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This article presents a solution for the render-
ing of immersive VR using real-time global 
illumination. One of the important reasons 

for using VR in an application is that participants 
should respond realistically to virtual objects and 
events—for example, in applications concerned 
with training or rehabilitation. Therefore, investi-
gating the factors that might be critical in produc-
ing such realistic responses is an important area 

of scientific investigation, with 
implications for the engineering 
of successful VR applications.1

An obvious factor to consider 
is the realism of the illumination. 
While a static globally illuminated 
scene is well within the grasp of 
current methods, it places limits 
on the range of environments and 
tasks that can be effectively repre-
sented. When scenes are rendered 
with global illumination, they not 
only look more realistic but also 
critically have dynamic shadows 
and reflections of objects, most 
importantly of the virtual body of 
the participant interacting in the 
VR. In other words, as participants 

move through the VR they would see real-time cor-
relations of their activities through not only chang-
ing object reflections but also dynamic changes of the 
shadows and reflections of their body. This can have 
an anchoring effect that profoundly situates the par-
ticipant within the virtual environment.2

The problems faced in rendering with real-time 
global illumination, however are twofold: First, 
the computational complexity of such a real-time 
rendering system while achieving an acceptable 
frame rate is daunting. Second, we are faced with 
a choice of how this is to be achieved—one option 
is to construct an ad hoc system with support for 
related tasks such as tracking, display management, 
and synchronization. Alternatively, a general solu-
tion requires integration of the global illumination 
method within a more general rendering system, 
such as Performer–CAVELib (an API for the Cave 
Automatic Virtual Environment), DIVE (Distrib-
uted Interactive Virtual Environment), or XVR (Ex-
treme VR), which can again be a complex task. 

In this article, we present the Virtual Light Field 
(VLF) paradigm as a solution to this problem. We 
discuss its potential and advantages in such an 
application. Finally, we present details of our inte-
gration of the VLF rendering method within XVR3 
to provide a practical real-time global illumination 
solution.

Background
The key elements for visual realism are accurate 
geometric models and their realistic illumination. 
In this research we consider only the illumination 
aspect of visual realism. Ray tracing4 and radios-
ity5 provide a partial global illumination solution 
and have both been considered for VR rendering. 
Whereas ray tracing extends easily to real-time 
dynamics including shadows and reflections, per-
formance is limited by the complexity of the scene 

Real-time	global	illumination	
in	VR	systems	enhances	scene	
realism	by	incorporating	
soft	shadows,	reflections	of	
objects	in	the	scene,	and	color	
bleeding.	The	Virtual	Light	
Field	(VLF)	method	enables	
real-time	global	illumination	
rendering	in	VR.	The	VLF	has	
been	integrated	with	the	
Extreme	VR	system	for	real-
time	GPU-based	rendering	
in	a	Cave	Automatic	Virtual	
Environment.
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and its elements as well as the required screen res-
olution and update rate. The number of primary 
rays for a CAVE (Cave Automatic Virtual Environ-
ment) application running in stereo at a resolu-
tion of 1,024 × 768 at 30 frames per second is 47 
million rays (Mrays) per second. The state of the 
art in efficient ray tracing6 can achieve roughly 40 
Mrays/sec., so even a single shadow ray per pixel 
would exceed the ray budget.

Global illumination techniques such as path 
tracing and photon mapping, among others, offer a 
more complete illumination solution, supporting a 
larger range of materials and light interactions, but 
they do not easily extend to real-time rendering. 
At least 20–40 rays per pixel are needed to achieve 
global illumination;7 this exceeds the ray budget we 
just mentioned by an order of a magnitude and will 
not be applicable for CAVE rendering.

In VR applications the frame rate must be real-
time and constant; even temporary drops in frame 
rate can cause the participant to lose orientation 
or cause simulator sickness. A nonstable frame 
rate is a weakness of many caching algorithms, 
where a sudden change in viewpoint can produce 
a view that is not fully represented in the cache, 
causing a temporary drop in fidelity or frame rate. 
Similarly, dynamic techniques such as ray tracing 
for global illumination can also exhibit variable 
frame rates when the viewpoint changes from a 
complex region to a less complex region in terms 
of illumination.

