Geometric Quantification of Features in Large Flow Fields

Wesley Kendall and Jian Huang*

The University of Tennessee, Knoxville

ABSTRACT

Interactive exploration of flow features in large-scale 3D unsteady
flow data is one of the most challenging problems in visualization
today. In an effort to comprehensively explore the complex fea-
ture spaces in these datasets, we have designed a scalable frame-
work for investigating a multitude of characteristics from traced
fieldlines. This new capability has allowed us to examine vari-
ous neighborhood-based geometric attributes in concert with other
scalar quantities, a type of analysis that was not previously possi-
ble due to the large computational overhead and I/O requirements.
We have integrated visual analytics methods into our approach by
allowing users to procedurally and interactively describe and ex-
tract high-level flow features. In this work, we show the generality
and expressiveness that is offered by this approach, and we show
its efficacy by exploring various phenomena in a large global ocean
modeling simulation.

Keywords: Geometric Flow Analysis, Feature Extraction, Particle
Tracing, Parallel /O, Large-Scale Data Analysis

1 INTRODUCTION

Flow fields, especially 3D unsteady flow fields, contain a vast space
of information that can be expressed as geometric, temporal, spa-
tial, and derived scalar characteristics. Quantifying global-scale
phenomena using these characteristics is essential for understand-
ing qualitative events in a broad set of application domains such as
oceanography, climate modeling, and geophysics. In many cases,
the phenomena are qualitatively well understood but quantitatively
hard to specify in temporal and 3D spaces.

One example is a cold-core oceanic eddy a phenomenon defined
by a swirling region of ocean with the center of the vortex being
cooler than the outside. One could define this feature by tracing the
flow and extracting the traces that follow a rotational pattern. This
then begs the question of how to define the rotation, and more im-
portantly how to describe the cooling effect near the center of the
vortex. The search space to discover cold-core eddies is vast, be-
cause many parameters affect the outcome of the feature character-
ization. For instance, large- and small-scale eddies will have to be
defined with different rotational parameters. Temperature measure-
ments are also dependent on the geographical area of the ocean. A
second example is global circulation across the entire ocean. These
examples together are important to analytical questions. For ex-
ample, what locations are the most likely to collect contaminated
debris from the Fukushima nuclear power plant accident of 2011?

For those analytical needs that involve large flow fields, domain
experts need to effectively query data at a higher level of abstrac-
tion, and they need the ability to quickly iterate and refine their
hypotheses. Aiming to meet this overall goal, we developed a com-
plete analytical system using ocean modeling as a target applica-
tion. We notice that a system of such kind does not exist in this
application domain.

*e-mail: {kendall, huangj} @eecs.utk.edu
fe-mail: tpeterka@mcs.anl.gov

Tom Peterka’
Argonne National Laboratory

Interactively pruning a problem space on extreme-scale flow
datasets brings significant challenges. While interactivity may not
be a problem for small-scale data, the focus on parallelism and its
relationship to the feature extraction process becomes the most in-
fluential factor for maintaining interactivity on large data. Here,
we have specifically focused on this issue. We have directly cou-
pled graphical and procedural characterization of geometric flow
features (i.e. attributes computed directly from traced fieldline ge-
ometry) with two highly scalable data processing and feature ex-
traction components.

The scalability of our system paired with expressive feature char-
acterization is powerful. It has allowed us to examine major ocean
currents as well as long-term ocean eddy activities. Key to these is
the scalable analysis power that allows a user to interactively assess
geometric flow features defined on a variable-length window. To
our knowledge, this capability is novel.

We have chosen to focus on geometric flow field features for two
reasons. First, traced flow geometry is often orders-of-magnitude
smaller than the original scalar representation of the flow, making it
a viable reduced representation of the original data. Second, there
are a multitude of derived geometric characteristics that may be
computed from traced geometry. The expressiveness offered by
geometric features has already been shown [12], and, as we will
show, geometric features with a variable-length neighborhood size
are powerful for feature characterization.

2 A PARALLEL PIPELINE FOR GEOMETRIC FLOW ANALYT-
ICS

Users interact with our data analytics system through a remote in-
terface. Our back-end system has a pipeline of components, where
every component is inherently parallel. The pipeline is illustrated in
Figure 1. In the following, we describe the overall data flow of our
pipeline before detailing each major component in later sections.

Our system relies on an external simulation to produce time-
varying flow fields. We access the flow data via a parallel file
system. In our usage examples (Section 6) and driving applica-
tion (Section 7), the simulations produced velocity components and
other scalar values as tuples on a rectilinear grid stored across mul-
tiple files for each timestep.

