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A Machine Learning Driven Sky Model
Pinar Satilmis, Thomas Bashford-Rogers, Alan Chalmers, Kurt Debattista

Figure 1: Dynamic sky lighting consisting of environment maps provided by Kider [1].
Top: Smoothly changing results generated by our method learned using a sparse set of captures. Bottom: Reference environment maps. The gaps indicate

missing reference images which are filled by our model.

Abstract—Sky illumination is important for generating realistic
renderings of virtual environments in a number of applications
ranging from entertainment to archaeology. Current solutions use
complex analytical models which can be costly to compute inter-
actively; or require the capture of sky environment maps which
constitute a laborious and impractical task in order to obtain
smooth animations. In this work, we present an alternative model
for sky illumination based on machine learning. This approach
compactly represents sky illumination from both existing analytic
sky models and from captured environment maps. For analytic
models, our approach leads to a low, constant runtime cost for
evaluating lighting. When applied to environment maps, our
approach approximates the captured lighting at a significantly
reduced memory cost, and enables smooth transitions of sky
lighting to be created from a small set of environment maps
captured at discrete times of day. This makes capture and
rendering of real world sky illumination a practical proposition.
Our method encodes the non-linear mapping of sun and view
direction to radiance values using a single layer Artificial Neural
Network. The network is trained using a sparse set of samples
which capture the properties of the lighting at various sun
positions. Results demonstrate accuracy close to the ground truth
for both analytical and capture based methods. Our approach
has a low runtime overhead meaning that it can be used as a
generic approach for both offline and real-time applications.

Index Terms—sky model, neural network, realistic graphics,
machine learning.

I. INTRODUCTION

Sky illumination is often responsible for much of the
lighting in a virtual environment. In many scenes, a large
portion of the image may consist solely of the visible sky,
with sky illumination also used to light a significant number
of scene objects, as can be seen in Figure 2. There are two
primary approaches to computing sky illumination, analytic
and image-based.

Analytic models use approximations of how light scatters in
the atmosphere to compute lighting. These have traditionally
either been based on empirical observations (eg. Perez et
al. [2]), or fitting models to the results of large scale light
transport simulations of atmospheric scattering (see Hošek
and Wilkie [3]). Although these models can represent many

lighting conditions, they may not capture or fully reproduce the
complexities of real-world atmospheric conditions as shown by
Kider et al. [1].

Image-based approaches encode atmospheric lighting in a
map. This map can either be generated by artists to achieve
certain effects, or real-world lighting values can be captured
using various camera setups (see Debevec [4] or the systems
by SpheronVR [5] and Panoscan [6]). These maps typically
require a large amount of memory, and captured real-world
lighting is typically not suitable for producing animations due
to capture limitations. For example, a feasible time required
to capture environment maps could be every 10-15 minutes;
however this is not sufficient to produce a smooth animation.
If interpolation between environment maps is used, errors
in the resulting illumination can be severe. Additionally, it
may be hard in practice to ensure the same capture setup for
each environment map, leading to additional visual error in
animations.

In this work, we present an analytic model which is able
to learn and reproduce arbitrary sky illumination conditions.
This is achieved using a compact representation of the lighting
stored as an Artificial Neural Network (ANN). This represen-
tation can be trained using either analytical or image based
inputs and can approximate, with low error, the input lighting
with a fixed computational cost and low memory usage. This
enables effects such as smoothly changing sky illumination
from a small set of light probes and interactive rendering of
complex sky models.

Specifically, the contributions of this paper are:

• An efficient representation of sky illumination using
ANNs trained on either analytical or imaged based inputs.

• An efficient GPU implementation which leverages the
low memory cost of the model.

• The ability to create smooth animations of sky illu-
mination extracted from a temporarily discrete set of
inputs making environment map capture for animations a
practical alternative.
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Fig. 2. Rendering of two models (Church and Car) with our neural network sky model trained with the environment maps provided by Kider et al. [1].