Precomputed Radiance Transfer8 offers an ap-
proximation to global illumination for static scenes 
and has been applied to rendering in a CAVE.9 The 
preprocessed static scene is illuminated by dynamic 
environment maps for realistic rendering. The light 
field presents an image-based approach for repre-
senting and rendering radiance information from 
real or virtual scenes.10,11 The advantage of such 
a representation is that rendering is independent 
of scene complexity—in both the number of poly-
gons and surface materials. Pankaj Khanna and his 
colleagues12 utilize a direction-and-point parame-
terized (DPP) light field data structure13 storing vis-
ibility for accelerating ray tracing, and subsequently 
Peijie Huang and his colleagues employed a surface 
light field for that purpose, supporting rigid dy-
namics.14 Similarly, Zhong Ren and his colleagues 
precompute and store visibility for fast global illu-
mination computation of low-frequency lighting at 
interactive frame rates.15

The Virtual Light Field uses a 5D DPP light field 
to propagate and represent global illumination in 
a scene for real-time rendering.16 Unlike many 
current techniques in virtual and augumented/

mixed reality applications that approximate physi-
cally based rendering, the VLF provides a true solu-
tion, representing all L(S|D) ∗ E light paths. After 
propagation, this radiance information is available 
for rendering and relighting. We believe such a 
representation has significant potential for allow-
ing realistically illuminated virtual environments, 
although the rendering method can equally be 
used to represent a “real-world” light field for VR 
applications at high, stable frame rates.

A Brief Overview of the VLF
We have previously presented the fundamental 
VLF data structure and algorithm.16 A 2D grid of 
rays all parallel to the z-axis is called the canonical 
parallel subfield (PSF). This canonical PSF is inter-
sected with all objects in the scene (which requires 
only a 2D rasterization algorithm). Multiple rota-

tions of the canonical PSF are formed, each again 
intersected with the scene. Thus each ray in the 
data structure belongs to one and only one PSF 
and has a (possibly) empty sequence of surface in-
tersections along it. Any arbitrary ray through the 
scene will have a set of nearest-neighbor rays in 
the PSF data structure. In practice, if we take any 
rectangular grid of rays, we can exploit coherence 
by dividing these into smaller rectangular tiles, 
and keep a set of surface identifiers within each 
tile indicating the set of surfaces intersected by at 
least one ray in that tile. This also helps in visibil-
ity calculations and results in a massive reduction 
in memory requirement.

Ls(ω, s, t, u, v, p), where ω indicates PSFω , (s, t) is 
a tile for face p, and (u, v) is a cell within this tile. 
Our approach uses texture atlases for both radi-
ance and irradiance maps for improved efficiency 
and compact representation.

Once the VLF data structure is built, propaga-
tion is in principle a straightforward Neumann 
expansion of the rendering equation. Radiance 
is emitted from light sources following the paths 
provided by fixed bundles of parallel rays in the 
PSFs, which are used as approximations for true 
ray directions. Coherence is exploited by follow-
ing parallel bundles of rays rather than dealing 

A general solution requires integration of 
the global illumination method within a 
more general rendering system, such as 
Performer–CAVELib.
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with individual rays. This method maps well to 
the GPU, providing a very efficient light transport 
step. The method can provide solutions with tens 
of thousands of polygons with millions of radiance 
or irradiance elements in minutes.17

Rendering the VLF in the CAVE
When the VLF propagation step has converged, the 
GPU can render novel views from the data structure 
by interpolating between samples stored in the dif-
fuse textures and nondiffuse view-dependent radi-
ance tiles. Diffuse surfaces can be rendered directly 
using texturing with the diffuse textures available 
in the irradiance texture atlases. The GPU performs 
interpolation efficiently in this case.

Flat specular faces can be rendered with ray 
tracing by recursively following a view ray reflected 
in the specular face until it strikes a diffuse face 
where the visible radiance can be collected. A simi-
lar idea, often used in real-time VR applications, 
is to use the stencil buffer to render a reflected 
view of the scene as seen through the specular face 
and then paste this onto the face with texturing.18 
These methods are efficient only if few specular 
surfaces are present in the scene and do not ap-
ply to, for example, glossy bidirectional reflectance 
distribution functions (BRDFs).

