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Efficient C2-Weighting for Image Warping

Chuhua Xian∗, Shuo Jin∗ and Charlie C. L. Wang† Senior Member, IEEE

Abstract—Handle-driven image warping based on linear blend-
ing is widely used in many applications because of its merits on
intuitiveness, efficiency and easiness of implementation. In this
paper, we develop a method to compute high-quality weights
within a closed domain for image warping. The property of C

2-
continuity in weights is guaranteed by the carefully formulated
basis functions. The efficiency of our algorithm is ensured by a
closed-form formulation of the computation for weights. The cost
of inserting a new handle is only the time to evaluate the distances
from the new handle to all other sample points in the domain.
A virtual handle insertion algorithm is developed to allow users
to freely place handles within the domain while preserving the
satisfaction of all expected criteria on weights for linear blending.
Experimental examples for real-time applications are shown to
demonstrate the effectiveness of this method.

Index Terms—Image warping, closed-form formulation,
weighting, linear blending

I. INTRODUCTION

IMAGE warping based on linear blending has a wide pop-

ularity as it is intuitive, effective and easy-to-implement in

many different scenarios of applications. By inserting handles

within an image domain, users can bind an image Ω with the

handles and then manipulate their locations and orientations

to drive the deformation of Ω. Specifically, each handle Hi

with i = 1, . . . ,m is defined as a local frame with its origin

hi ∈ Ω. After defining an affine transformation Ti for each

handle Hi, the deformation of Ω is realized by computing the

new position of each point p ∈ Ω via a linear blending of

affine transformations Tip. The linear blending is weighted

by fields wi : Ω 7→ ℜ associated with handles Hi. Basically,

to achieve an intuitive and high-quality deformation, a few

criteria on the weights are demanded, including smoothness,

non-negativity, partition-of-unity, locality/sparsity, and nonlo-

cal maxima/minima (see [1] for an analysis).

The recent advancement of technology focuses on comput-

ing weights of blending for warping with a discrete form of

domain (i.e., meshes are employed to determine piecewise

linear fields of weights). Weights are computed on mesh

nodes via minimizing some discrete differential energies (e.g.,

biharmonic, triharmonic and quatraharmonic forms used in

[2]). After incorporating hard constraints in equality-form or

inequality-form according to different criteria, weights are

determined on mesh nodes with the help of non-linear opti-

mization solvers, which is usually time-consuming. This leads
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to the difficulty in the realization of real-time insertion of new

handles as new routines of non-linear optimization need to be

taken. Moreover, the determined weights are mesh-dependent,

which indicates an implicit requirement on mesh quality. For

a poorly meshed domain, the artificial distortion caused by

elements in poor shape could be serious (as illustrated in

Fig.1). Although the artifacts can be reduced by remeshing

the domain to improve mesh density and quality, this assumes

high efficiency of weight generation. Otherwise, a very slow

computation process will be disappointing to users. Ideally,

the distribution of weights should be affected only by the

domain to be warped and the locations of handles, which

indicates mesh-independence. The existing mesh-independent

approaches in literature for handle-driven deformation (e.g.,

[3]–[5]) can only satisfy subsets of the demanded properties

on weights. These factors motivate us to investigate an efficient

and high-quality method to determine weights which can be

applied to both meshed and meshless representations of an

image domain.

In this paper, we formulate the evaluation of weights in

a closed-form so that the deformation framework gains the

benefit of flexibility – i.e., the response of inserting new

handles is real-time. Specifically, the time cost of inserting

a new handle is linear to the number of samples used to

represent the domain of computation. The properly chosen

basis function according to the defined criteria can guaran-

tee the properties of smoothness, non-negativity, partition-of-

unity, locality/sparsity, and nonlocal maxima/minima, all of

which are necessary to ensure a deformation of high quality.