II. BACKGROUND AND RELATED WORK

This section presents details of existing sky illumination
models for both analytic and captured environment maps.
This also covers the use of neural networks, in the computer
graphics field.

A. Analytic Skylight Models

The CIE (International Commission on Illumination) pro-
posed a series of models [7] which aim to approximate sky
luminance values. One of the CIE models frequently applied
to computed graphics was introduced by Perez et al. [2]. The
Perez model is controlled by coefficients A,B,C,D and E
each of which is responsible for effects such as in-scattering,
out-scattering, and sky clearness. It is described as follows:

Fperez(ξ, γ) = (1 +AeB/ cos ξ)(1 + CeDγ + E cos2 γ) (1)

where, ξ is the zenith angle of the view direction at which the
luminance value is evaluated and γ is the angle between sun
and view direction.

Nishita and Nakamae [8] proposed a daylight modelling
method for clear and overcast skies which calculates light
coming from the sun, and scattering due to clouds and water
particles in the atmosphere. Nishita et al. [9] modeled the
sky by considering the illumination from the sun and sky.
Multiple scattering was ignored in this method, instead single
scattering by aerosols and air molecules was computed using
Rayleigh and Mie scattering. Nishita et al. [10] improved their
previous work to handle multiple scattering. They represented
the atmosphere as being composed of voxels and used a two-
pass method to compute lighting.

A commonly used model was described by Preetham et
al. [11], which accounts for both sunlight and skylight. The
spectral radiance from the sun was computed taking into
account attenuation through the atmosphere. Based on the
sky model proposed by Nishita et al. [10], they fitted the
parameters for the Perez model. These parameters also depend
on turbidity; a term used to approximate the haziness of air.
It is the result of light scattering through particles and water
vapour in the atmosphere. Low turbidity values generate a very
clear sky, and increasing it results in a more hazy sky. Habel et
al. [12] represented the Preetham sky model by using spherical
harmonics. They fitted the spherical harmonics coefficients to

a function of sun zenith angle and turbidity, and evaluate them
at runtime.

Takagi et al. [13] proposed a model consisting of a com-
bination of direct sunlight and sky illumination. For sky
illumination, they divided the weather conditions into three
according to cloud cover and used empirical formulas to find
the radiance values. Hoffman and Preetham [14] suggested
a straightforward equation for real time implementations de-
rived by using constant density for the atmosphere. Bruneton
and Neyret [15] also presented a real time method based
on precomputing various scattering effects into tables, and
performing lookups to reconstruct sky radiance at runtime. In
a similar method, Elek and Kmoch [16] dealt with physically
based rendering of sky and water bodies. For the rendering of
the sky, single and multiple scattering through the atmosphere
were simulated. Scattering through the atmosphere was pre-
computed and encoded into a lookup table. This lookup table
was used to render the sky from an arbitrary observer position
and view direction. The full spectral values were also pre-
computed to be used in rendering.

Haber et al. [17] proposed a physically based method
to render twilight. Their model divides the atmosphere into
different layers and uses multiple scattering. The disadvantage
of the method is that it can not be rendered in real time.

Hošek and Wilkie [3] presented a model based on an
improved version of the Preetham model that can deal with
high turbidity values and ground albedo. They calculated
light scattering in the atmosphere for a large number of sun
positions using an offline path tracing based simulation. The
results of the simulation were used to fit the parameters to
the modified Preetham model. This model also includes two
additional terms. One of them is to deal with the aureole phe-
nomenon and other one is to obtain a smooth gradient around
the zenith. Their method also provides spectral radiance for
a given view and sun direction. Hošek and Wilkie [18] also
proposed an improved version of this model which includes
attenuated radiance from the solar disk.

Kider et al. [1] designed a technique which simultaneously
captures radiance and irradiance measurements of sky illumi-
nation, as well as HDR images of the sky. They compared
existing solar/sky models to the measured data. The compar-
ison provides information about the accuracy of analytic sky
models. Also, the measured data points are used to create a sky
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model by applying bi-cubic spherical interpolation. However,
this method is based on assumptions about atmospheric con-
ditions and the data is only valid at the measurement location.