A more general method is to resample images 
from the directionally dependent radiance stored 
in the nondiffuse radiance tiles. As we described in 
the section “A Brief Overview of the VLF,” the data 
structure can be formalized as Ls(ω, s, t, u, v, p). 
This effectively references a radiance value in direc-
tion ω, from a point on p described by the intersec-
tion of the canonical ray (s, t, u, v) with p. Owing to 
the discrete representation, a PSF matching exactly 
the direction ω is rarely available. The three PSFs 
(ω i, ω j, ωk) at the vertices of the spherical triangle 
in which ω falls are used with barycentric weights 
(αi, αj, αk) for an interpolated value:

Ls(ω, s, t, u, v, p) = αi ∗ Ls(ω, s, t, u, v, p) 
 + αj ∗ Ls(ω j, s, t, u, v, p) 
 + αk ∗ Ls(ωk, s, t, u, v, p) (1)

In order to compute the values necessary to 
index into Equation 1, four off-screen passes are 
rendered. A fifth and final pass performs the final 
shading, producing the globally lit image. In order 
to identify nondiffuse pixels in the image plane, 
an optional stencil image can be produced by ren-
dering the nondiffuse polygons to an off-screen 
target. This can serve to limit the computation 
performed in each subsequent pass to only non-
diffuse pixels.

In Pass 1 the camera is placed at the center of the 
unit sphere, and the spherical triangles are rendered 
in false color to a texture. This produces the indices 
of the three nearest PSFs (ωi, ωj, ωk) for each pixel.

This is repeated in Pass 2, this time setting 
vertex colors for each spherical triangle to (1, 0, 
0), (0, 1, 0), and (0, 0, 1). The GPU interpolates 
this over each triangle, resulting in a texture with 
three barycentric weights for each pixel.

Pass 3 serves to determine p, this time rendering 
the scene geometry in false color, yielding a texture 
with a face identifier for each visible nondiffuse 
pixel.

Pass 4 renders the scene geometry again, where 
each vertex is colored with its world coordinate 
(WC) position; interpolation across the geometry 
produces a texture with the WC position of the 
intersection of the viewing ray for that pixel with 
the face p. Note that ray casting could easily re-
place these last two passes. A fifth and final pass 
renders the final radiances to the image. For each 
pixel this is achieved by mapping the hit position 
to each of the three PSFs by applying the respec-
tive MWC→PSF matrix, which maps from WCs to PSF 
coordinates to the hit position, producing an (x, y, 
z) value in canonical PSF coordinates where (x, z) 
trivially maps to a tile/cell pair (s, t, u, v). The tiled 
data structure is then looked up, and a radiance 
value for each PSF is weighted by its corresponding 
barycentric weight and written to the image.

Performance is dependent on the time taken 
to resolve visibility (Pass 3); the remaining passes 
and radiance retrieval involve a small constant 
time per pixel. Either ray tracing or rasterization 
can be used to resolve the visibility; here, we use 
the latter. One of the main points of the VLF ap-
proach is that global illumination values can be 
retrieved directly from the data structure; no fur-
ther shadow rays or sampling is necessary. This 
results in stable, predictable frame rates, which is 
of great utility in VR applications.

Dynamics Integration
Integrating dynamic elements in a global illumi-
nation solution is a difficult task. The computa-
tional resources needed to solve the rendering 
equation numerically at real-time frame rates are 
currently not readily available. Popular approaches 
attempting this are ray tracing7 and hierarchical 
finite-element approaches.19 At the time of writ-
ing, these cannot deliver the frame rates and reso-
lution needed for VR applications. Making some 
simplifying assumptions can, however, make the 
problem tractable. If we separate the scene ge-
ometry into dynamic and static elements we can 
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precompute the global illumination for the static 
elements using the VLF and focus on the dynamic 
elements at runtime.

