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Informational Aesthetics 
Measures
Jaume Rigau, Miquel Feixas, and Mateu Sbert ■ University of Girona, Spain

In 1928, George D. Birkhoff formalized the 
aesthetic measure of an object as the quotient 
between order and complexity (see also the “Re-

lated  Work” sidebar).1 From Birkhoff’s work, Max 
Bense,2 together with Abraham Moles,3 developed 
informational aesthetics (or information-theoretic 
aesthetics from the original German term), which 
defines the concepts of order and complexity 
from Shannon’s notion of information.4 As Birk-

hoff stated, formalizing these 
concepts, which depend on the 
context, author, observer, and 
so on, is difficult. Scha and Bod 
claimed that in spite of these 
measures’ simplicity, “if we in-
tegrate them with other ideas 
from perceptual psychology and 
computational linguistics, they 
may in fact constitute a start-
ing point for the development of 
more adequate formal models.”5

The creative process generally 
produces order from disorder. 
Bense proposed a general schema 
that characterizes artistic pro-
duction by the transition from 
the repertoire to the final prod-

uct. He assigned a complexity to the repertoire, 
or palette, and an order to the distribution of its 
elements on the artistic product. 

This article, an extended and revised version 
of earlier work,6 presents a set of measures that 
conceptualizes Birkhoff’s aesthetic measure from 
an informational viewpoint. These measures de-
scribe complementary aspects of the aesthetic ex-
perience and are normalized for comparison. We 
show the measures’ behavior using three sets of 
paintings representing different styles that cover 
a representative feature range: from randomness 

to order. Our experiments show that both global 
and compositional measures extend Birkhoff’s 
measure and help us understand and quantify the 
creative process. 

Information theory and Kolmogorov 
complexity

Some basic notions of information theory,4 Kol-
mogorov complexity,7 and physical entropy8 serve 
as background for our work.

Information-theoretic measures
Information theory deals with information 

transmission, storage, and processing.4 Research-
ers in fields such as physics, computer science, sta-
tistics, biology, image processing, and learning use 
information theory. 

Let X be a finite set and X be a random vari-
able taking values x in X with distribution p(x) = 
Pr[X = x] (that is, the probability that variable X 
takes value x). Likewise, let Y be a random variable 
taking values y in Y. We characterize an informa-
tion channel X → Y between two random variables 
(input X and output Y) by a probability transition 
matrix that determines the output distribution 
given the input. 

We define the Shannon entropy H(X) of a ran-
dom variable X by 

H X p x p x
x X

( ) ( )log ( )= −
∈
∑

 

The Shannon entropy H(X), also denoted by H(p), 
measures the average uncertainty of random variable 
X and fulfills 0 ≤ H(X) ≤ log |X|. If the logarithms 
are taken in base 2, we express entropy in bits. 

The conditional entropy is defined by 

H X Y p x y p x y
x X y Y

( ) ( , )log ( )
,

= −
∈ ∈
∑

The Birkhoff aesthetic  
measure of an object is the  
ratio  between  order and  
complexity. Informational 
aesthetics describes the 
interpretation of this measure 
from an information-theoretic 
perspective. From these ideas, 
the authors define a set of 
ratios based on information 
theory and Kolmogorov 
complexity that can help 
to quantify the aesthetic 
experience.
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where p(x, y) = Pr[X = x, Y = y] is the joint prob-
ability, and p(x|y) = Pr[X = x|Y = y] is the condi-
tional probability. The conditional entropy H(X|Y) 
measures the average uncertainty associated with 
X if we know the outcome of Y. The mutual infor-
mation between X and Y is defined by I(X, Y) = 
H(X) − H(X|Y) = H(Y) − H(Y|X), and represents 
the shared information between X and Y. 

The Shannon source-coding theorem is a funda-

mental result of information theory. This theorem 
encodes an object to store or transmit it efficiently. 
The theorem expresses that an optimal code’s mini-
mal length (for instance, a Huffman code) fulfills 

H X H X( ) ( )≤ < +l 1 	�  (1)

where �  is the expected length of the optimal bi-
nary code for X. 