The Radiance [19], [20] rendering package includes two
tools for generating a sky model: Gensky and Gendaylit.
Gensky produces skies according to the given month, day,
time and angular geographical coordinates. It is based on four
models, Mardaljevic [21]; the uniform luminance model, the
CIE overcast sky model, the CIE clear sky model and the
Matsuura intermediate sky model. The Matsuura and Iwata
[22] model can represent skies from clear to overcast in a
smooth way. To fit the parameters of the sky model based
on CIE Standard Clear Sky, they applied regression analysis
to a large database. The second tool included in Radiance is
Gendaylit which is based on the Perez-All weather model [2].
For more information on clear sky models, see the survey by
Sloup [23].

B. Image-Based Lighting

Image-based lighting is a method of lighting virtual environ-
ments using captured real world lighting. This has found much
use in the film industry, and can produce accurate renderings
of objects as if they were placed in the location at which
the environment was captured. The method was originally
proposed by Blinn and Newell [24]. Debevec [4] further
developed and formalised the idea of high dynamic range
environment maps. Light entering the full sphere of directions
around a point is captured and stored in a map. Typically
there exists a mapping from position in the representation
of the environment map to a direction on the sphere. This
map is then used to render scenes lit by distant lighting as if
they were in the position at which the lighting was captured.
There are several common representations for environment
maps; angular mapping, cube mapping and latitude-longitude
mapping, see Banterle et al. [25] for more details. Environment
maps can be captured by using a specialised camera hardware
such as SpheronVR [5], Panoscan [6] or a light probe which
is an image of a specular reflective ball, which captures a
reflection of distant lighting. An efficient method for capturing
the sun and sky in HDR is described in the work by Stumpfel
et al. [26].

C. Artificial Neural Networks

Artificial Neural Networks (ANN), originally proposed by
McCulloch and Pitts [27], are a powerful method to find non-
linear links between a set of inputs and outputs. They are
typically used in the context of supervised machine learning
and are often used to implement many tasks such as pattern
classification, clustering, optimization etc. More details can be
found in the book by Hagan et al. [28]

ANNs have been used a few times recently within the ren-
dering. Dachsbacher [29] used ANNs to classify the visibility
configurations of objects in virtual scenes. In this method the
surface of the object is divided into subsurfaces which are used
to obtain the visible fractions of the surface. These fractions
are used in co-occurrence matrices to extract feature vectors
which are used to train a neural network for visibility analysis.

Ren et al. [30] proposed Radiance Regression Functions
which use an ANN to approximate the indirect illumination
at every scene point in a computationally effective way. Their
model is a nonlinear 6D radiance regression function which
takes surface position, view direction and lighting direction as
input and returns the RGB colour of the indirect illumination.
The ANN is trained in an offline pre-pass which calculated the
full global illumination at each scene point and direction. This
can then be evaluated efficiently at runtime. They clustered
scene points and produced separate representations for each
cluster. This used multiple smaller networks rather than one
extremely large network for the whole scene.

In Meteorological Science, artificial neural networks have
been used also to estimate sky luminance. Janjai and Plaon
[31] used measured discrete sky luminance data to train
a neural network which generates clear, partly cloudy and
overcast skies. This only deals with luminance, whereas our
model computes colour values. Furthermore, their method used
a small number of input directions for training and evaluation,
which is not sufficient for image synthesis applications. Work
by Zarzalejo et al [32] and Linares-Rodriguez et al. [33] use a
neural network to predict solar irradiation on the ground using
inputs from satellite data. However, this is not applicable to
evaluating sky radiance given a viewing direction.