Dynamic elements undergoing only rigid-body 
animation can be easily integrated using Precom-
puted Radiance Transfer,8 where the VLF can pro-
vide the input radiance. This approach does not 
apply to elements such as virtual characters (ava-
tars) using skinned animation, which are a cru-
cial element of many VR applications. The mesh 
of an avatar is typically made up of thousands 
of triangles essentially undergoing unstructured 
motion, making it virtually impossible to acceler-
ate through a precompute approach. However, by 
breaking up the problem and attacking the modes 
of transport that contribute most to the image, we 
can achieve real time and still support significant 
global illumination effects.

We can separate the problem into three main 
modes of transport contributing to the image and 
focus on solving them:

field radiance scattered off the avatar toward the 
eye,
soft shadows cast by the avatar, and
specular reflections of the avatar.

This does not solve for diffuse reflections of the 
avatar; thus, color bleeding caused by the avatar 
will not be accounted for. However, the magnitude 
of illumination that has undergone multiple dif-
fuse reflections is generally low and will add little 
to the image.

In order to solve the field radiance problem, we 
need to be able to rapidly provide the irradiance 
at an arbitrary spatial position; a shader program 
can then use this to calculate the surface shad-
ing at points on the mesh. In order to provide ir-
radiance calculations at real-time frame rates, we 
introduce another precomputed data structure de-
rived from the VLF. The bounding volume of the 
scene is subdivided into a set of voxels. A voxel 
stores irradiance retrieved from the VLF projected 
to a spherical harmonic; owing to the properties 
of spherical harmonics, they can be calculated at 
arbitrary positions by trilinear interpolation of the 
eight nearest voxels. Such irradiance volume was 
suggested by Ravi Ramamoorthi and Pat Hanra-
han20 and by Gene Greger and his colleagues,21 
albeit in a different form.

Physically correct soft shadows are notoriously 
difficult to calculate. However, perceptually cor-
rect soft shadows can be rendered in real time us-
ing the GPU. Percent Closer Soft Shadows samples 
a standard shadow map stochastically to provide 

■

■

■

approximate umbra and penumbra regions of a 
shadow due to an area light source.22 In order to 
combine this with the physically correct soft shad-
ows (cast by static elements) already present in 
the scene, the visibilities of shadow-mapped light 
sources are also stored as texture maps in the VLF. 
This information is trivially available during the 
VLF precompute.

Reflections (and caustics) are already appropri-
ately accounted for in the VLF for the static parts 
of the scene, but this obviously does not include 
the dynamic elements. Also, depending on the res-
olution of the VLF and the BRDF of the surface, 
they might benefit from reconstruction using the 
scene geometry. This can easily be achieved in real 
time using a reflection rendering pass, rendering 
the visible scene onto a reflective surface.18 This 
can be extended to curved surfaces using tradi-
tional environment-mapping techniques.

The effect of these techniques used in con-
junction is quite striking. The dynamic elements 
merge well with the surrounding scene, featuring 
impinging color bleeding and caustics and casting 
soft shadows, as well as being visible in reflective 
surfaces (see Figure 1a). In contrast, to obtain the 
OpenGL rendering (see Figure 1b), the ambient 

Figure	1.	Integrating	dynamic	elements	into	a	static	scene:	(a)	a	
virtual	character	in	a	globally	lit	scene	showing	color	bleeding,	
caustics,	and	soft	shadows,	as	well	as	specular	reflection;	and	(b)	
an	OpenGL	rendering.	Note	the	realistic	appearance	due	to	global	
illumination	effects,	in	contrast	to	standard	OpenGL	rendering,	which	is	
commonplace	in	VR	research.

(a)

(b)
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terms and other direct-lighting coefficients had 
to be painstakingly adjusted to obtain the overall 
warm look of the globally lit image. Even then, 
the image looks flat owing to missing soft shadows 
and color-bleeding effects.

Implementation
A system for real-time rendering in a VR system 
such as a CAVE requires more than a suitable ren-
dering algorithm. Operating system, networking, 
synchronization, and tracking issues must all be 
combined into one overall application that affords 
not just real-time rendering but also the creation 
of a coherent VR. The VLF rendering method has 
been integrated into XVR,3 which is a stand-alone 
integrated development environment for the rapid 
development of complex VR applications. The XVR 
Network Renderer module has been used in order 
to distribute the graphic load on a local-area net-
work (LAN).