Related Work in Informational Aesthetics
Eighty years ago, Birkhoff formalized the notion of 

beauty by introducing the aesthetic measure, defined as 
the ratio between order and complexity.1 According to 
this measure, “the complexity is roughly the number of el-
ements that the image consists of and the order is a mea-
sure for the number of regularities found in the image.”2 

Birkhoff suggested that aesthetic feelings stem from the 
harmonious interrelations inside the object and that the 
aesthetic measure is determined by the order relations in 
the object. He identified three successive phases in the 
aesthetic experience: 

A preliminary effort of attention, which is necessary for 
the act of perception and increases proportionally to the 
object’s complexity (C). 
The feeling of value or aesthetic measure (M) coming 
from this effort. 
The verification that the object is characterized by 
certain harmony, symmetry, or order (O), which seems 
necessary for the aesthetic effect.

From these considerations, Birkhoff defined the aesthetic 
measure as M =O/C. 

Birkhoff understood the impossibility of comparing 
objects of different classes and accepted that the aesthetic 
experience depends on the observer. So, he proposed re-
stricting the group of observers and applying the measure 
only to similar objects. 

Using information theory, Bense proposed both the 
redundancy and Shannon entropy to quantify, respective-
ly, an artistic object’s order and complexity.3 According 
to Bense, any artistic creation process involves a deter-
mined repertoire of elements (such as colors, sounds, and 
phonemes) that is transmitted to the final product. The 
creative process is selective (that is, to create is to select). 
For instance, if the repertoire is given by a palette of colors 
with a probability distribution, the final product (in our 
case, a painting) is a selection (a realization) of this palette 
on a canvas. Although the distribution of elements of an 
aesthetic state has a certain order, the repertoire shows 
a certain complexity. Bense also distinguished between a 
global complexity, formed by partial complexities, and a 
global order, formed by partial orders. 

Other authors have also introduced measures to 

■

■

■

quantify aesthetics. Koshelev considered that the running 
time t(p) of a program p that generates a given design 
is a formalization of Birkhoff’s complexity C. In addition, 
a monotonically decreasing function of the program’s 
length l(p) (that is, Kolmogorov complexity) represents 
Birkhoff’s order O.4 So, looking for the most attractive 
design, M = 2−l(p)/t(p) defines the aesthetic measure. 
Machado and Cardoso established that an aesthetic 
visual measure depends on the ratio between image 
complexity and processing complexity.5 They estimated 
both using real-world compressors (JPEG and fractal, 
respectively). They considered that images that are simul-
taneously visually complex and easy to process have a 
higher aesthetic value. 

Greenfield6 and Hoenig7 provide excellent overviews of 
the history of the aesthetic measures. 
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Another interesting property of the entropy is the 
Jensen-Shannon inequality, which is expressed by 
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where JS(π1, …, πn; p1, …, pn) is the Jensen-Shannon 
divergence of probability distributions p1, …, pn 
with n prior probabilities or weights π1, …, πn; ful-
filling Σi

n
i= =1 1π . The Jensen-Shannon divergence 

measures how far the probabilities pi are from 
their likely joint source Σi

n
i ip=1π  and equals zero 

if, and only if, all pi are equal. 

Kolmogorov complexity and the similarity metric 
The Kolmogorov complexity K(x) of a string x is 

the length of the shortest program to compute x 
on an appropriate universal computer.6 Essentially, 
a string’s Kolmogorov complexity is the length of 
its ultimate compressed version and is machine-in-
dependent up to an additive constant. The condi-
tional complexity K(x|y) of x relative to y is defined 
as the length of the shortest program to compute x 
given y as an auxiliary input to the computation. 
The joint complexity K(x, y) represents the length 
of the shortest program for the pair (x, y). The 
Kolmogorov complexity is also called algorithmic 
information or algorithmic randomness. 