III. MODELING SKIES WITH NEURAL NETWORKS

The aim of this work is to produce a sky model capable of
representing the illumination in existing analytic models and
environment maps, with low memory consumption and fast
evaluation. Machine learning provides such a generic approach
by learning the details of how to predict sky illumination based
on minimal inputs. While there are many broad classes of
machine learning methods, neural networks provide significant
advantages. They are effective at learning continuous functions
(Hornik et al. [34]), which makes them applicable to analytic
sky models, and have compact storage. In this section a sky
illumination model based on neural network is presented.

A. Sky Illumination Model

Sky models attempt to predict the incident radiance due to
sun light being scattered in the atmosphere. Typically, models
are given an input feature vector Vmodel, which contains a
subset of a full description of the sky V , i.e. Vm ⊆ V where m
is a sky model such as Hošek, Preetham or IBL. These models
return incident radiance coming from a direction ωview. The
general form of a sky model is:

L(ωview) = Fm(Vm) (2)

where Fm is the sky model and Vm is a feature vector which
describes the sky. This feature vector contains information
such as sun direction (ωsun), turbidity (t), ground albedo, and
viewing direction (ωview), and any other information required
to describe the process of sky illumination.

For example, in Equation 1, the feature vector for the
Perez model is given by Vperez = {ωsun, ωview}, which are
transformed to {ξ, γ} for input to the equation. Another ex-
ample is of environment maps stored in the latitude-longitude
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representation, where VIBL = {ωview} is transformed into
θview and φview values used to look up incoming radiance
from the stored environment map.

The aim of this work is to approximate all sky model
functions, with a machine learning driven model:

∀ m : FNN (VNN ) ≈ Fm(Vm). (3)

That is, we approximate the sky illumination Fm(Vm) by using
neural networks, FNN (VNN ).

B. Neural Network Representation

If we denote the neural network sky representation by Ψ,
then the incoming illumination is formulated by using the
outputs of the neural network in the following way:

FNN (VNN ) = Ls(Ψ(VNN )). (4)

The neural network Ψ encodes the non-linear relationship
between the input feature vector VNN and the RGB triplet in
[0..1). Ls is a scaling function which transforms the outputs
of the neural network to the correct radiance values, which
may take values outside the range [0..1).

ANNs are composed of neurons which are separated into
several layers known as input, hidden and output layers in a
multilayered neural network. These layers are connected by
edges which are assigned a weight.

The structure of the ANN is an acyclic graph in which
weights are assigned to edges between two neurons in con-
secutive layers. Layers have fixed positions where the first and
last layers are the input and output layer respectively and the
other layers are hidden layers. In order to use an ANN to
model sky illumination, various parameters relating to the sky
are required as an input and RGB triplets in [0..1) are required
as the output. Spectral values could also be approximated using
the network, but this work considers standard RGB values. In
addition to the neurons in the input and hidden layers the
network includes a bias term in these layers, an additional
neuron with a constant value of 1. It is connected to the
neurons in the following layer. Including a bias term helps
to improve training by shifting the outputs of the activation
function, which adds nonlinearity to the neural network Ψ.

Ψ is a nonlinear mapping from Rq to the Rn where q and
n are the neuron sizes of the input and output layers. Ψ maps
the inputs to the output layer by calculating each intermediate
neurons in the following way. Let the weight value between the
layer (k) and the previous layer (k−1) be wkjkj(k−1)

where jk =

[1..nk] is the neuron index in the layer(k) with nk neurons.
Then the jk′th output (okjk ) for the k′th layer is computed as:

okjk = f(
∑
j(k−1)

wkjkj(k−1)
∗ o(k−1)

j(k−1)
+ wkjk0), (5)

where the radial basis function, f(x) = 1
1+x2 , is used as

the activation function. wkjk0 is the weight assigned to a bias
term in the previous layer. Hence the mapping Ψ(VNN ) =
{Ψ(VNN )1,Ψ(VNN )2,Ψ(VNN )3} with one hidden layer is
expressed as:

Ψ(VNN )j3 =f(
∑
j2

w3
j3j2 ∗ f(

∑
j1

w2
j2j1 ∗ (VNN )j1 + w2

j20)

+ w3
j30). (6)

Finally, the outputs of the ANN which consist of RGB
values in the range [0..1) are scaled to the correct radiance
values, using the scaling function:

Ls(x) = 0.5(
1

x
− 1). (7)

This function is explained in Section III-C.

