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OCME: Out-of-Core Mesh Editing Made Practical
Fabio Ganovelli, Roberto Scopigno

Abstract—OCME (Out-of-Core Mesh Editing) is a novel data-
structure and related algorithms for out-of-core editing of large
meshes. OCME uses a hashed multigrid where the triangles are
inserted on the base of their size and position. This choice allows
a rapid access and, on average, a constant construction time
per triangle. Unlike previous approaches, no explicit hierarchy
is maintained and therefore insertion/modification/deletion of
data does not require costly refitting procedures. OCME stores
attributes locally, for example it allows to assign vertex color
only to a small subparts of the dataset, and naturally handles
multiple-scale datasets.

Index Terms—Out-of-Core Mesh Editing, 3D scanning, Mul-
tiresolution Techniques

I. INTRODUCTION

Recent years have seen a surge in the availability of 3D
data of the real world obtained with 3D scanning devices.
Medium or small size objects can be acquired by triangulation
scanners based either on laser or structured lights; medium
or large scenes my be targeted by passive methods based on
photogrammetryc techniques and time-of-flight or phase-shift
scanners (for a survey on these technologies, which is beyond
the scope of this paper, the interested reader may refer to [2]).
As a result, several digitization projects are producing large
3D datasets with data accuracy and density which were
unthinkable until few years ago.
While, over the years, the scientific community has success-
fully tackled the problems related to the acquisition and pro-
cessing of 3D data, the current scenario poses new additional
difficulties. First of all, the datasets may contain data at
different scales, meaning that we may want to edit a scene
containing the model of a statue scanned with sub-millimeter
precision together with a model of a building scanned at
one point per centimeter, or even modeled with a CAD tool.
Secondly, the data are noisy and spurious, i.e. we cannot
assume to deal with a non-degenerate manifold tessellated
surfaces, which is often the final goal of the processing.
Instead, datasets are made of points or triangle soups, with all
the topological noise usually produced by current processing
tools on sampled data. Finally, they can be enriched locally
by other attributes such as color, normal, texture coordinates
and so on.
OCME is designed keeping in mind these new challenges and
offers several advantages over the state of the art:

- it can be updated efficiently, in a time comparable with
the pure time for loading the data from secondary mem-
ory, and scales well with the size of the dataset;

- it is built on the principle of incremental updates of
a initially empty dataset, i.e. there is no once for all
preprocessing of data.
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- it supports the definition of local set of attributes such as
normal, color and so on.

The design of OCME follows the direct requests of many
users of 3D sampling technologies, that urge a software
solution for doing elementary editing and cleaning actions
over large datasets. Even easy actions (removing vegetations,
tourists or pigeons from sampled urban datasets) become an
infeasible task if the dataset must be subdivided, processed
and finally recombined (which by itself may be a cause for
other artifacts to repair).

State-of-the-art approaches to large datasets provide solu-
tions for rendering, compressing, traversal and random access
of triangle meshes but fall short in other aspects, the most
critical of which is the interactive modification of the dataset
(see inset for details).
The typical pipeline is to read a large triangle mesh and to
perform a possibly time consuming processing to output a
data structure which is more efficient for the some specific
goal (e.g. for rendering). For example, many of the existent
solutions, more specifically those using space decomposition,
first compute the bounding box of the object, upon which the
vertex positions are quantized and/or a hierarchy is built. This
is done in the assumption that the bounding box is immutable
or that the whole data structure can efficiently reflect small
changes of it. Unfortunately, if we want a system supporting
real dynamic editing, the invariance of the bounding box is
wishful thinking, because we want to be able to add/delete
surfaces to the dataset, specifically during a massive 3D
scanning campaign where data are coming piece by piece and
need to be assembled and edited incrementally. Just to make
a specific practical example, sampled dataset usually contain
spurious data that have to be deleted; many of these are noisy
sampled located on the periphery of the model, whose deletion
will severely affect the bounding box extent.
Another assumption commonly made is that the meshes are
almost a single manifold component, so that they can be
(possibly recursively) subdivided in charts whose border may
be exploited for more efficient compression. Again, sampled
data are well away from this situation.
Finally, most of the work is concentrated in a single type of
data, while modern digitization devices and algorithms may
output triangles, points, colors or, more in general, surface
reflection values and we can easily have the case where
different parts of the dataset have different attributes.