The XVR Framework
We chose XVR as our implementation framework 
because in addition to real-time graphics render-
ing, it includes the ability to handle many collat-
eral aspects of VR programming, such as sound, 
haptics, and interaction. To allow for CAVE appli-
cations development, XVR has a dedicated module 
called the Network Renderer.23 This module allows 
for cluster-based rendering of XVR applications fol-
lowing a “sort-first” approach.24 By using a cluster 
of workstations, the rendering load is distributed 
among several machines. In particular, we let each 
PC of the cluster manage the rendering of a differ-
ent screen of the CAVE system.

The Network Renderer is totally transparent to 
the original XVR application: each of the OpenGL 
calls performed by the master application is inter-
cepted by the module, which catches all the infor-
mation about the calls and stores them into an 
internal memory buffer. Each time that it is nec-
essary, and according to the rules of an internal 
synchronization protocol, XVR’s Network Driver 
module sends the content of the buffer to a set 
of remote executables, called graphic slaves, which 
run on the machines composing the cluster.

In order to minimize the network load, data is 
sent through broadcast or multicast datagrams. 
In addition, before sending, all data is com-
pressed using the LZO (Lempel/Ziv/Oberhumer) 
algorithm.25 Each of the slaves then executes the 
OpenGL calls received from the master. In order 
to assure the consistency of the master applica-
tion state, the OpenGL calls are performed on 
the master side too, once they are intercepted and 
information about them is collected. It should be 
noted that following this approach, the output 
resolution of the OpenGL context on the master 
machine is completely unrelated to the resolution 
of the slaves.

Network traffic generated by the Network Driver 
has soft real-time requirements and is not tolerant 
of data loss. Consequently, proper functioning of 
the Network Renderer requires a fast LAN, lim-
ited network delay, and a reliable transport layer 
with guaranteed in-order arrival. Typical XVR net-
work rendering uses isolated, monohop Ethernet 
networks, where the MAC (media access control) 
data-link protocol provides the required guaran-
tees against data loss; in this scenario, UDP (User 
Datagram Protocol) datagrams can be used to 
transport the network data.

In order to manage the high-level data transmis-
sion, two application layer protocols were devel-
oped, each of them dealing with a different aspect 
of the communication. NOGLP (Network OpenGL 
Protocol), the higher layer, manages the informa-
tion exchange, per-frame synchronization, and 
data compression. FDP (Fragmented Datagram 
Protocol), the lower layer, handles the fragmen-
tation of those NOGLP packets exceeding UDP’s 
maximum transmission unit (MTU); FDP also 
prevents data loss due to slave-side buffer overflow, 
through the introduction of acknowledgement 
messages. In order to obtain a consistent visualiza-
tion and avoid inconsistencies between CAVE wall 
images, per-frame synchronization of the graphic 
slaves has to be performed by the Network Ren-
derer. The per-frame synchronization includes the 
Master Node too; that is the only computer actu-
ally running the whole application.

The immersive capabilities provided by a CAVE 
system include three main factors: stereo graphics 
rendering, head tracking, and the fact that the par-
ticipant is surrounded by the visual display (apart 
typically from the ceiling and back wall, although 
there do exist six-sided CAVEs). All these factors 
must be considered in order to make the visual-
ization system work properly and in a consistent 
way. In particular, it is necessary to calculate the 
proper perspective projection matrix for each of 

We chose XVR because, in addition to  
real-time graphics rendering, it includes 

the ability to handle many collateral 
aspects of VR programming.
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the screens, according to the position and the ori-
entation of the participant’s viewpoint and head 
direction. Performing all these operations is a task 
independent of the specific application running, 
and it can be exactly defined given the specifica-
tions of the particular CAVE in use.

For these reasons, the Network Renderer relieves 
the application programmer from being concerned 
with these issues. The programmer needs to render 
only monoscopic images, and XVR takes care of 
properly rendering in stereo and onto the CAVE 
screens. The conversion from mono to stereo is 
achieved by buffering the commands composing 
a frame during the execution of the left eye and 
executing them again for the right eye with the 
specified distance between the eyes. The value of 
the projection matrix takes into consideration the 
data coming from the head-tracking device. In our 
CAVE setup, four rendering clients drive the front, 
left, right, and floor projections, respectively.