1) Input Feature Vector

Fig. 3. Coordinate system used for sun and view directions.

One of the first tasks when designing the neural network
Ψ, is to decide on the inputs. As stated in Section III-A, it
can be assumed that there exists a feature vector V containing
all information required to fully describe sky illumination.
Existing models use a subset of this information as input
to their models Vm ⊆ V . Therefore, as the neural network
approximation aims to approximate multiple sky models, the
feature vector used as the input which is the combination
of the models being approximated. Additionally, a change
in the azimuth angle of the sun results in a rotation of the
hemisphere. Therefore, we fix the azimuth angle, and only the
zenith angle θsun is used in training and evaluation.

If spherical coordinates are used, the outputs of the network
are discontinuous between the azimuth angles φ = 2π and
φ = 0 which results in a jump in sky illumination values.
Therefore, the viewing direction is represented in the Cartesian
coordinate system (ωview = {vx, vy, vz}), instead of spherical
coordinates as can be seen in the Figure 3. It can also be noted
that the relationship between incident radiance and turbidity is
highly non-linear. Instead of developing a more complicated
neural network to encode this non-linear relationship, we apply
a non-linear scaling to the turbidity parameter as an input. It
was empirically determined that replacing t with

√
t provided

a good approximation to this non-linear relationship.
Although the mapping based on the feature vector composed

of these 5 inputs (sun zenith angle, viewing direction repre-
sented by cartesian coordinates, and square root of turbidity)
was able to capture the smoothly varying illumination of
the majority of the sky, it failed to adequately capture the
higher frequency lighting around the solar disk. Therefore,
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to capture this local dependence on the sun position, we
used the Euclidean distance (d) between the sun and view
direction as another input. Another option was to use the dot
product of the sun and view directions (cos(γ)). However,
this function leads to ambiguities in the input angles γ and
π−γ leading to worse training results. The Euclidean Distance
is equal to the monotonically increasing function 2 sin(0.5γ)
which improves the training performance by providing more
consistent information related to the position of two directions
according to each other. Therefore, the input vector used for
the neural network is VNN = {

√
t, θsun, vx, vy, vz, d}.

When we fit to a model which does not use an element
of the feature vector VNN , we zero the input, and train as
before. For example, when fitting the neural network to an
environment map sequence, the input feature vector contains
VNN = {0, θsun, vx, vy, vz, d} as no turbidity calculations
are required. This makes no difference in the evaluation of
Equation 6, since the multiplication of the zeroed input with
the weights connected to it does not have any effect on the
value of the neurons in the hidden and output layers.

2) Structure of the Network

The structure of the ANN requires careful consideration.
Using too many neurons can lead to over fitting. On the other
hand, if too few neurons are used the network may not be able
to train adequately. Using a large number of neurons increases
the computational time of evaluation reducing the benefits of
using an ANN for computational gains. This section describes
the motivation for the choice of the proposed ANN structure.

Fig. 4. Mapping inputs to the RGB colour space with neural network.

The design of the first layer of the neural network has
already been discussed above, and consists of q = 6 neurons.
The outputs of the neural network are the three RGB colour
channels of the sky illumination, therefore the output layer is
of size three. An ANN can include multiple hidden layers with
combinations of different neuron sizes. However, networks
containing multiple hidden layers are slower to evaluate, and
more difficult to train, compared using a single hidden layer.
Since in our experiments a single hidden layer neural network
achieved satisfactory results, the proposed network contains
one hidden layer and thus avoids the complexity of training
and evaluating multi-layer networks.