We use OSUflow, a leading flow tracing package [8], to generate
fieldlines. The default OSUFlow configuration densely seeds the
flow field with uniform distribution in the spatial and temporal do-
mains. We allow users to control the density of seeding. OSUflow
then computes flow tracing in parallel. Other than seeding, our sys-
tem is oblivious of whether the flow is steady or unsteady and how
flow tracing is computed. Due to this reason, our system uses field-
line as a term to generally represent pathlines for unsteady flows
and streamlines for steady flow. We note, however, all test datasets
used in this paper are unsteady 3D flow fields, and all geometric
features are computed from pathlines.

With fieldlines as the geometry, our system implements a scalar
merging step to interpolate scalar values so that scalar character-
istics (such as salinity and temperature values) are associated with
each fieldline point.

After the above steps, the analytics problem is now transformed
into a completely data-parallel problem where querying data can
be easily parallelized. We use the Scalable Querying Interface
(SQI) [3] to support parallel querying. Users construct queries in a

Parallel Components

Simulation that stores U, V,
salinity, and temperature

Serial Components

Refining of problem
space and feature

tl.nc
in netCDF files Generation of geometry Merging of scalar Querying of features quantification
|~ 5) m) using OSUFlow parallel mmp values with fieldline mmp using the Scalable
fieldline tracing library dataset Query Interface
t2.nc

Interactive Data Analytics

Figure 1: Example of our pipeline for large-scale analytics of flow data. We provide the example of a simulation dumping off many files
in the netCDF format with multiple variables. We outline parallel and serial components separately. The interactive analysis process occurs
between a remote client and a querying backend. Section 2 provides an overview of the pipeline.

procedural manner with a remote interface, send them to the back-
end querying system, and the interface renders queried data inter-
actively. The user iteratively refines the feature description and ex-
tracts the data during exploration. Resulting feature specifications
can be stored in a concise format and used for either sharing or
extracting the feature again for other parallel analysis.

In the following sections, we describe the details of our work in
parallel geometry processing, feature characterization, feature ex-
traction, and visualization.

3 ScCALABLE GEOMETRY PROCESSING

As noted in [7], the sheer volume of flow datasets presents a chal-
lenge for visualization. In the context of our application, the pro-
cessing of the geometry (i.e. the fieldline tracing and scalar merg-
ing) deals with the entire simulated flow dataset. We use methods
to scale the geometry processing to today’s largest architectures in
order to alleviate the data-intensive nature of this step.

For parallel fieldline tracing, we use recent research imple-
mented in the OSUFlow particle tracing library [8]. We treat OSU-
flow as a black box and interact with it primarily by seeding the flow
traces. In the following, we describe how we use OSUFlow within
our system. Due to space limit, we refer readers to [8] for details
such as particle-termination criteria and integration techniques.

OSUFlow operates in a distributed-memory environment, where
nodes must explicitly pass data to one another using the message-
passing model. OSUFlow also traces time-varying fieldlines out of
core, only loading the time span necessary during particle tracing.

It is important to normalize the dataset so that the unit of the
physical space velocity matches with scales of the temporal and
spatial grids. OSUFlow assumes this has been done. On startup,
OSUFlow partitions the dataset into 4D blocks and assigns them
round robin to processes. For better load balancing, OSUFlow par-
titions the dataset at a fine granularity and assigns eight blocks per
process. OSUFlow then sends the partition to the Block I/O Layer
(BIL) [4]. BIL is a high-performance parallel I/O library that op-
erates on multivariable datasets stored across many files. Results
from [4] show its ability to utilize up to 90% of the available band-
width on modern parallel file systems. In our application examples,
BIL reads 4D blocks spread across multiple files in the netCDF for-
mat.

After BIL reads the data, OSUFlow randomly places particles in
a uniform distribution by a density set by the user. It then integrates
the flow field using a 4" order adaptive step-size Runge-Kutta inte-
gration kernel. OSUFlow transfers particles that exit a block’s sub-
domain to a communication queue. Processes synchronize during
tracing and exchange outlying particles to the owner of the proper
subdomain. Particles progress at the same speed through time. This
behavior allows OSUFlow to fetch timesteps during tracing and
stream datasets that cannot entirely fit in memory. After particle
tracing, the partial fieldline traces reside across the processes. We

(a) Angle of Turn (b) Residence

Figure 2: 2D examples of our neighborhood-based geometric fea-
tures. Angle of turn is calculated by the angle of vectors formed
from the end points at varying arc lengths from a vertex. Residence
length is computed by the arc length of a fieldline that resides in a
box around a vertex. The residence time can also be computed by
dividing this length by the velocity magnitude along the line.

stitch the partial fieldlines together by using parallel sample sorting
algorithm to sort the geometry while keeping it distributed across
processes.