Information distance is defined as the length of 
the shortest program that computes x from y and y 
from x.7 Up to an additive logarithmic term, the in-
formation distance is given by E(x, y) = max{K(y|x), 
K(x|y)}. This measure is a metric. Long strings that 
differ by a small amount are intuitively closer 
than short strings that differ by the same amount. 
Hence, the necessity to normalize the information 
distance arises. Li and colleagues7 define a normal-
ized version of E(x, y), called the normalized infor-
mation distance or the similarity metric: 

NID x y
K x y K y x

K x K y

K x

( , )
max ( ), ( )

max ( ), ( )

(

=
{ }

{ }
=
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y K x K y

K x K y
− { }

{ }  	�  (3)

NID is also a metric and takes values in [0, 1]. 
It’s universal in the sense that if two strings are 
similar according to the feature described by a par-
ticular normalized admissible distance (not neces-
sarily a metric), they’re also similar in the sense 
of the normalized information metric. Because of 
the Kolmogorov complexity’s noncomputability, a 
feasible version of NID, called normalized compres-
sion distance, is defined as 

NCD x y
C x y C x C y

C x C y
( , )

( , ) min ( ), ( )
max ( ), ( )

=
− { }

{ }}  	 (4) 

where C(x) and C(y) represent the length of com-
pressed string x and y, respectively, and C(x, y) the 
length of the compressed pair (x, y). Therefore, 
NCD approximates NID by using a standard real-
world compressor. 

Physical entropy
Looking at a system from an observer’s angle, 

Zurek8 defined the physical entropy as the sum of 
the missing information (Shannon entropy) and 
the algorithmic information content (Kolmogorov 
complexity) of the available data: 

Sd = H(Xd) + K(d)	� (5)

where d is the system’s observed data, K(d) is the 
Kolmogorov complexity of d, and H(Xd) is the con-
ditional Shannon entropy or our ignorance about 
the system given d. 

Physical entropy reflects the fact that measure-
ments increase our knowledge about a system. In 
the beginning, we have no knowledge about the 
system’s state, so the physical entropy reduces to 
the Shannon entropy, reflecting our total igno-
rance. If the system is in a regular state, physical 
entropy decreases as we make more measurements. 
In this case, we increase our knowledge about the 
system and might be able to efficiently compress 
the data. If the state isn’t regular, we can’t achieve 
compression, and the physical entropy remains 
high. According to Zurek, we can view this com-
pression process from the perspective of an infor-
mation-gathering and using system entity, such 
as a Maxwell’s demon, capable of measuring and 
modifying its strategies based on the measure-
ments’ outcomes.

Global aesthetic measures
We consider three basic concepts of Bense’s cre-

ative process: 

the initial repertoirethe basic states (in our 
case, a wide range of colors that we assume are 
finite and discrete);
the used palette (selected repertoire)the range 
of colors selected by the artist with a given prob-
ability distribution; and 
the final color distributionthe arrangement of the 
palette colors on a physical support (canvas). 

Our set of measures uses these concepts to extend 
Birkhoff’s measure using information theory and 
Kolmogorov complexity.

■

■

■
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For a given color image I of N pixels, we use an 
sRGB color representation based on a repertoire 
of 2563 colors (Xrgb). We reduce the Xrgb range us-
ing the luminance Y709 (Xl = [0, 255]). From the 
normalization of the intensity histograms of Xrgb 
and Xl, using 2563( )Nb

rgb  and 256( )Nb
l  bins, re-

spectively, we obtain the probability distributions 
of the random variables Xrgb and Xl. The maxi-
mum entropy Hmax for these random variables is 
log| |Nb

rgb = 24  and log| |Nb
l = 8 , respectively. 

Throughout this article, we use the following 
notions:

a palette (Xrgb or Xl), given by the image’s nor-
malized intensity histogram;
the palette entropy or pixel uncertainty (Hp), 
obtained from H(Xrgb) or H(Xl);
the image information content or image uncer-
tainty (NHp); and 
an image’s Kolmogorov complexity (K). 