Fig. 5. Mapping inputs to the RGB colour space with neural network.

In order to determine the number of neurons in the hidden
layer, a series of tests were run on different ANN configu-
rations in which the size of the hidden layer was increased
sequentially. These tests were performed with Hošek sky
model as it has a larger training set, see Section III-C. Each
configuration was run 10 times and the average normalized
error (based on cross validation method explained in Section
IV-A) is shown on the left graph in Figure 5. The graph
indicates that the error decreases when the number of neurons
are increased. However, this leads to an increase in the time to
evaluate the neural network. A metric which takes into account
both error and time is efficiency:

ε(Ψ) =
1

V ar[Ψ]T [Ψ]
, (8)

where V ar is the variance of the model and T is the time to
evaluate the model. It can be concluded from Figure 5 that the
neural network structured with a hidden layer of 12 neurons
is the most efficient model for use in our work. An illustration
of the structure of the network can be seen in the Figure 4.

C. Training

The main idea of training the neural network is to minimize
the error function, Li et al. [35]:

E(w) =
∑
j

‖Fm(Vm)j − FNN (VNN )j‖2, j = {1, 2, 3} (9)

where j represents the RGB colour channel outputs. Fm(Vm)
is the output vector from the model being trained, and is
commonly referred to as the target vector. This, combined
with the neural network feature vector VNN forms a pair
of vectors called an example ({VNN , Fm(Vm)}j). The set of
examples is known as a training set. The process of finding
the optimal weights in the mapping is called training (or
learning). The Backpropagation Algorithm is used to train the
network via examples. Two basic steps are repeated. Firstly,
an input feature vector (VNN ) is mapped to the output layer.
Secondly, the error between the output and the target output
is calculated and the weights are updated by propagating the
error backwards. For each example in the training set, the
process is repeated until a predefined condition is achieved.
Training is controlled by two parameters, learning rate (β) and
momentum (µ). Momentum prevents the training converging
to a local minimum of the error function, and the learning rate
controls both the speed and accuracy of the training.
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The target outputs of the algorithm are the scaled RGB
components of the sky illumination as mentioned in Section
III-A. These outputs have to be scaled into the range [0..1)
through the inverse of the scaling function in Equation 7:
L−1
s = 1/(1 + 2x). Since the targets of the network are the

colors of the sky which do not vary significantly according
to the view direction, the output values of the network are
typically very close to each other. Therefore, the coefficient 2
in the scaling function is used to spread the range of values
more evenly over the range [0,1). Using a larger coefficient
causes the range of values to again cluster at a small region
of the domain.

D. Implementation

The analytical models are trained with turbidity values
ranging from 1..10 for the Hošek sky model and from 2..6
for the Preetham sky model. These values are valid for
the original methods. 20 sun zenith angles were sampled
uniformly between θ = 0 and θ = π/2 at an azimuth angle
φ = π are sampled for each turbidity value. View directions
are specified by using stratified sampling of the hemisphere.
In our implementation, the analytic sky models are trained
with 10 zenith and 20 azimuth view directions. Increasing the
amount of samples does not improve the results drastically, but
increases the training time. This sample size was sufficient to
train all of the analytic sky models.

For environment map sequences, HDR images are used
to train the network. The images are aligned such that the
azimuth angle of the sun is aligned for all the input images.
Then, for each input environment map, the zenith angle of the
sun in each image is calculated automatically by finding the
pixel with highest color value. View directions are specified
by sampling pixels related to the sky pixels in the image.
Valid sky pixels are currently selected by segmenting the sky
from any other content, such as trees or buildings. These
segmentation processes are currently performed manually, but
automatic approaches can be used (similar to [36]). Also pixels
tagged as belonging to the sun are not used in training via
thresholding.