The system then proceeds to merge other useful scalar attributes
in with the resulting geometry (i.e. scalar merging). To perform
this step, we first assign each process a block of data and read all
of the associated scalar values in parallel using BIL. After this, we
read the computed geometry in parallel and bin the fieldline vertices
to the processes that contain their bounding block of scalar data.
Depending on the data, the scalar-merging step either computes at-
tributes (such as divergence and vorticity of the flow) or interpolates
attributes (such as temperature and salinity variables). We then take
the resulting points (which are now u,v,w,scalarl,scalar2, ... tu-
ples) and store them back in their original geometric ordering. Our
implementation of scalar merging assumes that the data can be held
entirely in memory. This restriction can be removed by an imple-
mentation using out-of-core data streaming.

4 FEATURE SPECIFICATION AND PROCEDURAL CHARAC-
TERIZATION

We utilize a rich feature set and characterization method for extract-
ing features. Our feature set consists of the following quantities.

e Dimensional Values - Each point of the fieldline contains
X,y,2z,t tuples that allow the user to relate dimensional infor-
mation of the fieldline to the feature of interest. For example,
one would need this information to extract turbulent flow re-
gions that progress downwards in the z direction through time.

e Scalar Quantities - Each point of the fieldline also contains
scalar properties that are useful for analyses. For the ocean
and atmospheric examples in this work, temperature, pres-
sure, salinity, CO,, and other properties are often of inter-

est when relating streamline geometry to a feature of interest.
Furthermore, other derived quantities can be computed from
the scalar fields such as flow divergence and vorticity. Scalar
quantities such as these allow for more expressiveness in fea-
ture characterization, for example, allowing the user to extract
fieldlines that travel through areas of high pressure and high
temperature gradients.

e Neighborhood-Based Geometric Quantities - The heart of our
feature specification comes from computing various geomet-
ric properties for each point of the fieldlines. These properties
are defined based on a variable-sized neighborhood, which
is a meaningful parameter in regards to specifying transient
and long-term flow features. Furthermore, these variables can
be computed on the fly since they are only dependent on the
fieldline data. The neighborhood-based geometric attributes
we explore are angle of turn and residence. The properties
and computation of these features are discussed in the follow-
ing.

Angle of Turn Our use of angle of turn is patterned after the
use of winding angle, which can be computed along the fieldline
and used to find swirling patterns such as vortex cores [10, 11].
Another similar example is computing the curvature along the field-
line [11, 12]. For finer granularity, we used a variable-length win-
dow along the fieldline and computed the angle of turn at each ver-
tex. Figure 2a illustrates this. Given a point R and a neighborhood
radius of one, we move an arc length of one to the right to get point
S and an arc length of one to the left to get point Q. The angle of
turn is computed by subtracting the angle formed by RS and R
from 180°. Similarly, we can use a neighborhood radius of two
to compute angle of turn over a longer length. Using combina-
tions of various neighborhood sizes offers intuitive methods when
describing fieldlines with swirling characteristics or fieldlines that
stay straight or make abrupt transitions.

Residence Residence describes the residence length and resi-
dence time of the fieldline at each of its vertices. A 2D illustration
is provided in Figure 2b. Given a vertex R, we create a box around
it and measure the total arc length of the fieldline from the right
and left of R until it exits the box. Residence time is computed by
taking the summation of the arc length of every segment inside the
box and dividing it by the average velocity magnitude of the two
points on each segment.

Residence length and time provide an interesting span space.
High length and low time indicate fast swirling areas, while high
length and high time indicate slower swirling regions. Low length
and high time are useful for viewing fieldlines moving towards a
critical point while low length and low time indicate fast and rel-
atively straight fieldlines. Similar to angle of turn, these attributes
may be computed at varying neighborhood sizes to assess small-
and large-scale phenomena.

Feature Characterization Using Query Trees Procedural
feature characterization has been used in a variety of research for
scalar datasets. The most related example is SimVis [1], which uses
a feature definition language to apply logical operations to ranges
of scalars. Another is the approach of [14], which uses set opera-
tions to procedurally combine and compare queried volumes. We
use a similar concept known as “query trees.” Query trees are the
formulation of a tree that contains queries as leaves and various log-
ical operations (—, A, V, @) at the nodes of the tree. The queries
themselves are Boolean range queries and may be used to restrict
ranges of any attribute of the dataset, whether it be spatial, tempo-
ral, scalar, or geometric. In contrast to scalar-based methods such
as those in SimVis, our queries operate on individual vertices and
return the entire fieldline geometry when a user-specified threshold
of vertices of the fieldline match the given query.