We applied our measures to the set of paintings 

■

■

■

■

shown in Figure 1. Table 1 (next page) lists their sizes 
as well as the size and compression ratio achieved by 
the JPEG compressor.

Shannon’s perspective 
Bense proposed using redundancy to measure or-

der in an aesthetic object (see the “Related Work” 
sidebar on page 25). When we apply this idea to an 
image or painting, the absolute redundancy Hmax − 
Hp expresses the reduction of uncertainty due to 
the choice of a palette with a given color probabil-
ity distribution instead of a uniform distribution. 
Thus, we can express the aesthetic measure as the 
relative redundancy:

M
H H

H
B = −max

max

p

From a coding perspective, this measure represents 
the gain from using an optimal code to compress the 
image (Equation 1). The redundancy expresses one 
aspect of the creative process: the artist’s selected 

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1. Paintings used in our tests. (a) Composition with Red, Piet Mondrian, 1938–1939; (b) Composition with Red, Blue, 
Black, Yellow, and Gray, Piet Mondrian, 1921; (c) Composition with Grid 1, Piet Mondrian, 1918; (d) The Seine at Le Grande Jatte, 
Georges-Pierre Seurat, 1888; (e) Forest at Pontaubert, Georges-Pierre Seurat, 1881; (f) Sunday Afternoon on the Island of La 
Grande Jatte, Georges-Pierre Seurat, 1884-1886; (g) The Starry Night, Vincent van Gogh, 1889; (h) Olive Trees with the Alpilles in 
the Background, Vincent van Gogh, 1889; and (i) Wheat Field under Threatening Skies, Vincent van Gogh, 1890. 
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palette. Table 2 shows significant differences in 
the MB values for the set of paintings in Figure 
1. To obtain these results, we computed a pixel’s 
entropy using Hp = H(Xrgb) (thus, Hmax = 24). From 
Mondrian-1 (Figure 1a) to van Gogh-3 (Figure 
1i), the results reflect the high color homogeneity 
in Mondrian’s paintings and the major color di-
versity in Seurat’s and van Gogh’s paintings. This 
measure only reflects the palette information and 
doesn’t account for colors’ spatial distribution on 
canvas. Thus, the geometry (Mondrian), pointil-
lism’s randomness (Seurat),  and landscape ele-
ments (van Gogh and Seurat) are compositional 
features perceived by a human observer but not 
captured by MB. The measures described in the fol-
lowing sections address these features. 

Kolmogorov’s perspective
From a Kolmogorov complexity perspective, we 

can measure the order in an image by the dif-
ference between the image size (obtained using 
a constant length code for each color) and its 
Kolmogorov complexity. This corresponds to the 
space saving defined as the size reduction relative 

to the uncompressed size. The order’s normaliza-
tion gives us the aesthetic measure:

M
NH K

NH
K = −max

max  

MK takes values in [0, 1] and expresses the im-
age’s degree of order without any prior knowledge 
of the palette (the higher the image’s degree of 
order, the higher the compression ratio). Because 
of K’s noncomputability, we use real-world com-
pressors to estimate it (that is, we approximate K’s 
value by the size of the corresponding compressed 
file). A compressor exploits both the selected pal-
ette’s degree of order and the color position in the 
canvas. We selected the JPEG compressor because 
of its ability to discover patterns, in spite of (or 
thanks to) losing information that’s imperceptible 
by the human eye. This is closer to the aesthetic 
experience than using lossless compressors, which 
usually have lower compression ratios so keep all 
the original information, including information 
that human observers can’t distinguish. Never-
theless, to avoid losing significant information, we 

Table 2. Entropy H(Xrgb) and global aesthetic measures MB, MK, and MZ for the paintings in Figure 1.