The main results of our work are as follows:

• We present an efficient method to determine linear

blending weights with C2-continuity for real-time image

warping. The weights are formulated in a closed-form

of basis functions centered at the handles (details are

given in Section III-B). After decomposing the domain

to be deformed by the Voronoi diagram of handles,

aforementioned criteria for image warping are all ensured

(see the analysis in Section III-C).

• A virtual handle insertion algorithm is proposed in Sec-

tion IV to guarantee the locality and sparsity of weights

so that a deformation interpolates all transformations

defined on handles. The virtual handles are added to let

the supporting region of the basis function defined on a

handle not cover the origins of any other handles (see the

algorithm in Section IV-A).

• After constructing the Voronoi diagram of all handles

(including user-input and virtual ones), its dual-graph

gives a connectivity of the handles. We compute harmonic

fields on the graph to determine the transformations of

virtual handles according to the ones specified on the

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or 
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Fig. 1. Image Warping based on linear blending. (a) Handle-driven deformation based on linear blending is an intuitive method for the interactive shape
manipulation. (b) Artifacts are found with the weights computed by the mesh-dependent method [1], which requires solving an equation system over the
whole underlying mesh. (c) We propose a new framework to generate C2-continuous weights for linear blending based deformation with high efficiency. Our
approach inherits the merits of mesh-dependent weighting schemes while bringing the weighting to the resolution of infinity.

user-input handles (see Section IV-B). It is proved that

the deformation determined in this way lead to a natural

manner following the intention of user input well.

• For different discrete representations of the domain to

be warped, we show that our framework is efficient and

flexible for handle-driven image warping (see Section

V for implementation details). Experimental results are

shown in Section VI to demonstrate the performance of

our approach.

II. RELATED WORK

Shape deformation is an important research area in image

manipulation and geometric modeling. There are a large

amount of existing approaches in literature. The purpose of

this section is not for a comprehensive review. We only focus

on discussing the handle-driven deformation approaches.

Mesh-based techniques for discrete geometry modeling and

processing have been widely explored in the past decade.

Typical approaches including variational surface deformation

, Poisson deformation, Laplacian editing and other linear vari-

ational surface deformation approaches (see a comprehensive

survey in [6]). Volumetric information and rigidity are also

incorporated to enhance the shape-preservation in [7], [8]. One

common drawback of these approaches is that the positions

of vertices on a model need to be determined by solving a

system of linear equations after every update of handles, which

becomes a bottleneck of computation. A recent development in

[1], [2], [9] transfers the workload from online optimization to

offline. In [5], the handles are elements of a simplified mesh.

Although this strategy is more efficient than the deformation

methods based on online optimization, they still cannot avoid

solving large linear systems, which slows down the response

of deformation after inserting new handles. Moreover, the

results of deformation are also suffered from the artificial

distortions caused by the problems of meshes (e.g., too coarse

meshes for a fine deformation, a mesh with ‘needle’ and ‘cap’

triangles, and the problem of symmetry). Our approach solves

these problems by providing closed-form formulas to generate

weights preserving all the demanded properties for producing

deformations with high quality in real-time.

Another thread of researches for deformation focuses on

mesh-independent approaches. Different handles are employed

for shape manipulation. Points are used in [10], and curves

are employed as handles in [3]. Cage-based deformation (e.g.,

[11], [12]) can be considered as a improved generalization

of grid-based deformation(e.g., [13]), where weights can be

found by a closed-form in terms of the handles. However,

the construction of cages is usually not automatic and the

manipulation on cages instead of a model itself is indirect.

Moving least squares (MLS) strategy is employed in [10]

to interpolate similarity/rigid deformations at handle points. A

closed-form solution is provided in their approach to determine

the transformation matrix on every point in a MLS manner.

The transformations in the whole domain need to be computed

when any handle is moved. There is no explicit determination

on the influence region of each handle. Different from this

MLS approach, our approach belongs to the category of linear

blending based deformation. When the property of sparsity

is preserved on weights, the deformation at a point is only

affected by the nearby handles that is easier to be predicted by

users. Moreover, the deformation determined by our approach

is resolution-independent, which is very important for image

manipulation.