AngleOfTurn_4 > 20°
For at least 75% of vertices

Temperature < 50°
Time <5
For at least 5 vertices

Temperature > 50°
Time > 25
For at least 5 vertices

Figure 3: An example of a query tree. The left-most query extracts
fieldlines that primarily swirl. The other two queries ensure the
fieldlines start with a temperature below 50 degrees and end with a
temperature above 50 degrees.

Figure 3 shows an example of a query tree. In this example,
the left-most node issues a query for fieldlines that have an angle
of turn (within a neighborhood size of four) that is greater than 20
degrees for at least 75% of the vertices on the fieldline. The other
two queries specify fieldlines that have a temperature lower than
50 degrees for at least five vertices in the first five timesteps, and
a temperate higher than 50 degrees for at least five vertices in the
last five timesteps. The logical and of all of the queried data returns
fieldlines that “mostly rotate while starting cool and then finishing
warm.”

The degree of freedom presented by query trees allows specifi-
cation of concepts like “fieldlines that stay straight for half of their
existence and also exhibit swirling patterns for at least ten percent
of their continuation.” Similarly, it also allows flexibility in relat-
ing fieldline geometry to scalar, spatial, and temporal quantities.
It is easy to formulate “fieldlines that cross through the upper right
quadrant of the dataset, avoid the center region, and then go through
the bottom left quadrant” with query trees. We provide more exam-
ples of these types of concepts in Section 6. We discuss how the
queries are remotely processed and visualized in the next section.

5 PARALLEL FEATURE EXTRACTION AND VISUALIZATION

Query trees integrate smoothly into the parallel pipeline since we
utilize a large-scale querying system built with the Scalable Query
Interface (SQI) [3]. The querying system starts by assigning and
reading fieldline data in parallel using MPI_File_read_all. Once
data is read, fieldlines are shuffled among processes for better load
balancing during querying. SQI then builds a distributed search
structure on top of the vertices to extract relevant data when query-
ing.

After the search structure is built, we have to maintain additional
data structures to aid in processing queries. During querying, a
count array maintains the amount of vertices that matched the query
for each fieldline. A bit in a bitfield is set for each fieldline that has
the user-specified threshold of vertices matching the query. This
bitfield is maintained during recursive processing of the query tree
and combined at the nodes during logical operations with other bit-
fields. The final bitfield at the root of the tree describes all fieldlines
that matched the query.

The user has the ability to limit the amount of fieldlines that are
returned. This is useful for creating clutter-free visualizations and
for simply overviewing the entire flow field. Since we originally
distribute the fieldlines randomly, each process returns up to F /P
randomly chosen fieldlines from their local results, where F' is the
limit set by the user and P is the number of processes. Although this
method does not always exactly adhere to the set limit, it does pro-
vide a fast approximation that avoids unnecessary communication.
Once this step is over, the resulting fieldlines are gathered to the

(a) Low Residence Time

(b) High Angle of Turn

Figure 4: Examples from the tornado dataset using (a) low resi-
dence time to show the fast and relatively straight flow, and (b) high
angle of turn to highlight a vortical region. In (b), we have also in-
cluded a snapshot of the extracted vortex core using a region-growth
algorithm.

root process and then streamed to the interface in packed messages.
Visualization is performed on the client side using traditional
flow visualization techniques. We render cylinders or lines for the
fieldines and use up to three variables of interest for controling the
color, width, and opacity of the fieldlines. For providing context in-
formation in visualizations, the user has the option to use as many
query trees as they want, with each tree representing a different fea-
ture in the same viewport. This allows them to highlight different
features of interest or show them in the context of the entire dataset.

6 REPRESENTATIVE USAGE EXAMPLES

We provide usage examples from two small-scale datasets to show
the flexibility of our approach. The first dataset is a tornado sim-
ulation dataset. It is stored as floating-point u,v,w tuples on a
128 x 128 x 128 grid across 50 timesteps. Roger Crawfis at the
Ohio State University provided the tornado dataset. The second
dataset is a subset of the GEOS-5 atmospheric modeling dataset
that was provided by Leslie Ott at the NASA Goddard Space Flight
Center. Our subset of GEOS-5 dataset simulates atmospheric wind-
fields (floating-point u,v,w tuples) in daily intervals across two
years (starting at year 2000) on a 288 x 181 x 72 curvilinear grid.
Eight different parameter runs are present, which start the mete-
orology with different initial parameters. The different parameter
runs are useful for studying the sensitivity and convergence of the
conditions over time.