II. THE OCME DATA STRUCTURE

The key observation behind our approach is that 3D scan-
ning data are, at least locally, quite uniformly dense (since
triangles shape vary according to the slopes of the sampled
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RELATED WORK

In the following we briefly overview the vast litera-
ture on handling massive meshes, making a distinc-
tion on what “handling” stands for: compressing and
accessessing or rendering. For an extensive analysis
on these topics the reader my refer to [7] and [8]
respectively.

Compressing and Accessing Massive Models

Early techniques for mesh compression were con-
cerned with two aspects: minimizing the number of
bits to store the mesh connectivity, by encoding the
triangles of the meshes so that triangles to vertex
references could be encoded efficiently (see for ex-
ample the Edgebreaker algorithm by Rossignac and
the topological surgery by Taubin); reducing the cost
of encoding the vertex geometry by quantization
and/or predictive coding. These methods usually
assume that the mesh could entirely fit in memory.
As meshes became too large, a number of techniques
adopted the idea of partitioning in smaller chunks
that could individually loaded and processed. A
different approach to massive meshes focuses more
on efficient access to the data than on compres-
sion/simplification, i.e. the goal is to minimize the
number of cache misses when accessing the data,
by rearranging the data using space filling curves,
so that nearby elements in three dimensional space
are also probably close in the external memory (see
for example the work by Pascucci and Lindstrom).
Producing optimal locality over the data is also the
goal of the streaming approaches (see the work
by Isenburg), where triangle-vertices connectivity is
mapped to nearby positions in the data file so that
the whole mesh can be traversed with a limited in-
core memory. These approaches are more suitable
for pipelined algorithms, more than for giving direct
access to the model. More recently, mesh partition-

ing and layouts have been combined in a framework
providing both compression and direct access to the
data [9].
For the specific case of point clouds, for which
things are easier, solutions for interactive editing
have been proposed using non-uniform grids com-
bined with a cluster-like impostor technique [1] or
using an oct-tree where points are quantized within
each node of the oct-tree down to the leaves [10].

Rendering Massive Models

Since that for massive models it is unfeasible to
simply load the data from the disk and send them
down to the rendering pipeline at the required
pace (20-25 fps), a vast number of techniques use
intermediate “simplified” representations to trade
efficiency for speed, building over the concept of
impostor: a representation that looks like the original
data when its projection on the screen is under a
certain number of pixels, but which is more efficient
to transmit/render than the corresponding original
data. These algorithms come in many flavors but
essentially all of them adopt a hierarchy of rep-
resentations for which only the node indexes are
kept in main memory; this hierarchy is visited at
each frame for finding the more appropriate set of
representations to be used to render the current view,
which are concurrently fetched from disk and sent
to the GPU.
These methods allow to render hundred millions
triangles models and scale well with modern GPU
architectures; they work on the assumption that the
model is finalized, therefore the data structures they
use do not allow editing of the original data, neither
they give a way to edit a portion of the dataset and
to update the corresponding data structure without
resorting to recompute the whole data structure
(although it seems possible in principle).

surfaces w.r.t.. the sampling direction), therefore triangles
sharing vertices tend to have similar size.
If we had to define a data structure for handling a single
large uniform mesh, we could safely choose a regular grid
covering the mesh’s bounding box and partitioning the vol-
ume so that each non empty cell stores roughly the same
number of triangles, like in [6]. The advantages of a regular
partition scheme are that the per-primitive workload to build
the data structure is minimal and the resulting chunks can
be compressed and transferred between in-core and out-of-
core memory efficiently. We are quite far from this situation
because we want to allow free editing and therefore no a priori
knowledge is given neither about the bounding box of the
scene nor about the average size of the primitives.