The work of generating weights for linear blending also

relates to the research of scattered data interpolation, where

radial basis functions (RBF) are widely used. In [14], the

deformation is governed by global RBFs that lead to a

dense linear system to be solved. The weights determined

by the dense (or global) data interpolation approaches lack

of sparsity. Therefore, every point in the domain is changed

when any handle is updated even if it is far away. Although

the compactly supported radial basis functions (CSRBF) can

help on introducing the sparsity, it does not provide closed-

form formulas as our approach. An improved approach with

interior RBF in [15] is able to obtain natural deformation

on various models, which consists of a precomputation phase

and an online deformation phase. By minimizing an energy

functional to determine the coefficients of the IRBFs, the shape

can be deformed in a shape and volume controlled manner.

When adding or removing handles during manipulation, the

precomputation phase needs to be redone, which could be slow

if the shape is complex.

A recent work [16] raises a new deformation framework to

design linear deformation subspaces, which generally unifies
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linear blend skinning and generalized barycentric coordinates

into an identical variational form. The deformation following

the movement of user handles is formulated as the mini-

mization of a quadratic energy subject to constraints from

the handles on discrete meshes. The computational bottleneck

of this approach falls on the factorization when new handles

are inserted, which is overcome by using advanced numerical

schemes. Our method particularly focuses on linear blending

scheme, giving a closed-form solution to compute weighting

which is applicable to any types of domain representations. It

shares a common problem with [1], which is the specification

of affine transformations at handle points. The framework in

[16] has a lower barrier on this as less manipulation needs to

be taken on handles.

III. WEIGHTING FORMULATION

The key idea of the linear blending is to determine the new

position of a point p ∈ Ω by a linear combination of the

transformations Ti defined by users on handles Hi as1

p′ =

m
∑

i=1

wi(p)Tip (1)

with wi(·) being a scalar field of weights to be determined.

The origin of a handle Hi is denoted by hi. This linear

blending based formulation is popular as it is fast and easy-

to-implement. However, carelessness in assigning weights can

lead to visible artifacts in results, i.e. the quality of warped

result is much dependent on the properties of wi(·) (the

analysis of our weighting is given in Section.III-C). Our

formulation introduced below guarantees the generation of

a C2-continuous scalar field of weights in a closed domain,

leading to a high-quality deformation based on linear blending.

A. Intrinsic Distance

Definition. All points on an image form a bounded domain

Ω. For any two points {ps,pe} ∈ Ω, if there exists a curve (a

path) C ⊂ Ω connecting ps and pe, we define the intrinsic-

distance of {ps,pe} along the curve C as

d(ps,pe; C) =

∫

C

f ds

Then the intrinsic-distance of {ps,pe} in Ω is defined as

d(ps,pe) = inf
C

∫

C

f ds.

If ps and pe are not located in a connected region of Ω, then

there is no path connecting these two points. In this case, the

intrinsic distance is defined as d(ps,pe) = ∞. It is obvious

that the intrinsic-distance has the following properties:

• Existence: d(ps,pe; C) is always calculable once C is

determined, which is the length of a curve segment in Ω.

Therefore, d(ps,pe) always exists for Ω when ps and

pe are located in the same connected region.

• Uniqueness: d(ps,pe) is uniquely determined while the

corresponding paths may be multiple.

1Ti is a homogeneous matrix and p is represented by homogeneous
coordinate.

Fig. 2. Voronoi diagram based method to determine the size of local support.
(a) The Voronoi diagram of handles can decompose Ω into smaller pieces.
(b) The illustration of rh(hi) and rd(hi) in the Voronoi diagram. (c) Very
close handles can lead to rh(hi) < rd(hi).