We note that the parameters used in queries are specific to the
dataset, and the units of measurement for the geometric queries
are based on the grid spacing and velocity magnitudes. What this
means, for example, is that a residence time of 120 could be consid-
ered a “low” time for the tornado dataset but have a different mean-
ing in other datasets. Also, when using the term “neighborhood
size” for geometric attributes, we are specifically talking about ei-
ther the radius of the arc length (for angle of turn) or the radius of
the box (for residence) in grid units.

Neighborhood-Based Geometric Feature Examples Here,
we use the tornado dataset to show examples of using
neighborhood-based geometric characteristics to extract features.

To view the areas of fast and relatively straight flow, we issued
a query for fieldlines that contain low residence times (< 120) in a
neighborhood size of 4 for at least 5% of their vertices. The result is
shown in Figure 4a. The visualization shows the fieldlines around
the core of the tornado that have the high velocities. The width of
the lines is modulated by time, showing the clockwise rotation of

:\ ‘h;,, ‘ o~y %/JV

/

N 4
\\\\) \-\\ 7 W Q/C\

(b) Cape Grim Incoming Flow Variability

Figure 5: Dimesion-based flow features. The first figure shows a
query for Fukushima starting in March 2000 and colors the lines
based on time. The second figure shows the incoming flow into
Cape Grim in May 2000 for three months in advanced. The flow is
colored by different model runs to examine internal model variabil-

1ty.

the tornado. The color is modulated by velocity magnitude, show-
ing the inner parts of the funnel (in purple) that go faster than the
outer parts (in blue) that have lost speed.

To view the core and vortical regions of the tornado, we issued a
query for fieldlines that have high angle of turn (> 25°) in a neigh-
borhood size of 2 for at least 25% of their vertices. We also queried
the entire dataset to provide context information and restricted the
result to 200 random fieldlines to avoid visual clutter. The visual-
ization is shown in Figure 4b. The core of the tornado is shown
with a summary of the surrounding fieldlines. The color of the core
structure is modulated by time; one can observe that the funnel of
the tunnel moves upward from lower timesteps (in blue) to later
timesteps (in purple). The width of the core structure is modulated
by velocity magnitude, showing decreased velocity when the flow
reaches the top of the tornado. To the right of the rendering, we
have also included a snapshot of the vortex core that was extracted
from one timestep of the dataset using a region-growth algorithm
from [2] that segments vortex core areas. As expected, the queried
vortical area closely matches the extracted core line. This suggests
that angle of turn could be a viable feature in the detection of vor-
tices, however, future study is needed to confirm this.

Dimension-Based Feature Examples As described earlier,
we can relate dimensional and scalar values to flow features of inter-
est. We use the GEOS-5 atmospheric modeling dataset to illustrate
this.

In the first example, we examined the patterns of the flow field di-
rectly after the Fukushima nuclear disaster that happened in March
of 2011. Although our dataset is simulated across year 2000 -
2001, the yearly patterns of the flow field stay relatively similar
from year to year. We issued a query for the fieldlines that started
in the lower atmospheric layers of March 2000. We show a ren-
dering from one parameter run of the dataset in Figure 5a. The
fieldlines are colored by time, with blue representing 1 — 3 days,
yellow 3 — 5 days, and green 5 — 7 days. The visualization verifies
real-world events since low-level radioactive particles reached the
United States within seven days of the Fukushima disaster.

In the second example, we examine the variability of the differ-
ent parameter runs in the GEOS-5 dataset. According to our atmo-
spheric scientists, Cape Grim, Tasmania is an area of high variabil-
ity among parameter runs of the GEOS-5 model. We examined the
variability of the flow coming into Cape Grim by issuing a query

5 b e '.f.. %

Figure 6: A global overview of the major ocean currents in the POP dataset. The currents were extracted by querying for fieldlines that
exhibited very low residence time for most of their existence. Many of the major currents, including the Equatorial, Antarctic Circumpolar,
and Gulf are easily observed. The color is modulated by yellow for deep to blue for shallow ocean currents.

for fieldlines across all eight parameter runs that flow directly into
Cape Grim. A visualization showing fieldlines flowing into Cape
Grim in May 2000 with a three-month lead time is shown in Fig-
ure 5b. The eight colors represent the eight parameter runs. Big
differences are seen in the black, magenta, and light-blue fieldlines,
which arrive from the strong westerly winds. The other parameter
runs appear to be driven downward by a large vortex located near
Cape Grim, which could be one of the main factors driving the large
variability among the parameter runs.