Since in our method the neural network is trained with
a sun azimuth angle of π. A sky model with an arbitrary
sun direction {θsun, φsun} is therefore rotated to position the
sun at {θsun, π}. Therefore, the normalized view direction
{v′x, v′y, v′z} is rotated to take this into account:

rotate = φsun − π,
vx = v′x ∗ cos(rotate) + v′y ∗ sin(rotate),

vy = v′y ∗ cos(rotate)− v′x ∗ sin(rotate),

vz = v′z, (10)

where {vx, vy, vz} forms the correctly rotated input to the
neural network.

This method is amenable to both an efficient CPU and GPU
implementation. An advantage to this is that the sky model can
be altered without changing any evaluation code. Therefore,
differing sky models can be easily swapped with minimal

implementation effort, by simply updating the weights. This
is particular useful for GPUs whereby GPU specific imple-
mentations of other models are not required and our current
implementation, if trained with a sky model on the CPU, will
work with little additional changes. Furthermore, evaluation
requires only two layers to be computed, and does not involve
branching which is ideal for GPU computation.

IV. RESULTS

Sky illumination using ANNs is demonstrated for the
analytical models of Preetham et al. [11] and Hošek and
Wilkie [3] (henceforth referred to as Preetham and Hošek
sky models respectively), and for captured environment maps.
When training, the following values were used: learning rate
β = 0.01 and momentum µ = 0.9, which is a commonly
used momentum value for the backpropagation algorithm,
see Li et al. [35]. The learning rate is chosen according to
the initial experiments which showed that using a smaller
learning rate increases the training time and a larger value
decreases the training performance. Therefore a value which
balances between these extremes was chosen. These results
were obtained on Intel Xeon E5-2620 CPU.

A. RMSE Results

Table 1
Cross validation results for the trained sky models, time in seconds required

to train the neural network and the number of examples.

Sky
model Preetham Hošek Egypt Kider

RMSE 0.0145 0.0395 0.0038 0.0118
Training Time (s) 291 195 458 621
Example size 20,000 40,000 25,973 43,295

The method was tested for both analytical models and
environment maps. The test data set was composed of values
which were not used for training. The Hošek and Preetham
sky models were tested respectively for turbidity values
1.5, 2.5, ..., 9.5 and 2.5, 3.5, 4.5, 5.5 with 7 sun directions. In
this work we use a fixed albedo value of {0.5, 0.5, 0.5} for the
Hošek model. Sun directions are changing uniformly between
θ = 0 and θ = π/2. In the case of environment maps there
were two different captured HDR image sequences: Egypt and
the database provided by Kider et. al. [1]. The Egypt sequence
consists of 6 images, and Kider contains 12 images. The input
example sizes for the analytical models are the product of the
number of view directions, sun positions and turbidity values.
For environment map sequences, the example size refers to the
product of the number of view directions and HDR images.
The training results are validated by using the K-Fold Cross
Validation Method. With K-Fold Cross Validation, an image
from the database was chosen and a network was trained with
the images in the database except for that chosen image. The
chosen image was then used to test against the output of the
ANN using normalized Root Means Square Error (RMSE).
For each image in the database this process is repeated and
the mean of all obtained errors is calculated.
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The presented error is the average of all RMSEs calculated
per image in the validation sets, see Table 1. In our results,
the accuracies ranged between 96.05% and 99.62% (as nor-
malized RMSE was used) for the chosen validation set. These
results can be improved by using more neurons resulting in
a higher computational cost. However, the current results are
satisfactory and it can be concluded that the sky illumination
is learned accurately by the neural network.

We computed irradiance for each sky model and compared
it with our ANN representation. The values were computed
using the same data sets used for the RMSE results. Irradiance
was computed per sun position as:

I =

∫
Ω

L(ωview)cos(θview)dωview, (11)

where Ω is the hemisphere. Table 2 shows the averaged
irradiance results obtained and the difference between the
original and ANN sky model (units W/m2).

Table 2
Cross validation results for irradiance values generated by trained sky

models.