		                                      Aesthetic measures 
Painting	 H(Xrgb)	 MB	 MK	 MZ

Mondrian-1 (a) 8.168 0.660 0.831 0.504

Mondrian-2 (b) 9.856 0.589 0.900 0.758

Mondrian-3 (c) 14.384 0.401 0.651 0.418

Seurat-1 (d) 14.976 0.376 0.419 0.068

Seurat-2 (e) 18.180 0.243 0.405 0.214

Seurat-3 (f) 17.045 0.290 0.539 0.351

van Gogh-1 (g) 17.204 0.283 0.631 0.485

van Gogh-2 (h) 17.288 0.280 0.657 0.523

van Gogh-3 (i) 17.689 0.263 0.532 0.364

Table 1. Size of the original files and size and compression ratio for the paintings in Figure 1, using 
JPEG compression with the maximum quality option.

	 Original image file 	 Compressed file
Painting Pixels Bytes Bytes Ratio

Mondrian-1 (a) 316,888 951,862 160,557 5.928 

Mondrian-2 (b) 139,050 417,654 41,539 10.055

Mondrian-3 (c) 817,740 2,453,274 855,074 2.869

Seurat-1 (d) 844,778 2,535,422 1,473,336 1.721

Seurat-2 (e) 857,540 2,572,674 1,530,889 1.681

Seurat-3 (f) 375,750 1,128,306 519,783 2.171

Van Gogh-1 (g) 831,416 2,495,126 919,913 2.712

Van Gogh-2 (h) 836,991 2,511,850 862,274 2.913

Van Gogh-3 (i) 856,449 2,570,034 1,203,527 2.135
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use a JPEG compressor with the maximum quality 
option (see Table 1). 

For the results in Table 2, we calculated MK using 
Hmax = 24. Although a strict ordering on MK values 
mixes paintings of different artists, the averages of 
the three sets of paintings are clearly separate. In de-
scending order, the groups are Mondrian, van Gogh, 
and Seurat. The pairs of paintings (Mondrian-3, van 
Gogh-2) and (van Gogh-3, Seurat-3) have similar 
MK values. This is probably because the compres-
sor can detect more homogeneity (or heterogeneity) 
than the human eye. For instance, the interior of 
some regions in the Mondrian-3 painting is more 
heterogeneous than it appears at first glance. 

Frieder Nake, a Bense disciple and pioneer in 
algorithmic art (that is, art explicitly generated by 
an algorithm), considered a painting as a hierar-
chy of signs, where at each level of the hierarchy 
we could determine the statistical information 
content. He conceived the computer as a univer-
sal picture generator capable of “creating every 
possible picture out of a combination of available 
picture elements and colors.”9 Nake’s theory of 
algorithmic art fits well with Kolmogorov’s per-
spective, because you can consider a painting’s 
Kolmogorov complexity as the length of the short-
est program generating it.

Zurek’s perspective
We developed a new version of Birkhoff’s measure 

based on Zurek’s physical entropy.8 Zurek’s work lets 
us look at the creative process as an evolutionary pro-
cess from the initial uncertainty (Shannon entropy) 
to the final order (Kolmogorov complexity). We can 
interpret this approach as a transformation of the 
color palette’s initial probability distribution to 
the algorithm describing the final painting. 

Inspired by physical entropy (Equation 5), we 
define a measure given by the ratio between the 
reduction of uncertainty (because of the compres-
sion achieved by Kolmogorov complexity) and the 
image’s initial information content. Assuming 
that each pixel’s Shannon entropy times the num-
ber of pixels (NHp) gives an image’s information 
content, we have 

M
NH K

NH
Z = −p

p

This normalized ratio quantifies the degree of or-
der created from a given palette. 

For Table 2, we computed MZ using the JPEG 
compressor, Hp = H(Xrgb), and Hmax = 24. Taking 
the average of MZ for each artist gives us the same 
ordering as in the previous measure MK. The low 
values for Seurat’s paintings are due to their low 
compression ratio  because of the pointillist style 
(see Table 1). 

The plots in Figure 2 express, for three paint-
ings, the physical entropy’s evolution as we take 
more measurements. To simulate this evolution, we  
progressively discover each painting’s content (col-
umns from left to right), reducing the missing in-
formation (Shannon entropy) and compressing the 
discovered information (Kolmogorov complexity). 
The Mondrian paintings show on average a greater 
order than the van Gogh paintings, and the van 
Gogh paintings more than the Seurat paintings. So, 
we can more efficiently compress or comprehend 
our progressive knowledge about the paintings in 
the Mondrian case than in the other cases.