Virtual Characters in the VLF
As we stated in the introduction, one of the poten-
tial advantages of real-time global illumination in 
a VR is that the virtual body of the participant can 
itself have shadows and reflections. This requires 
that virtual characters, including their movements 
and deformations, must be rendered in real time 
(for example, in a CAVE), which is a challenging 
task in itself. This is particularly true if the real-
istic appearance of characters is important and if 
they are therefore represented by a large number 
of polygons.

The description of our virtual characters is based 
on the Cal3D (3D character animation library, 
https://gna.org/projects/cal3d) XML file format. 
Cal3D enables us to describe a bone weighted mesh 
in which each vertex has a weighted influence of 
one or more bones of the character’s skeleton. In 
addition to weights, the mesh vertices contain ma-
terial, normal, and texture coordinate information. 
The skeletal structure, material, and animation are 
also described in separate Cal3D files for each char-
acter. Cal3D provides exporter plug-ins, in source 
code, for Autodesk (www.autodesk.com) Maya and 
3D Studio Max and for the open source 3D modeler 
Blender (www.blender.org). The Autodesk filmbox 
format can be used to transfer animations created 
within Autodesk’s Motionbuilder system to Cal3D 
via Max or Maya. At the moment, we are using 
hand-rigged characters from aXYZ design (www.
axyz-design.com) that are represented by about 
5,000 to 10,000 polygons.

We developed a dynamic link library, which we 
embedded into the XVR framework. Different GLSL 

(OpenGL Shading Language) shaders can be loaded 
from the XVR scripting language (S3D) to perform 
the virtual-character skin deformation by using 
standard matrix or dual-quaternion blending tech-
niques26 on the GPU. Once the information of each 
character’s vertex weighted mesh is distributed to 
vertex buffer objects of each GPU, character anima-
tion is performed by transmitting only the trans-
formation matrix or dual quaternion of each bone 
of the characters’ skeletons for every animation up-
date. Because skin deformations are computed on 
the GPU and only skeletal transformation informa-
tion and no vertex information is transmitted by 
the network renderer, animating our characters is 
highly efficient, requiring little bandwidth.

For motion capture or keyframe animation, we 
extend the abstract Cal3D mixer class, which en-
ables us to blend and loop different sequences. To 
perform interactive animations based on real-time 
tracking data, we can change the transformations 

of every bone of a character from within S3D. We 
developed a simple inverse-kinematics (IK) func-
tion that enables characters to perform shoulder 
and elbow rotations of the left and the right arm 
so that, for example, a character’s hand position, if 
it is within reach, coincides with the positional in-
formation of real-time tracking data. By using this 
IK function we can achieve realistic-looking arm 
movements based only on the positions read from 
the trackers. Head rotations and body positions 
are directly applied from the appropriate tracking 
data in order to mirror the gaze and location of 
the participants in our immersive dynamically and 
globally illuminated virtual environments.

For CAVE applications the virtual character is 
used only for rendering of shadows and reflec-
tions because the participant’s own body is visible 
when using shutter glasses. In HMD applications 
this is not the case, and the virtual character’s 
body but not the head must also be rendered for 
direct viewing.

Results
Timings were obtained on an Intel Core 2 Quad 
(QX6700) 2.66-GHz processor with a GeForce 

One of the potential advantages of  
real-time global illumination in a VR is 
that the virtual body of the participant 
can itself have shadows and reflections. 
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8800 GTX, 768 Mbytes of graphics memory, and 
4 Gbytes of host memory. Resolution was fixed at 
1,024 × 768, with 2,000 directions on the sphere 
and 2562 radiance maps. The scenes considered 
here have a relatively large nondiffuse area, and 
we are using a perfectly specular BRDF, which 
is the worst-case scenario for a light field with 
discrete directions. Other less directionally de-
pendent BRDFs would require fewer directions 
and would render with fewer visible artifacts. No 
stencil buffer was used, such that the interpola-
tion computation was always performed for all 
pixels in the view, yielding a worst-case but stable 
frame rate.