A. Hashed Multigrid Representation

To retain the advantages of a regular partition without
assumptions about quality of data we adopt a uniform
multigrid, i.e. a hierarchy of regular grids where only non
empty cells are explicitly stored and accessed through a hash
table. We address the cells of the multigrid structure by a
four-integers code (i, j,k,h), which indicates the cubic cell
whose lower corner is (i · 2h, j · 2h,k · 2h) and whose size is
2h. The triangles are assigned to the cells on the base of
their 3D position and size. The position of a triangle can be
taken either as the position of its barycenter or as one of
its vertices while its size can be the length of the longest
edge or the area of the triangle, although other choices are
possible for both quantities. The idea is that the bigger is the
triangle, the higher is the grid level to which it is assigned
(i.e. big triangles in big cells). If the mesh is the sampling of
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Fig. 1. A scheme of the data contained in a cell.

a real object, then most of it it will be assigned to the same
level of the multigrid and each cell will roughly contain a
user-defined limited number of triangles.
In order to perform local changes to the model, we could
expose access and modification methods to the single elements
(face, vertices etc.). Although providing such a transparent
access to a large mesh is, in principle, appealing and elegant,
we must ask ourselves if and when this is really useful. In our
opinion, the main reason for requiring a transparent access
is to make it easy to reuse existing code developed for the
in-core case, maybe using some existent geometric processing
libraries such as CGAL or OpenMesh. However, left aside
trivial local computations such as smoothing, these algorithms
will use some temporary data structure whose size will
likely be proportional to the mesh being processed. Obvious
examples are the edge collapse decimation, where we need
the stack of possible collapses, or mesh parameterization, for
which ad hoc out-of-core solutions are being used. Instead
OCME follows an Add/Edit/Commit paradigm: we allow
the user to navigate the dataset with a system of impostors,
to select the required portion of the dataset and to load it
in-core, such that it can be processed in-core and recommitted
once finished to the out-of-core data structure.

B. Handling borders

Figure 1 shows the data structure containing the information
for a single cell. Each cell stores a complete subset of the
mesh, i.e. a set of triangles and all the vertices referred by
them, which means that vertices referred by triangles contained
in more than one cell are duplicated. We refer to these vertices
as border vertices and call their local instances copies.
Each border vertex vi is uniquely identified by a progressive
number B(vi), which is stored with all its copies, so that when
we want to build an in-core mesh from a group of cells we
simply collapse all the vertices with the same B(vi). Figure 2
illustrates the simple example of a mesh partitioned into 4 cells
and the assignment of B to the copies (the numbers inside the
squares).

Fig. 2. Handling the borders.

If two cells store copies of the same border vertex we say
that they are dependent on each other, because if we edit the
content of one we possibly affect the content of the other. In
the example of Figure 2, if we edit the content of cell c0, we
must take into account that we are also editing the copies of
the border vertices 1,2,3 and 4 contained in c2 and c3. The
data structure to store the the values of B consists in a list of
pairs (vi,B(vi)) where vi is a local reference to a vertex (see
copies in Figure 1).
In OCME, when we load a cell c for editing, we create an in-
core mesh with the content of c∪D(c), where D(c) is the set of
cells that are dependent on c, called dependence set from now
on. Then, only the content of c will be actually being editable,
while the content of cells in D(c) will be “locked“, except for
the border vertices shared with c. The concept of dependency
is easily extended to set of cells as: D(c0, . . . ,cn)=∪D(ci), i=
1 . . .n.

III. ADD/EDIT/COMMIT IN OCME

A. Inserting new data

Figure 3 shows the algorithm for inserting a set of triangles
in OCME. At line 3 the scale of the triangles is computed
on the base of triangle size and then, at line 4, the cell in the
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1 Algorithm AddMesh (mesh ) {
2 f o r all t in mesh .triangles{
3 h = ComputeScale (t )
4 c = ComputeCell (t ,h ) ;
5 AddToGridCell (t ,c ) ;
6 CreateCopies ( ) ;
7 }}

Fig. 3. Algorithm for inserting a mesh in OCME.

proper level is computed on the base of the triangle position.
Finally, at line 5, the triangle is actually added to the proper
cell and entries are created for all the border vertices.

ComputeScale and ComputeCell
These two functions compute the position of each triangle in
the multigrid as a function of its size and position in 3D space.