Absolute Error Reference Neural Network Difference
Preetham 0.11665 0.11695 0.00030
Hošek 0.03671 0.03838 0.00253
Egypt 0.02472 0.02425 0.00047
Kider 0.10882 0.10419 0.00462

B. Comparative Results

Fig. 6. Examples of the training of ANN with Preetham sky model, for
θsun = π ∗ 0.48, t = 4. Left: Reference sky model. Middle: Output of the
ANN. Right: Difference Image.

Fig. 7. Examples of the training of ANN with Hošek sky model, for θsun =
π∗0.3, t = 2. Left: Reference sky model. Middle: Output of the ANN. Right:
Difference Image.

We visually validated the results of the training by com-
paring a variety of sky scenarios. The outputs of the ANNs
trained with Preetham and Hošek sky models exhibited visual
similarity to the reference sky models. The difference between
the sky models is given with the reference sky and trained sky
model is shown in Figure 6 and Figure 7. As can be seen in
the difference images, the ANN performs well over the sky;
however the neural network representation produces a small
amount of low frequency error, especially around the higher
frequency regions.

Figure 8 shows the similarity of our ANN representation
to a captured environment map. The left half of the image is

Fig. 8. Juxtaposition of the models in one image for different sun positions.
Left side: Reference sky model by Kider et al. [1]. Right side: Output of the
ANN

the original environment map, and the right half of the image
was computed from the ANN. Figures 1 and 9 demonstrate
the ability of the ANN to compute novel sun positions from
a captured sequence of environment maps. The top row
show skies synthesized with our approach, and bottom shows
original captured images. The gaps in the bottom row indicate
gaps between captures, which are filled by our method. This
enables smooth animations of sky lighting to be generated
from discrete environment map captures.

We also rendered two scenes with our method for sky illumi-
nation (using path tracing), which are shown in Figure 2. These
scenes use the neural network to compute the sky lighting
based on the input Kider environment maps. The Church scene
additionally includes a directional light to represent the direct
sun illumination.

C. Timings

An advantage of using the neural network representation
is a fixed computational and memory cost for evaluating sky
illumination. Table 1 shows the times required to train the
neural network for the presented results. We compared the
performance of evaluating sky illumination using the neural
network representation to the Preetham and Hošek models.
We used a single threaded implementation of all methods, and
evaluated 1024 × 512 view directions around the hemisphere.
Our method took 0.13s to compute this, whereas Preetham
took 0.33s and Hošek was 0.38s. A GPU implementation
(Nvidia 650M GT) requires less than 1ms to evaluate our
model at a 4K resolution. Additionally, our method has a fixed
memory cost of 492 bytes for a network with a hidden layer
consisting of 12 neurons, as opposed to the several hundred
megabytes required for a captured environment map sequence.
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D. Discussion

The neural network based approach presented in this paper
currently is trained to produce RGB values. Spectral values
could be generated by modifying the output layer to produce
spectral values at a number of wavelengths. We generate
RGB data in our approach as not all of the methods captured
spectral data, for example some of the environment maps used
contained only RGB data. Additionally, the feature vector used
as an input to our method can be expanded to take into account
additional inputs, such as ground albedo used in the Hošek
model. This may involve re-computing the size of the hidden
layer, however the methodology presented can adapt to these
changes.

Our method is an approximation to existing sky models, and
environment maps. However, this approximation has a fixed
runtime cost, has a small memory footprint, and is generic
enough to represent existing models with a high degree of
accuracy.

V. CONCLUSION

In this work we have proposed a different approach to the
sky illumination problem. We presented a machine learning
driven approach to calculate sky illumination for a specific
sun position. A single hidden layer neural network was trained
to represent analytic sky models and environment maps. The
sky illumination returned by the network is accurate when
compared with the original sky models. Our approach can
be used to extract the sky lighting from captured environ-
ment map sequences, and can be used to calculate smooth
animation from environment maps captured at discrete times.
As our method only requires a small neural network for the
representation, it can be efficiently evaluated by both CPU and
GPU implementations.
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