Intrinsic distance approximation. For a graph G with a set

of samples S ∈ Ω as its nodes, we represent the shortest

distance on G between ps ∈ G and pe ∈ G as dG(ps,pe;S).
For a given ε > 0, if for any two points {ps,pe} ∈ S, we

always have

|dG(ps,pe;S)− d(ps,pe)| ≤ ε,

then the sampling S is called a ε error-bounded sampling of

Ω and G is its corresponding graph. dG(ps,pe;S) is treated

as an approximation of d(ps,pe).
In this work, the computation of weights in practice relies

on the approximate instrinsic distance. When a domain is

convex, the intrinsic distance is equal to the Euclidean distance

between any two points in it. It must be clarified that an error-

bounded sampling S does not sufficiently indicate S is a high-

quality approximation of the domain (see a counter example

in Fig.4(a)), which also requires the sampling should be dense

to a certain extent.

B. Formulation

Each handle Hi is equipped with a compactly supported

basis function with a support size ri as φi(d(p,hi)/ri), where

hi is the location of Hi and d(·, ·) returns the intrinsic-distance

between two points inside Ω. The scalar field of weights for

Hi is then defined as

wi(p) =
φi(d(p,hi)/ri)

∑m

j=1 φj(d(p,hj)/rj)
. (2)

To ensure the C2-continuity over the whole domain Ω, we

need to properly select the basis functions according to the

following criteria:

1) φi(0) = 1 and φi(t) = 0, ∀t ≥ 1;

2) φ′
i(t) < 0;

3) φ′′
i (t) is continuous for 0 < t < 1;

4) φ′
i(0) = φ′

i(1) = φ′′
i (0) = φ′′

i (1) = 0.

A fulfillment of the above requirements on basis functions

guarantees the C2-continuity in the domain to be warped,

leading to a smooth deformation following the transformations

of the handles. When the intrinsic-distance is used to generate

the input parameter t for the basis functions, linear blending

based deformations driven by these basis functions behave in a



IEEE COMPUTER GRAPHICS AND APPLICATIONS 4

shape-aware manner. Another problem to be solved is how to

determine the support size ri of each basis function. As a basic

requirement of handle-driven deformation based on linear

blending, every point p ∈ Ω should be influenced by at least

one handle. To be shape-aware, a point p should be mostly

affected by its closest handle in Ω. Voronoi diagram sited at the

origins of handles {hi} provides an intrinsic decomposition

of Ω according to these observations (see Fig.2(a)), where the

intrinsic-distance in Ω is used as the metric for generating the

Voronoi diagram. We denote the cell that corresponds to hi by

V(hi). Two metrics with regard to a handle Hi can be defined

as follows (see Fig.2(b) for an illustration):

• Size of a Voronoi cell: rd(hi) = supq∈V(hi) d(q,hi);
• Separation to other sites: rh(hi) = infhj (j 6=i)

d(hi,hj).

To let the basis function φi(t) centered at Hi cover all points

in V(hi) and to ensure the handle interpolation property, it

should have

rd(hi) ≤ ri ≤ rh(hi). (3)

The support size can be ri = (1 − α)rd(hi) + αrh(hi) with

α ∈ [0, 1] being specified by users as a shape factor affecting

the rigidity of deformation. For most of the examples in this

paper, α = 1 is used. It is possible to have two handles too

close to each other so that rh(hi) < rd(hi) (see Fig.2(c) for

an example), i.e. the condition in (3) could be violated. To

solve such cases, we will exploit a virtual handle insertion

algorithm (presented in Section IV).

C. Properties of Weights

We analyze the properties of our weights for the handle-

driven warping based on linear blending.

• Smoothness: The scalar field of weights must be smooth

to avoid visual artifacts (discontinuity). The criteria we

set on the basis functions ensure the C2-continuity of our

weights.