For example, using the longest edge of the triangle as a
measure of its size, we will assign it to a cell that may contain
a surface of area A∼= l2

√
2
·N, where N is the number of triangles

we wish to have in each cell. If we assume that a cell with
side 2h will contain a surface of area approximatively 2h ·2h,
we have:

A∼=
l2
√

2
·N ∼= 22h

and hence we will compute (i, j,k,h) as:

scale h = blog2 (l
2 N)− 1

2c−1
cell pos i = tpx/2h, j = tpy/2h, k = tpz/2h

where tp is a representative point of triangle, for example
its barycenter. Clearly the use of this estimation does not
guarantee that in the worst case no cell will have more
than N triangles. However, we do not need strict bounds on
the number of triangles per cell, but only that they are not
so many that they cannot be loaded in-core. If the bounds
are exceedingly violated, we can modify the triangle-cell
assignment by redistributing triangles in too crowded cells to
a lower scale (like we normally to with top-down construction
hierarchies such as the oct-tree).

AddToGridCell
When we assign a triangle to a cell we must know if its
vertices are already in the multigrid and where. To this purpose
we introduce the concept of global index as a couple (c, id)
addressing the idth element in an array of elements in the
cell c (vertices, triangles and copies can all be addressed by
a global index). We use a temporary array GAddr of sets of
global indexes for keeping track, for each vertex being added
to the multigrid, in which cell it has been put. The algorithm
is straightforward (please refer to Figure 4): if the vertex v
has been already added to the cell c (line 5) simply set the
internal reference to its position id (line 6), otherwise add the
vertex to the cell c and add the global index to the vertex
in c to GAddr[v] (line 8). Thus if the set GAddr[v] contains
more than one global index it means that the vertex v has been
assigned to more than one cells, so it is a border vertex.
Note that to add a mesh to OCME we do not need to load it
entirely in main memory but only to store a global index for

1 Algorithm AddToGridCell (t ,c )
2 f o r ( i n t i = 0 ; i < 3 ; ++i ) {
3 Vertex v = t .vertex [i ] ;
4 i n t id = GAddr [v ] . IndexIn (c ) ; / / i n d e x of v i n c e l l c
5 i f (id != −1) / / −1 == n o t found
6 SetReference (t ,i ,id ) ;
7 e l s e
8 GAddr [v ] += AddVertex (c ,v ) ; / / add v t o c
9 }

10 Algorithm CreateCopies ( ) {
11 f o r all v in mesh .vertices
12 i f (GAddr [v ] . size ( ) > 1 ) {
13 nB = nB + 1 ; / / g l o b a l c o u n t e r o f b o r d e r v e r t i c e s
14 f o r all c in GAddr [v ]
15 AddCopy (c ,GAddr [v ] . IndexIn (c ) ,nB ) ;
16 }}

Fig. 4. Algorithms for inserting a triangle in a cell and for creating copies

each of its vertices and to run over its faces. However, if the
vertices themselves are too many to allow the storage of their
global indexes in main memory, the array GAddr is mapped to
the disk. When the mesh has been inserted, GAddr is deleted.
CreateCopies
After adding all the triangles, GAddr[v] contains all the global
indices of the cells storing a copy of v. If the size of GAddr[v]
is greater than 1 (line 12) we know that v a border vertex, thus
we increment the global counter of border vertices nB and add
a copy to all the cells in GAddr[v].

B. Performing local Editing actions and Committing results

An Edit operation consists of building an in-core mesh with
the content of a region of interest (ROI), which in OCME
corresponds to a set of cells ROI = {c0, . . . ,cn}.

The algorithm consists of the following steps:
1) Load the selected cells and the corresponding depen-

dence set D(ROI);
2) Build an in-core mesh and collapse all the vertices vi

with the same B(vi);
3) Store an attribute in each vertex and face of the in-core

mesh in order to encode their global index in the OCME
multigrid and mark the elements in D(ROI) \ ROI as
unmodifiable;

4) Store in a temporary data structure the global index of
all of the vertices and triangles fetched for editing.