The Atenea scene (containing a statuette of 
Athena) in Figure 2a is composed of 9,410 poly-
gons with a single emitter. The wall opposite the 
statuette is specular with a slight bluish diffuse 
component. The scene contains approximately 30.6 
million nondiffuse elements and approximately 
2.4 million diffuse elements and is propagated 
in approximately 16.3 minutes with six itera-
tions. The data structures consume 22.3 Mbytes 
of memory compressed on disk or 142 Mbytes of 
texture memory on the GPU. The Grotto scene 
in Figure 2b is composed of 318 polygons with 
three emitters, of which two are textured. The 
scene contains approximately 9.2 million nondif-
fuse elements and approximately 1 million diffuse 
elements and is propagated in approximately 2.5 
minutes with six iterations. The data structures 
consume 8.1 Mbytes of memory on disk or 31 
Mbytes of texture memory on the GPU. Although 
this scene has a small number of polygons, its il-
lumination complexity is high, and it is used as a 
standard scene in global illumination research.27

The frame rates quoted in Figure 2 were sus-
tained from all viewpoints, even when the nondif-
fuse polygons filled the entire image.

The scene used in Figure 1, including a dynamic 
character, rendered with all effects enabled at approx-
imately 25 frames per second (fps) in the CAVE. By 
far the most expensive part of the rendering was the 
soft-shadowing technique requiring a floating-point 
shadow map and many texture samples for each vis-
ible fragment. The rendering costs of the VLF, stencil 
reflections, and character relighting were negligible, 
reducing the frame rate by only a few frames per 
second. Without the soft-shadow technique enabled, 
the application ran at approximately 40 fps. We be-
lieve that this is limited mainly by synchronization 
issues with the CAVE hardware.

We have presented a GPU VLF rendering 
method capable of rendering full global il-

lumination for VR applications at real-time frame 
rates. Rendering performance is independent of 
illumination complexity and geometric complex-
ity, assuming that visibility can be resolved in real 
time. The global illumination shading adds only a 
small constant time operation per pixel, through 
accessing the DPP light field stored on the GPU.

We have constructed a complex application 
that is the basis for further experimentation of 
the influence of global illumination on people’s 
responses within VR. The application places the 
participant in a library, which includes a plant, 
a telephone, many books on shelves, and a large 
mirror on one wall. The application runs in a four-
screen CAVE-like system (specifically, a Trimen-
sion ReaCTor) and includes books falling from 

Figure	2.	Scenes	used	for	rendering	the	performance	tests:	(a)	the	Atenea	scene	(containing	a	statuette	of	Athena),	rendered	at	
120	frames	per	second	mono	(60	fps	stereo)	and	(b)	the	Grotto	scene,	rendered	at	121	fps	mono	(60.5	fps	stereo).	These	images	
illustrate	real-time	performance	for	rendering	scenes	with	complex	illumination	involving	specular	reflections.

(a) (b)
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the shelves with appropriate dynamics. The par-
ticipant is endowed with a complex virtual body. 
Because the participant is in a CAVE, his or her 
own body can be seen, so that the virtual body 
is not visible, but it is reflected in the mirror (see 
Figure 3). We had tracking on the head and one 
hand so that inverse kinematics were used to ap-
proximately map the movements of the virtual 
body from the movements of the participant. The 
experiment, recently completed, suggests together 
with the results reported earlier2 that the critical 
element for high presence in the virtual scenario is 
the dynamic shadows and reflections rather than 
the overall quality of illumination. However, this 
is a tentative result awaiting further analysis, and 
is in any case application specific.

Directions for future work include integrating 
the dynamic objects further by considering also 
radiance and irradiance reflected from dynamic 
objects onto the static objects. Also, better support 
for more complex materials for both the static and 
dynamic objects would be another avenue worth 
pursuing. Finally, by moving to an approach where 
all direct lighting and shadows are computed us-
ing graphics hardware, it might be possible to 
interactively update a low-resolution VLF in the 
background supporting dynamic light sources and 
materials, and fully dynamic geometry. 
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