• Interpolation: The final transformations determined by

the linear blending must interpolate the transformations

at the handles. Specifically, the weight at each handle Hi

is one at its origin while basis functions centered at other

handles give zero at this point. This is guaranteed by the

locality and sparsity in our formulation.

• Consistency: When applying the same transformation

T on all handles, all points in Ω must be consistently

transformed by T. This is enforced by the partition-of-

unity property in our formulation. Another consistency

requirement is about direction. The region influenced by

a handle should not change in the inverse direction of the

transformation assigned on the handle. We ensure this by

the property of non-negativity.

• Shape-awareness: A shape-aware warping by the trans-

formations of handles indicates that the influence of

handles should be conformal to the shape features of the

image, rather than the Euclidean distances to handles.

As we use intrinsic-distance to compute the weights on

points by linear blending , shape-awareness is naturally

guaranteed in our approach. All points will behave in a

conformal manner with their relative handles.

Fig. 3. When two handles are too close to each other (see left), the
condition for interpolation (i.e., rd(·) < rh(·)) can only be satisfied after
inserting virtual handles. (Middle) The newly inserted virtual handles (in blue)
tessellate the deformation domain into Voronoi cells whose areas are similar
to neighboring cells. The Delaunay graph, DG(H ∪ Hv), of the Voronoi
diagram is also shown – see the network linking the handles. (Right) The
score, max{δ(hi)/rd(hi)}, of our Virtual Handle Insertion algorithm drops
while inserting virtual handles.

• Non-negativity: φi(t) ≥ 0 so that ∀p ∈ Ω, wi(p) ≥ 0.

Moreover, when ri ≥ rd(hi) is ensured for all handles,

every point in Ω should be covered by at least one

handle’s support. In other words,
∑m

j=1 φj(·) 6= 0.

• Partition-of-unity: This has been enforced by the for-

mulation in Eq.(2). That is,

m
∑

i=1

wi(p) =
m
∑

i=1

φi(d(p,hi)/ri)
∑m

j=1 φj(d(p,hj)/rj)
≡ 1.

• Locality/Sparsity: This is preserved by ∀t ≥ 1, φi(t) ≡
0 and the condition given in Eq.(3). The transformation

at a point coincident with a handle is only determined by

the handle itself. ∀i 6= j, φj(hi) ≡ 0.

• Nonlocal maxima/minima2: The global maximum of a

weight wi only occurs at the origin of handle Hi and the

regions solely covered by the support of Hi. The global

minima of a weight wi only occurs in the regions not

covered by the support of Hi. For the intersected regions

of the supports of Hi and other handles, we observe this

phenomenon in all our experiments.

In short, our method preserves all the merits of prior methods

for linear blending based warping (e.g., [1], [2], [9]) while

introducing new benefits of flexibility and efficiency.

The current weighting formulation has a major defect. The

interpolation property cannot be preserved when the distance

between two handles are too close while the regions to be cov-

ered by either handle are large. Specifically, the interpolation

of handles becomes an approximation when rd(hi) ≤ rh(hi)
in Eq.(3) can not be satisfied, which is not expected. To tackle

this problem, we propose a virtual handle insertion algorithm

in the following section.

IV. VIRTUAL HANDLE INSERTION

A virtual handle insertion algorithm is developed to allow

users freely set handles within the domain of an image, with

the help of which the interpolation property is always guaran-

teed and the shape-awareness of deformation is improved.

2This property is proved experimentally in all our tests. More results of
weight distribution with isocurves are shown in the supplementary material.



IEEE COMPUTER GRAPHICS AND APPLICATIONS 5

Fig. 4. The distribution of virtual handles (in blue) with two point handles (in
yellow): (a) for an extremely coarse mesh, all points are selected as handles
(real and virtual) and Voronoi diagram based on handles cannot be built; (b, c)
for dense meshes, the virtual handles are located on the meshes by satisfying
the prescribed conditions.