Step 3 is necessary to remember who is who when the mesh
will be committed back, and also to prevent the elements in
the dependence set to be modified. Note that this step requires
that the data structure used for encoding the in-core mesh is
able to support user-defined attributes. This is possible for all
of the most well known libraries for geometry processing such
as CGAL, OpenMesh and VCGLib.
Step 4 is necessary to compute the set of elements that have
been removed during the in-core processing (by difference to
the ones that are committed back).
Commit
The algorithm for committing is essentially the same as the
algorithm to add a mesh. In principle, we could just delete
from the OCME the cells loaded for editing and then re-add
the mesh being committed.
However, unless the in-core editing involved some radical
changes (like erasing all the elements or moving them to a
complete different position), it is usually much more efficient



5

to update the values for elements attributes and to handle the
case where the changes cause a modification to the assignment
of face and vertices to the cells.

IV. RENDERING AN OCME DATASET

The most efficient massive-meshes rendering engines max-
imize the throughput by organizing the data (triangles or
vertices) in chunks, similar to what we do in OCME. Unfor-
tunately, the construction of these data structures takes far too
long for our purposes; moreover, these representation schemes
are not naturally extendable to include interactive modification
of the data.

A. A Simple Multiresolution Scheme.

A multiresolution scheme consists of two parts: a hierarchi-
cal data structure where each node of the hierarchy covers
a portion of the space and a way to build an impostor
representation for the data contained in the region covered
by said node.
As for the hierarchy, a natural choice is the oct-tree with nodes
corresponding to grid cells. The parent/children relations are
implicitly defined by the multigrid data structure, i.e.:

Parent(i, j,k,h) = (i >> 1, j >> 1,k >> 1,h+1)
Chidren(i, j,k,h) = {(i << 1+di, j << 1+d j,k << 1+dk,h−1)

| di,d j,dk ∈ [0..1]}

where >> and << are bit-shift operations.
The impostor representation for a cell is obtained by partition-
ing the cell in k3 sub-cells and computing a geometric proxy
for each sub-cell. As geometric proxy we chose a point placed
in the center or each sub-cell with a normal vector encoded
with 16 bits and a 8 bits per channel RGB color. The proxies
are computed during the insertion of the mesh, by collecting
one sample per triangle and summing up its contribution to
the current normal and color of the proxy, without requiring
to reload geometry previously stored in the cell. The choice for
k is related to the average number of triangles (and therefore
the memory required) per cell. As a rule of thumb we use
k = b

√
N
26 c which turned out to be a reasonable choice with

the current hardware. Thus for N = 5000 we have k = 8 which
means we use one proxy every 64 triangles.

Building the Impostor Representation.

We build a forest of oct-trees in a bottom-up fashion,
starting by the lowest non empty level of the multigrid and
proceeding upwards level by level. The listing in Figure 5
sketches the algorithm. The condition at line 5 says when to
stop to create upper impostor on the basis of the occupancy
of a cell. The occupancy is an estimation of the percentage
of space of the cell occupied by data. If its value is under
thr_occupancy, Parent(c) is not inserted in the next level and
it becomes one of the root nodes of the oct-tree forest.
The occupancy of the cell Parent(c) is found as the maximum
of two quantities: the average occupancy of its children, i.e.
the occupancy information propagated from the lower levels
of the hierarchy, and the data occupancy, i.e. the percentage
of occupied space given be the data assigned to Parent(c). The

1 Algorithm BuildImpostorHierarchy (Cells )
2 f o r ( i n t lev = lowest_non_empty (Cells ) ; lev < max_level ; ++lev )
3 f o r c in non_empty_cells [lev ]
4 Comp_Impostor_UpdateOccupancy (Parent (c ) ,Siblings (c ) )
5 i f (Occupancy (Parent (c ) ) > thr_occupancy )
6 non_empty_cells [lev+1] += Parent (c )
7 e l s e
8 root_nodes += Parent (c )

Fig. 5. Algorithm for computing the impostor hierarchy.

Fig. 6. Scheme of the forest of oct-trees in a multi-scale dataset.

updating of occupancy and the computation of the impostor
is carried out by function at line 4.

Figure 6 shows a scheme of the forest of oct-trees for
a mixed dataset. Note that the hierarchies of impostors are
generated only from the impostors of the non empty cells
(rendered in blue) and no loading of geometry data is involved.
When a commit operation is executed, the impostors for all
the cells involved in the commit are rebuilt, and the algorithm
of Figure 5 is applied to them to update the correspondent
portion of hierarchy.