7 DRIVING APPLICATION — LARGE SCALE OCEANIC FEA-
TURE QUANTIFICATION

Our driving application is to visualize flow features from the Paral-
lel Ocean Program (POP), a high-resolution eddy-resolving ocean
circulation model [5]. POP was started using observational analy-
sis, and the general circulation is well represented. To allow inclu-
sion of the Arctic Ocean, it employs a displaced tripole grid. The
grid is 2.5D and has 40 layers of u and v velocity components at a
3,600 by 2,400 resolution that spans monthly from February 2001
to September 2003. Along with the u and v components, POP gen-
erates salinity and temperature variables. The dataset is 165 GB.

Our analyses were conducted on Intrepid, a Blue Gene/P super-
computer at the Argonne National Laboratory. Intrepid contains
40,960 nodes consisting of quad-core 850 MHz IBM PowerPC pro-
cessors. Results were streamed over the Internet and the resulting
fieldlines were rendered interactively using an NVidia Quadro FX
3800 graphics card.

We demonstrate ocean flow features characterized using win-
dows of variable lengths in Section 7.1. The primary results — to
demonstrate scalability of our data analytics system — are shown in
Section 7.2. All of the coauthors are computer scientists and due to
that reason, results in Section 7.1 are meant solely for evaluating an
analytical technique and should not be considered with significance
in the field of oceanography.

Post et al. [9] surveyed flow feature extraction methods in 2003.
In the framework set up by that survey, we did not find previous

work that, like our work, characterized qualitative events such as
“major ocean currents,” although many researchers had studied vor-
tex extraction. The most relevant and recent is a point based method
in 2011 [13], where the authors extracted 2D eddies using each spa-
tial location’s vorticity and strain. Our method is a curve-based
method. According to Sadarjoen et al. [10], curve-based methods
are invariant to the rotational speed of the vortex and hence often
more useful in the general detection of vortices.

7.1 Exploration of Eddies and Major Currents

Before exploration, we traced roughly two million fieldlines to cap-
ture the entirety of the flow field. Although not used in our primary
examples, we computed vorticity, divergence, velocity magnitude,
and gradient magnitude for our tests. We also stored the salinity and
temperature variables from the dataset with the fieldline geometry.
The stored data was roughly 3 GB, which is a significant reduction
from the original 165 GB. Once the data was loaded into memory,
we computed angle of turn, residence time, and residence length at
neighborhood sizes with radii from 1 to 128 in powers of 2. The
in-memory footprint of the data was roughly 10 GB.

The first features we aimed to quanity were the major ocean cur-
rents. To do this, we examined the areas of the ocean that exhibited
swift and relatively straight movement. Specifically, we queried for
fieldlines that had a low residence time (< 10) with a neighborhood
size of 8 for all of their vertices. A summary visualization of 10,000
randomly sampled fieldlines from this query is shown in Figure 6,
and it is colored by shallow areas of the ocean (in blue) to deeper
areas (in yellow). Some of the major currents that can be observed
in this figure are the Equatorial Currents, which travel almost per-
fectly horizontal, and the Antarctic Circumpolar Current, the most
dominant current in the Southern Hemisphere. The Gulf Stream
is also highly recognizable, bordering the continental shelf of the
United States and flowing towards Europe. Some other smaller cur-
rents include the Alaskan Current and the Labrador Current, which
flows between Greenland and Canada. Another small current is the
Beaufort Gyre, a shallow, wind-driven current in the Arctic Ocean.

< a5t d B - b B T

it

Figure 7: A global overview of some of the major ocean eddies in the POP dataset. These were found by querying for fieldlines that exhibited
high residence length for the majority of their existence. Some of the areas are magnified and colored to show cold-core eddy activity. The

color mappings are explained in Section 7.

rocesses ieldline Tracin calar Mergin, tartu eometric Attributes uer etwork Latenc verall Latenc
P Fieldline Tracing | Scalar Merging | S p| G ic Attrib Query | N kL y | Overall L y

64 N/A N/A 31.20
128 N/A N/A 15.18
256 67.68 134.27 7.82
512 47.89 91.45 4.32
1,024 36.24 70.56 271

14.38 0.43 0.039 0.47
7.31 0.22 0.037 0.26
3.67 0.11 0.037 0.15
1.84 0.061 0.042 0.10
0.93 0.034 0.058 0.092

Table 1: Average application timing results (in seconds) for the global ocean explorations depicted in Figures 6 and 7.

