. 1176–1185.

 7. I. Wald et al., “A Ray Tracing Based Virtual Reality
Framework for Industrial Design,” Proc. 2006 IEEE
Symp. Interactive Ray Tracing, IEEE Press, 2006, pp.
177–185.

 8. P.-P. Sloan, J. Kautz, and J. Snyder, “Precomputed
Radiance Transfer for Real-Time Rendering in
Dynamic, Low-Frequency Lighting Environments,”
Proc. Siggraph, ACM Press, 2002, pp. 527–536.

 9. K. Dmitriev et al., “A CAVE System for Interactive
Modeling of Global Illumination in Car Interior,” Proc.
ACM Symp. Virtual Reality Software and Technology
(VRST 04), ACM Press, 2004, pp. 137–145.

 10. S.J. Gortler et al., “The Lumigraph,” Proc. Siggraph,
ACM Press, 1996, pp. 43–54.

 11. M. Levoy and P. Hanrahan, “Light Field Rendering,”
Proc. Siggraph, ACM Press, 1996, pp. 31–42.

 12. P. Khanna et al., “Fast Ray Tracing of Scenes with
Unstructured Motion,” ACM Siggraph 2004 Posters,
ACM Press, 2004, p. 35.

 13. E. Camahort, A. Lerios, and D. Fussell, “Uniformly
Sampled Light Fields,” Proc. Eurographics Rendering
Workshop, Springer, 1998, pp. 117–130.

Figure	3.	A	participant	in	a	CAVE	(Cave	Automatic	Virtual	Environment)	
virtual	library	application.	His	virtual	body	is	invisible	within	the	
scene	but	does	reflect	in	the	virtual	mirror.	This	illustrates	full	global	
illumination	with	support	for	tracked	dynamic	avatars;	note	the	
correspondence	of	the	virtual	character’s	pose	with	the	tracked	subject.

64	 November/December	2008

VR	Software	and	Technology

 14. P. Huang et al., “Traversal Fields for Ray Tracing
Dynamic Scenes,” Proc. ACM Symp. Virtual Reality
Software and Technology (VRST 06), ACM Press,
2006, pp. 65–74.

 15. Z. Ren et al., “Intersection Fields for Interactive
Global Illumination,” The Visual Computer, vol. 21,
nos. 8–10, 2005, pp. 569–578.

 16. M. Slater et al., “A Virtual Light Field Approach to
Global Illumination,” Proc. Computer Graphics Int’l
(CGI 04), IEEE CS Press, 2004, pp. 102–109.

 17. J. Mortensen et al., “Real-Time Global Illumination
in the CAVE,” Proc. 2007 ACM Symp. Virtual Reality
Software and Technology (VRST 07), ACM Press, 2007,
pp. 145–148.

 18. M.J. Kilgard, “Improving Shadows and Reflections via
the Stencil Buffer,” white paper, Nvidia Corp., 2002.

 19. C. Dachsbacher et al., “Implicit Visibility and
Antiradiance for Interactive Global Illumination,”
ACM Trans. Graphics (Proc. Siggraph), vol. 26, no.
3, 2007, p. 61.

 20. R. Ramamoorthi and P. Hanrahan, “An Efficient
Representation for Irradiance Environment Maps,”
Proc. Siggraph, ACM Press, 2001, pp. 497–500.

 21. G. Greger et al., “The Irradiance Volume,” IEEE
Computer Graphics and Applications, vol. 18, no. 2,
1998, pp. 32–43.

 22. Y. Uralsky, Efficient Soft-Edged Shadows Using
Pixel Shader Branching, Addison-Wesley, 2005, pp.
269–282.

 23. G. Marino et al., “Description and Performance
Analysis of a Distributed Rendering Architecture for
Virtual Environments,” Proc. 17th Ann. Int’l Conf.
Artificial Reality and Telexistence (ICAT 07), IEEE CS
Press, 2007, pp. 234–241.

 24. S. Molnar et al., “A Sorting Classification of Parallel
Rendering,” IEEE Computer Graphics and Applications,
vol. 14, no. 4, 1994, pp. 23–32.

 25. M.F.X.J. Oberhumer, LZO—a Real-Time Data
Compression Library, documentation for LZO version
2.02, 2005; www.oberhumer.com/opensource/lzo.

 26. L. Kavan et al., “Skinning with Dual Quaternions,”
Proc. 2007 ACM Siggraph Symp. Interactive 3D
Graphics and Games, ACM Press, 2007, pp. 39–46.

 27. G. Coombe, M.J. Harris, and A. Lastra, “Radiosity
on Graphics Hardware,” Proc. 2004 Conf. Graphics
Interface (GI 04), ACM Press, 2004, pp. 161–168.

Jesper Mortensen is an R&D programmer at Geo-
merics Ltd. working on real-time global illumination
for the games industry. He’s also a completing PhD
student on the topic of global illumination at Univer-
sity College London. His research interest is render-
ing algorithms, particularly for global illumination.
Mortensen received his MSc in vision, imaging, and
virtual environments from University College London.

Contact him at jesper@geomerics.com.

Insu Yu is a finishing PhD student at University
College London. His interests include real-time global
illumination on GPUs, especially based on spherical
harmonics. Yu received his MSc in vision, imaging,
and virtual environments from University College
London. Contact him at i.yu@cs.ucl.ac.uk.

Pankaj Khanna is a financial-services consultant
and maintains links to academia as an Honorary Re-
search Fellow at University College London. He’s also
a PhD candidate in computer science at University
College London, with interests in global illumination,
real-time physically based rendering, and virtual real-
ity. Khanna received his MSc in vision, imaging, and
virtual environments from University College Lon-
don. Contact him at p.khanna@cs.ucl.ac.uk.

Franco Tecchia is an assistant professor in computer
science with a primary specialization in software en-
gineering and computer graphics, and is the head of
the Visualisation Systems Group at the PERCRO (Per-
ceptual Robotics) Laboratory of the Scuola Superiore
Sant’Anna. His research activities focus on the design
and development of complex VR systems, and include
real-time computer graphics, virtual and augmented
reality, and software engineering applied to virtual en-
vironments. Contact him at franco.tecchia@sssup.it.

Bernhard Spanlang is a postdoctoral research fel-
low at the Universitat Politècnica de Catalunya. His
research interests are statistical character animation,
human-avatar interaction, and virtual clothing. Span-
lang received his EngD in vision, imaging, and virtual
environments from University College London. Con-
tact him at bspanlang@lsi.upc.edu.

Giuseppe Marino is a PhD student at the PER-
CRO (Perceptual Robotics) laboratory of the Scuola
Superiore Sant’Anna. His technical interests include
high-performance cluster rendering and vision-based
tracking systems. Marino received his master’s degree
in computer engineering from the University of Pisa.
Contact him at giuseppe.marino@sssup.it.

Mel Slater is Institució Catalana de Recerca i Estudis
Avançats Research (ICREA) Professor at the University
of Barcelona and is Professor of Virtual Environments
at University College London. His research interests in-
clude global illumination algorithms for virtual reality
and scientific understanding of how people respond to
VR. Slater received his DSc in computer science from
the University of London. Contact him at m.slater@
cs.ucl.ac.uk.