Quantifying the creative process. We can understand 
the global measures from the initial repertoire’s 
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Figure 2. The evolution of physical entropy (S) (missing information H + Kolmogorov complexity K) for three paintings shown in 
Figure 1. The missing information is captured by Hp = H(Xrgb) and the Kolmogorov complexity has been approximated using the 
JPEG compressor. (a) Mondrian-1 (Figure 1a), (b) Seurat-1 (Figure 1d), and (c) van Gogh-1 (Figure 1g). 
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complexity (logarithm of the number of repertoire 
states), the selected palette (Shannon entropy), 
and the final distribution (Kolmogorov complex-
ity). From these complexities, we obtain the order, 
measuring the differences between them:

in MB, Hmax − Hp is the palette redundancy; 
in MK, NHmax − K is the compression achieved 
from the product’s order; and 
in MZ, NHp − K is the reduction of uncertainty 
produced while observing or recognizing the fi-
nal product. 

These differences quantify the creative process: 
the first represents the selection process from the 
initial repertoire, the second captures the order in 
the color distribution, and the third expresses the 
transition from the palette to the artistic object.

Compositional aesthetic measures
Bense considered the creative act a transition 

process from an initial repertoire to the distribu-
tion of its elements on the physical support (such 
as a canvas). Here, we introduce measures to ana-
lyze an image’s composition (that is, the spatial 
distribution of colors from a given palette).

Order as self-similarity
To analyze an image’s composition, the measures 

used must quantify the degree of correlation or simi-
larity between image parts. The Jensen-Shannon di-
vergence and the similarity metric can capture the 
spatial order.

Shannon’s perspective. From Shannon’s viewpoint, we 
can compute the similarity between an image’s parts 
using the Jensen-Shannon divergence (Equation 2), 
which is a measure of discrimination between prob-
ability distributions. We can use this divergence to 
calculate the dissimilarity between diverse regions’ 

■
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intensity histograms. Thus, for a given decomposi-
tion of an image, the Jensen-Shannon divergence 
will quantify the spatial heterogeneity. 

Although the ratio between the image’s Jensen-
Shannon divergence and the initial uncertainty Hp 
expresses the degree of dissimilarity, we define its 
complementary value  as a measure of self-similarity:
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where n is the resolution level (that is, number of 
regions desired), πi is the area of region i, pi repre-
sents the probability distribution of region i, and 
H(pi) is its entropy. The self-similarity measure 
takes values in [0, 1], decreasing the value with a 
finer partition. For a random image and a coarse 
resolution, the value should be close to 1. 

Table 3 shows the values of Mj for the set of 
paintings. In our tests, we decomposed the paint-
ings in a 4 × 4 regular grid and computed the 
histograms using the luminance Y709. The high 
similarity between the palettes of the parts of a 
Seurat painting fits with the high values of Mj. 
On the other hand, Mondrian-2’s lower self-
similarity is due to the presence of regions with 
different palettes. 

Kolmogorov’s perspective. To measure the similarity 
between two parts of an image, we use the nor-
malized information distance (Equation 3). As 
we described earlier, the information distance be-
tween two subimages is the length of the shortest 
program needed to transform the two subimages 
into each other. If we consider an image’s degree of 
order as the self-similarity, we can measure it from 
the average NID between each subimage pair:

Table 3. The compositional aesthetic measures Mj, Mk, and Ms for the set of paintings in Figure 1 
computed for n = 16.