The major currents have considerable effects on various small-
scale phenomena in the ocean. One of the primary benefits of
simulating ocean currents at such high resolution is the ability to
resolve smaller high-turbulence areas such as eddies. Eddies can
range from centimeters to hundreds of kilometers in diameter and
can persist for periods of days to many months. We examined var-
ious long-term eddies by querying for fieldlines that have high res-
idence length (> 125) in a neighborhood size of 4 for at least 50%
of their vertices. 10,000 randomly sampled fieldlines are shown in
the global visualization in Figure 7, and they are colored by shal-
low eddies (in blue) to deeper eddies (in yellow). The main areas
that exhibit these characteristics are close to the shorelines, where
major currents usually flow past and create turbulent activity.

Eddies have interesting properties that we observed in more de-
tail. At the bottom of Figure 7, we zoomed into a portion of the
Weddell Sea, an area that has attracted attention to eddy activity.
The center image at the bottom of Figure 7 shows the relatively
straight areas of the current, obtained by querying for fieldlines that
had a low angle of turn (< 25°) in a neighborhood size of 4 for
at least 50% of their vertices. The color is modulated by temper-
ature from cold (in blue) to hot (in yellow), and the width of the
lines is modulated by salinity. A higher-salinity and warmer cur-
rent is observed that appears to be driving turbulent activity close
to the Antarctic coast. We zoomed in on this area of turbulent activ-
ity and again queried for fieldlines that exhibit a low angle of turn,
but this time only for 10% of their vertices. The eddies appear to
be cold-core eddies, which are classified by having centers that are

cooler than the surrounding flow. Cold-core eddies also have the
property of being cyclonic, meaning they rotate clockwise in the
Southern Hemisphere and counterclockwise in the Northern Hemi-
sphere. This was verified by examining the centers of the eddies
and querying for fieldlines that have a very high residence length
(> 200) with a neighborhood size of 8 for at least 20% of their ver-
tices. The returned fieldlines are colored in white and their widths
are modulated by time to show the clockwise rotation of the eddies.

A similar experiment was carried out for the Arctic Ocean, an-
other widely studied area for eddy activity [6]. The result, shown at
the top of Figure 7, shows cold-core eddy activity that results from
a higher temperature flow from above. Analogous to the eddies in
the Weddell Sea, we extracted a core region of the major eddy to
show its cyclonic nature. Since these cold-core eddies are in the
Northern Hemisphere, they rotate counterclockwise.

7.2 Timing Results

We provide timing results from exploration of the POP dataset at
scales from 64 to 1,024 processes. Since our scalar merging pre-
processing step currently only works on datasets that can be loaded
in memory, we only provide preprocessing times from 256 to 1,024
processes. The timing results (in seconds) are shown in Table 1.
The “fieldline tracing” and “‘scalar merging” columns represent
the one-time step that occurs to generate the fieldline geometry
and merge scalar quantities with it. At 1,024 processes, we were
able to trace roughly two million fieldlines through the entire ocean
dataset in 36 seconds. This number includes the time spent reading

the dataset and writing the fieldline geometry. The scalar merging
takes about twice as long, primarily because it is reading in addi-
tional salinity and temperature quantities from the dataset. Overall,
the efficient I/O methods allowed us to obtain a very reasonable
preprocessing overhead for even a dataset in the hundreds of giga-
bytes.

The “startup” and “geometric attributes” timings convey the one-
time overhead associated with starting our application. The startup
times include I/O overhead and the time it takes to load balance
the data and build the necessary querying data structures. The ge-
ometric attributes time represents the time it takes to precompute
all of the geometric attributes of the fieldlines. Both of these steps
showed high scalability. At 1,024 cores, users would be able to
recompute an entirely new and extensive feature space in under a
second.

9 <

The “query,” “network latency,” and “overall latency” times de-
scribe the average time it took to query and the network latency
associated with sending the results from the global ocean queries in
Figures 6 and 7. The querying times were highly scalable, obtaining
an average time of 0.034 seconds at 1,024 processes for the largest
global ocean queries that we performed. The network latency ac-
tually became the bottleneck at larger scales, which resulted in less
scalability for the overall latency of feature extraction. The over-
all latency times between submitting a query and obtaining the first
parts of the result, however, were very interactive.

8 CONCLUSION AND FUTURE WORK

In this work, we have shown how data analytics can be used to fa-
cilitate the quantification of flow features using geometric and other
derived attributes. More importantly, we have shown how two high-
performance infrastructures can be integrated into the visual anal-
ysis pipeline for interactively exploring very large flow datasets.
Using the power of parallel processing is a necessity not just for the
processing of large data, but also in allowing exploration of very
large feature spaces.