Note that a cell may easily contain both geometric data and
impostor. For example part of the cells containing the data of
the Dome (please refer to Figure 6) also contain the upper part
of the hierarchy of impostors for the Portada.

Rendering pass: The rendering pass consists of visiting
the hierarchies top down starting from the root nodes and
stopping when an error criterion is met, as in all multi-
resolution approaches. Since the impostors are built from
a regular partition of a cell in sub-cells, we may consider
the geometric approximation error, intended as the maximum
distance between a proxy and the real data, bounded by the
size of the sub-cell and therefore proportional to the cell size,
i.e. to the cell level in the multigrid. Thus, if the projection of
the cell is more than a user-defined threshold (in our setting
we found 50 pixels is a reasonable choice) and the cell is not
a leaf, the geometric data possibly contained in the cell are
rendered and its children are visited. Wrapping up, at the end
of the rendering pass we will see: the impostor representation
of cells which on-screen error was under the threshold and the
geometry data encountered in the visit of the oct-tree. Since
our impostors are a collection of points with normals, and
we know by construction the average inter-point distance, we
can use the Algebraic Point Set Surfaces [5] to obtain a more
graceful surface (see Figure 7).
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Fig. 7. Left: the multi-resolution point cloud; Right: Algebraic Point Set
Surface of the same point cloud.

B. Defining the Region of Interest

The OCME data structure is four dimensional, so the ROI
must also be four dimensional, i.e. we need a way to specify
the cells of the multigrid we are interested in starting from a
three dimensional region specified by the user. A simplistic
choice would be just to specify a 3D ROI and consider
all the cells at any level whose 3D projection intersects
the 3D ROI. Unfortunately it would not work: Figure 8
(top) shows a view of a 177 Mtr model of the Portada de
Santa María de Ripoll, obtained by using a Minolta 910
Vi Laser scanner with a sampling resolution of 0.3 mm,
which is arranged side by side with a model of the Dome
of Pisa, obtained with a time-of-flight Leyca scanner at 1
point per centimeter resolution. Suppose that the red square
defines the user-defined ROI: if we just tried to load the
content of the cells falling in the selection we would end
up trying to load the whole 177Mtr Portada model in main
memory. Fortunately this problem is implicitly solved by our
multi-resolution scheme: if a cell is rendered as impostor it
means that it is the root of a subtree which leaves contains
too many triangles to be rendered all together (and hence
loaded for editing). In this example, the Dome is all rendered
with real geometric data while the Portada is only show with
impostors. Therefore when the user selects a region we only
consider cells that are being rendered with geometric data and
ignore those rendered as impostors (see bottom of Figure 8).

V. COMPRESSION AND STORAGE

An OCME dataset is ultimately a collection of meshes, thus
we can apply any existent mesh compression method to each
single cell separately. However, being that we allow to add any
type of attributes to vertices, the compression of the mesh is
not the most critical aspect. Here we only describe the peculiar
advantages derived by using the OCME data structure.
Compressing Vertex Positions
If a vertex is stored in the cell (i, j,k,h), it follows that its x

coordinates will be in the interval [i ·2h,(i+1) ·2h] (the same
holds replacing i with j or k). Considering the IEEE floating
point representation, this means that all the vertices in the
same cell will have the same first log2 i bits of the mantissa
and that the exponent cannot be bigger of 2log2i+h, therefore
there are log2i+(8− log2 i+ h) redundant bits. Furthermore,
since we know that the size of each triangle contained in a cell

Fig. 8. Two overlapping models with different density. The size of the
selection is used to determine the scale of the data that is intended to be
loaded.