		                                      Aesthetic measures 
Painting	 H(Xl)	 Mj	 MK	 Ms

Mondrian-1 (a) 5.069 0.900 0.312 0.166

Mondrian-2 (b) 6.461 0.762 0.335 0.352

Mondrian-3 (c) 7.328 0.969 0.198 0.060

Seurat-1 (d) 7.176 0.984 0.161 0.025

Seurat-2 (e) 7.706 0.979 0.147 0.032

Seurat-3 (f) 7.899 0.960 0.164 0.055

van Gogh-1 (g) 7.858 0.953 0.179 0.070

van Gogh-2 (h) 7.787 0.948 0.170 0.074

van Gogh-3 (i) 7.634 0.957 0.159 0.057
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 Mk(n) = 1 − avg1≤i<j≤n{NID(i, j)} 

where n is the number of regions or subimages 
provided by a given decomposition, and NID(i, j) 
is the distance between subimages Ii and Ij. This 
value ranges from 0 to 1 and expresses the degree 
of order inside the image. 

For Table 3, we calculate the values of Mk for 
the set of paintings using a 4 × 4 regular grid and 
NCD(i, j) (Equation 4) as an approximation of 
NID(i, j). For our case, we computed the values 
of C(Ii) and C(Ii, Ij) in NCD ignoring the rest of 
the canvas information (that is, zero luminance in  
I − Ii and I − Ii − Ij, respectively). As in the previ-
ous compositional measure, Mj, we classified the 
paintings according to the artist, but in reverse 
order. This is because, whereas Mj only measures 
the similarity between regions’ palettes, Mk also 
measures the spatial distribution similarity of the 
palettes on the canvas. 

Interpreting Bense’s channel
We can further understand the creative pro-

cess described by Bense as the realization of an 
information channel between the palette and the 
image’s regions.

From a Shannon perspective, we present an 
algorithm that progressively partitions the im-
age, extracting all its information until the 
painting is completely revealed. The information 
extraction’s rate will depend on the painting’s 
degree of order. For instance, if a painting was 
created by randomly distributing the colors on 
the canvas, any possible partition will obtain a 
small information gain. However, if the painting 
shows a certain degree of structure, we’ll prob-
ably find a partition that will give us a larger 
information gain.

We construct this partitioning algorithm from 
an information channel B → R between the ran-
dom variables B (input) and R (output), which 
represent, respectively, the set of intensity bins B 
and the set of regions R of an image. A conditional 
probability matrix defines this channel. This ma-
trix expresses how the pixels corresponding to 
each intensity bin are distributed in the image’s 
regions. Given Nb intensity bins and Nr regions in 
the image I of N pixels, the channel’s three basic 
elements comprise 

The conditional probability matrix p(R|B), which 
represents the transition probabilities from each 
bin of the histogram to the image’s regions, is 
defined by p(rj|bi) = nij/ni, where nij is the num-
ber of pixels of bi into the region rj, and ni is the 
number of pixels of bi. Conditional probabilities 
fulfill 

■

	
∀ ∈ =

=∑b p r bj
j

NrB. ( )
1

1

The input distribution p(B), which represents 
the probability of selecting each intensity bin, is 
defined by p(bi) = ni/N.
The output distribution p(R), which represents 
the normalized area of each region r, is given by 

	

p r p b p r bj i j i
n j
Ni

Nb
( ) ( ) ( )= =

=∑ 1

where nj is the number of pixels of region rj. 

We adopt a greedy mutual-information-based al-
gorithm10 that splits the image in quasihomogeneous 
regions. The procedure takes the full image as the 
unique initial partition and progressively subdivides 
it (for example, in a binary space partition or quad-
tree) according to the maximum mutual informa-

tion gain for each partitioning step. The algorithm 
generates a partitioning tree T(I) for a given ratio of 
mutual information gain or a predefined number of 
regions (Nr is the number of tree leaves). 

We can visualize this process from 

H B I B R H B R( ) ( , ˆ) ( ˆ)= +
 

where R̂  is the random variable that represents the 
set of regions of the image and varies after each new 
partition. Information acquisition increases I B R( , ˆ)  
(data processing inequality4) and decreases H B R( , ˆ), 
producing an uncertainty reduction due to the re-
gions’ equalization. The maximum mutual informa-
tion that we can achieve is H(B).