To the best of our knowledge, we are the first to assess the usage
of geometric flow features defined on a variable-length window. We
believe these types of features can complement other scalar-based
approaches that detect vortices and other flow phenomena. As we
showed in the paper, these features helped us quantify global eddy
and circulation activity in a large-scale ocean simulation. They
were also key to defining other events in an atmospheric simula-
tion.

In the future, we would like to experiment with using our sys-
tem for analysis of even more complex oceanic features. One such
example is quantitatively addressing attributes of the Rossby Ra-
dius of Deformation, a long standing topic in oceanography. We
would also like to examine the usefulness of neighborhood-based
geometric features in domains other than flow, primarily those that
make use of temporal trend analysis. One other possible avenue of
study includes using clustering of fieldline results for visualization
purposes.

ACKNOWLEDGEMENTS

We thank Dr. Robert Jacobs of Argonne National Laboratory for
providing us with the initial motivation to work on this research
direction. We thank Dr. David Erickson III of Oak Ridge National
Laboratory for guidance on studying atmospheric models. We owe
Melissa Allen of University of Tennessee for her close collaboration
on all technical aspects to properly implement flow advection in
atmospheric models. Han-Wei Shen’s input was also pivotal to the
formation of this work. Our work was funded by DOE SciDAC
Ultrascale Visualization Institute (DOE DE-FC02-06ER25778).

REFERENCES

(1]

[2]

[3]

[4]

[5]
[6]
[7]

[8]

[9]

[10]

(1]

(12]

[13]

[14]

H. Doleisch, M. Gasser, and H. Hauser. Interactive feature specifica-
tion for focus+context visualization of complex simulation data. In
Proc. of VisSym, pages 239-248, 2003.

M. Jiang, R. Machiraju, and D. Thompson. A novel approach to vortex
core region detection. In Proc. of VisSym, pages 217-225.

W. Kendall, M. Glatter, J. Huang, T. Peterka, R. Latham, and
R. Ross. Terascale data organization for discovering multivariate cli-
matic trends. In SC ‘09: Proceedings of ACM/IEEE Supercomputing
2009, pages 1-12, Nov. 2009.

W. Kendall, J. Huang, T. Peterka, R. Latham, and R. Ross. Visualiza-
tion viewpoint: Towards a general I/O layer for parallel visualization
applications. IEEE Computer Graphics and Applications, 31(6):6-10,
Nov./Dec. 2011.

M. E. Maltrud and J. L. McClean. An eddy resolving global 1/10
ocean simulation. Ocean Modelling, 8(1-2):31-54, 2005.

T. O. Manley and K. Hunkins. Mesoscale eddies of the arctic ocean.
Journal of Geophysical Research, 90:4911-4930, 1985.

T. McLoughlin, R. S. Laramee, R. Peikert, F. H. Post, and M. Chen.
Over two decades of integration-based, geometric flow visualization.
In Computer Graphics Forum, volume 29, pages 1807-1829, 2010.
T. Peterka, R. Ross, B. Nouanesengsey, T.-Y. Lee, H.-W. Shen,
W. Kendall, and J. Huang. A study of parallel particle tracing for
steady-state and time-varying flow fields. In IEEE International Par-
allel and Distributed Processing Symposium (IPDPS), pages 577-588,
May 2011.

F. H. Post, B. Vrolijk, H. Hauser, R. S. Laramee, and H. Doleisch. The
state of the art in flow visualisation: Feature extraction and tracking.
Computer Graphics Forum, 22(4):775-792, 2003.

I. Sadarjoen, F.H.Post., B. Ma, D. Banks, and H. Pagendarm. Selective
visualization of vortices in hydrodynamic flows. In Proc. of IEEE
Visualization, pages 419422, 1998.

I. A. Sadarjoen and F. H. Post. Detection, quantification, and track-
ing of vortices using streamline geometry. Computers & Graphics,
24(3):333-341, 2000.

K. Shi, H. Theisel, H. christian Hege, and H. peter Seidel. Path line
attributes - an information visualization approach to analyzing the
dynamic behavior of 3d timedependent flow fields. In In Proc. of
TopolnVis, pages 75-88, 2007.

S. Williams, M. Hecht, M. Petersen, R. Strelitz, M. Maltrud,
J. Ahrens, M. Hlawitschka, and B. Hamann. Visualization and analy-
sis of eddies in a global ocean simulation. Computer Graphics Forum,
30(3):991-1000, 2011.

J. Woodring and H.-W. Shen. Multi-variate, time varying, and compar-
ative visualization with contextual cues. IEEE Trans. on Visualization
and Computer Graphics, 12(5):909-916, 2006.