at level h, we can decide to drop some bits of the mantissa
with a strict bound on the precision lost.
Compressing Connectivity Since OCME tends to have grid
cells with a limited number of triangles and vertices, we can
encode the triangle-vertices adjacency with logNV bits, where
NV is the number of vertices in the cell.
Storage All the per-triangle and per-vertex attributes are stored
in out-of-core vectors. OCME implements out-of-core vectors
as a sequence of fixed-size chunks of data. When a position
of a vector needs to be accessed, the corresponding chunk is
loaded from disk to main memory. The set of chunks loaded
in memory is handled with a simple LRU cache policy. With
this organization to access the nth position requires a division
(to find out the chunk) and one deferentiation.
Since the OCME vectors are a sequence of (Id,Data) where
Id identifies the vector and the chunk and Data is a constant
size amount of binary information, they can be naturally stored
in databases such as Oracle Berkeley DB or Kyoto Cabinet,
which are open source solutions for data storage management
supporting transactions, so that an accidental crash can usually
be recovered, a very important issue when data being handled
is massive and critical.



7

Note that the vector for a single cell (or for a few cells) could
be entirely loaded in memory without the need to organize
them in chunks, because of the average bounded amount of
elements associated with each cell. However, when adding
a mesh to OCME we must consider that the triangles can
potentially be distributed among a large number of cells, so
that we would have to load/unload entire vectors only to
modify a small part of them. As a limit case, consider adding
one triangle to each one of the cells already created: it would
mean to load and save the entire dataset.

VI. RESULTS AND DISCUSSION

We ran a number of tests on a Intel Core Duo CPU 2.33
Ghz 3GB and a hard disk serial ATA 7200 rpm equipped with
Windows 7 32 bit OS. The first tests are related to the insertion
of a mesh into the database. From Table I we can see that the
OCME construction is fast. Even for quite large amount of
data, requiring access to a high number of cells, we can build
data structure at the pace of 150K triangles per second, and
almost half of this time is spent for loading the data from a
binary PLY file (although admittedly this percentage would
be different if loading from a more efficient data format).
Table II reports the time and disk size if redundancy of floating
point representation is eliminated as explained in section V.
We created 3 versions of the Dome, scaling it size to the
unitary box and placing its center to three different positions
in space. As expected, the farther away the model is from the
origin (i.e. the more common bits in the mantissa) the more
disk space is saved. However, the operations to eliminate the
redundant bits (maskings and bit shifts) from each floating
point representation take time and slow down the insertion,
which must be considered when choosing if using or not
suppression of redundant bits.
Figure 9 shows the distribution of the number of triangles (top)
and size of the dependent set over the cells (bottom) on the
Portada dataset for a user defined value N = 5000. It may be
noted as in the great majority of cases the triangles assigned
to the cells are between 4000 and 6000, and no cell has more
that 11000 triangles. Note that while we have an average upper
bound on the maximum number of triangles per cell, we may
have many cells with a small number of triangles, depending
on how the meshes are positioned in the grid. Typically we
may have some peaks like those in the left part of the graph
corresponding to cells which are only partially overlapped the
border of the Portada dataset. As expected, the size of the
dependent set, which is almost constantly around 9, shows
that a cell is generally dependent on its immediate neighbors
at the same level.

For evaluating the edit/commit time we run a series of ran-
dom edit-commit operations by operating a laplacian smooth-
ing or an edge collapse decimation. For each test, we select a
cell with uniform probability among the those containing data
and load it (and its dependent set) for editing. Figure 10 (top)
shows that OCME retrieves from secondary memory roughly
100K triangles per second and commits back previously edited
meshes at a pace of 30K to 50K triangles per second. We
performed the test for simplification and smoothing to show

Fig. 9. Distribution of the number of triangles (top) and distribution of the
number of dependent cells for N = 5000

that in the first case, although the decimation process brings
to fewer triangles to commit, the time required for committing
is longer. This is due to the fact that the removal of collapsed
faces causes fragmentation in the vectors storing the data and
that many of the faces that are not deleted by decimation
are likely to change level of the multigrid because they have
become bigger.
Comparison with existing techniques
OCME is neither a compression algorithm nor a rendering
technique, thus it would compare poorly against ad hoc
solutions to these problems. The Random Accessible Triangle
Meshes [9], for example, shows a construction time of 380K
triangle per second, which is more than two times faster than
OCME and allows random access to the mesh, but on read-
only mode. The Adaptive Tetrapuzzle [4] renders the full
detail of large meshes at above 50 fps but again the original
data cannot be modified and the processing time is an order
of magnitude bigger that OCME. For example, the Adaptive
TetraPuzzle takes 408 minutes to process a mesh composed
by 56 million triangles, while the conversion to OCME data
structure takes only 20 minutes for a model of 177 million
triangles. The solution most similar to OCME, at least in terms
of functionalities, is the system by Wand et al. [10], since it
allows the interactive editing of large datasets, although only
for point clouds. In their work they report an insertion time of
74.4K points per second on a very similar machine architecture
(we only used a single core in our implementation and tests)
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Size disk (GB) OCME data time (sec)
tri vert #files input output #cells #impost. mesh load disk R disk W Total