We consider that the resulting tree captures the 
image’s structure and hierarchy, and the mutual 
information gained in this decomposition process 
quantifies an image’s capacity to be ordered or the 
feasibility of an observer decomposing it. Thus, 
varying the output from the single image until the 
lowest level (that is, the pixels) lets us study the in-
formation in the image’s composition. The further 
down the regions we must go to achieve a given 

■

■

The mutual information 
gained in this decomposition 
process qualifies an image’s 
capacity to be ordered or 
the feasibility of an observer 
decompositing it.
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level of information, the more complex the image. 
Similarly to Bense’s communication channel 

between the repertoire and the final product, the 
channel we introduced can serve as the information 

(or communication) channel that expresses color 
distribution on a canvas. So, given an initial en-
tropy or uncertainty of the image and a predefined 
level of resolution n, the evolution of the ratio

M n
I B R
H B

s( )
( , ˆ)

( )
=

	� (6)

represents the distribution process. Note that n 
ranges 1 ≤ ≤ ≤n N Nr r

max , where Nr
max  is the mini-

mum number of regions that provide all the image 
information (that is, M Ns r( )max = 1 ). 

Figure 3 shows the evolution of Ms building a 
binary space partitioning (BSP) for each painting 
in Figure 1. The capacity of extracting order from 
each painting coincides with the behavior expect-
ed by an observer. Note the grouping of the three 
different painting styles. Table 3 shows Ms values 
for n = 16 for the set of paintings. Although the 
partitioning reflects the geometry and randomness 
of Mondrian’s and Seurat’s paintings, respectively, 
it also finds the landscape elements in van Gogh’s 
paintings (see Figure 4). Finally, Figure 5 shows 
a sequence of decompositions of van Gogh-1 ob-
tained for several values of n, and only accounting 
for the luminance. Each region is painted with the 
average color corresponding to that region. With 
relatively few regions, the painting’s composition 
is already visible (see Figures 5c and 5d), although 
the details aren’t sufficiently represented. 

We studied the image composition using an 
adaptive algorithm that partitions the image using 
a BSP structure driven by the maximum informa-
tion gain at each partition. This algorithm shows 
us how the image’s composition (macro-aesthetic 
description) appears clearly after relatively few 
partitions. On the contrary, the details or forms 
in the painting appear when we reach a refined 
mesh (microaesthetic description).

Our three compositional measures capture the 
spatial order in an image from an informational 
viewpoint. The first two measures, Mj and Mk, 
measure similarities between predefined regions 
using the information content (Shannon entropy) 
and the algorithmic complexity (Kolmogorov com-
plexity), respectively. The third measure, Ms, based 
on shared information (mutual information), goes 
one step further by dynamically evolving as the 
structure is discovered. 

Conclusion
Further work will explore the use of higher-order 

Shannon measures, such as entropy rate and ex-
cess entropy, which can help us to understand a 
painting’s compositional aspects. Following Zu-
rek’s work,8 we’ll also analyze the artistic process 
from the viewpoint of a Maxwell’s demon-type 
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Seurat-1 Seurat-2 Seurat-3
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Figure 3. Evolution of ratio Ms for the set of paintings in Figure 1 (the 
first 100 splits). 

(a)

(b)

Figure 4. Decompositions of (a) van Gogh-2 and (b) van Gogh-3 for 
Ms(16) = 0.074 and Ms(16) = 0.057, respectively (see Equation 6).
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artist or observer, capable of selecting and clas-
sifying the information contained in an object. 

We’ll test our measures against a broader col-
lection of paintings and other artwork, such as 
artistic photography. We’ll conduct experiments 
within and across styles or painters. Our aim is 
to investigate the possibility of using these mea-
sures for classifying styles, or for distinguishing 
periods within a given artist’s life. An interesting 
experiment will be to compare the automatic clas-
sification obtained by our measures with human 
experts’ classification. We believe that we’re on a 
promising track with a sound theoretical basis, 
which not only extends but will further develop 
Birkhoff’s and Bense’s aesthetics studies.�
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