Aulo Metello 93.7 45.6 298 2.35 2.67 8.573 582.561 256.88 116.4 178.7 960
Dome 196.0 98.2 372 3.748 3.634 22589 1,4M 447.9 53.9 170.1 1141.8

Portada 177.4 89.7 405 3.742 3.65 55.556 3,8M 470.6 55.1 186.5 1180.4
Composition 430.1 217.4 784 8.674 9.60 27208 35970 1,173 389.7 505.8 3205.2

TABLE I
RESULTS FOR THE INSERTION OF MESHES IN THE OCME DATA STRUCTURE FOR N=5000.

pos (i,j,k) (0,0,0) (1024,1024,1024) (1048576,1048576,1048576)
size (MB) 3634 3340 3028

ins. time (s) 1141.8 1973 1803

TABLE II
PERFORMANCES FOR THE INSERTION OF THE DOME IF THE REDUNDANT BITS OF FLOATING POINT VERTEX POSITIONS ARE ELIMINATED.

Fig. 10. Time for taking a portion of dataset in-core for editing (top); time
for committing a mesh from in-core after a decimation or a smoothing

for a dataset of 75.7 million points, while we are able to insert
134K triangles per second for a dataset of 522M triangles.

A. Limitations

OCME is designed for real world cases with special focus
on scanned models and exploits the fact that the density
of the surface does not chance much locally, and that it is
proportional to the surface per volume. If we violate these
assumptions, for example because we insert multiple copies of
the same triangle mesh, we will experiment a performance loss
until the system will not be able to build a mesh because some
cell will contain too much data to be loaded in-core. We can
avoid this degeneration by checking the number of triangles
per cell and redistributing the triangles to lower levels grid for
too crowded cells in a hierarchical fashion to prevent OCME
from stop working, but it is clear that we would not do any
better than a standard octree partition of data.

B. Extensions

Although we illustrated OCME for the special case of
triangle meshes, it must be said that it works with evey
kind of geometrical data that carries a local measure of size
and a position. For example we can store generic polygons,
segments, boxes and so on. Among others, point clouds are
of particular interest because they are the actual data coming
from the scanning device. We support the addition of point
clouds by estimating the radius of each point as the average
distance of its closest 10 neighbors and using it as size of
the point. Clearly point clouds never involve border vertices
since there is no explicit connectivity, thus there is no data
duplication. In this sense we cannot talk of an extension to
the case of point clouds because it is actually an under-use of
the framework.

VII. CONCLUSIONS AND FUTURE WORK

We presented OCME, a simple framework for interactive
editing of large spurious datasets. In contrast to previous
work, OCME is intended as a solution for supporting editing
over large 3D datasets as those produced by current 3D
acquisition technologies. OCME does not requires a once-for-
all preprocessing step to build its data structure and supports
local definitions of generic non-geometric attributes.
There are several parts of OCME that can be improved
without changing the core of the framework. The most
straightforward optimization consists of introducing mesh
compression solutions for encoding the sub-meshes contained
in the single cells. A more intriguing matter is the possibility
of remote and collaborative work on the same dataset, which
could dramatically speed up the process of mesh repairing that
is necessary in every acquisition campaign. From a system
development point of view, we plan to extend the OCME
interface toward CGAL and OpenMesh data structures, while
at the moment only VCGLib meshes are supported. An
implementation of OCME is freely available as a MeshLab
plugin [3].
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Fig. 11. Example of edit / in-core processing / commit to fill four holes in the mesh.
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