A. Insertion algorithm

When rd(hi) > rh(hi), there are points in the Voronoi

cell V(hi) whose distances to hi are larger than the minimal

distance from hi to other handles. It is easy to observe that

inserting new sites at the points hd ∈ V(hi) with d(hd,hi) =
rd(hi) can reduce rd(hi) while keeping rh(hi) unchanged.

Based on this observation, we develop a greedy algorithm for

virtual handle insertion. Define H as the set of handles and

δ(·) = rd(·)−rh(·). When there exists hi ∈ H with δ(hi) > 0,

new virtual handles are inserted to resolve this problem by

reducing maxhi∈H{δ(hi)/rd(hi)}. The pseudo-code for the

algorithm Virtual Handle Insertion is described as follows:

Algorithm 1 Virtual Handle Insertion

1: Input: the set H of real handles

2: Output: the expanded set H with virtual handles

3: while ∃hi ∈ H, δ(hi) > 0 do

4: Find the handle hm = argmaxhi∈H δ(hi)/rd(hi);
5: Find a point p ∈ V(hm) with d(p,hm) = rd(hm);
6: Insert a new virtual handle located at p into H;

7: Update the values of rd(·) and rh(·) on all handles;

8: end while

9: return H;

We know that inserting new handles in a Voronoi cell V(hi)
with δ(hi) > 0 can reduce the value of δ(hi). However,

inserting a new site hd ∈ V(hi) can also affect other handles

(i.e., Hj with j 6= i). In an extreme case, the original

δ(hj) ≤ 0 could be turned into δ(hj) > 0. Then, more virtual

handles need to be added into V(hj).

Our virtual handle insertion algorithm can be considered

as a variant of the farthest point sampling algorithm [17],

which tends to tessellate a domain into a Voronoi diagram with

neighboring Voronoi cells having similar sizes. The condition

of rd(·) ≤ rh(·) is satisfied on all handles when this is the

case. Our experimental tests also verify this observation (see

Fig.3 for an example).

Remarks. 1. We observe the convergence of virtual handle

insertion in all our experiments, and many results provided in

Fig. 5. A handle covering a large region can affect the interpolation on its
nearby handles. (a) For the handle at the right, its Voronoi cell covers all
the right part of the alligator – this leads to a value of rd(·) that is much
larger than rh(·). In this case, transformations at the left two handles cannot
be interpolated. (b) Virtual handles (in blue color) are added to resolve the
problem by the insertion algorithm. As a result, the domain to be deformed
has been decomposed into smaller Voronoi cells with handles (real and virtual)
as sites. (c) The deformation result is driven by both the real and the virtual
handles, where the transformations at real handles are interpolated.

this paper and the supplementary material show the final dis-

tribution of handles (user-input and virtual ones). The insertion

process may fail if the mesh density is not enough compared

with the closeness of user-input handles, especially when there

is no point between two handles on the mesh, which indicates

the current sampling rate gives a very poor approximation of

the domain to be warped and an up-sampling step is required

to refine this approximation (see an illustration in Fig.4).

We can easily detect such case and conduct a dynamic up-

sampling step in our implementation. Interestingly, it is worth

pointing out that the “failure” of the insertion process here

means all points in the domain will be selected as virtual

handles, rather than a dead loop leading to no response in

our implementation, which indicates a termination guarantee

of the insertion process in a discrete sense. Meanwhile, the

determination of weights on virtual handles degenerates to

solve a harmonic problem over the whole underlying mesh,

which will be detailed in Section IV-B. 2. Noted that it lacks a

complete proof on the convergence of virtual handle insertion

here to provide a theoretical foundation for this algorithm.

More interestingly, we find this can be generalized to a

spatial partition problem in n dimensional space. Therefore,

we propose a conjecture to be proved in the Appendix and

would like to invite future efforts on it.

B. Transformation on Virtual Handles

The left problem is how to determine the transformations on

virtual handles according to the user-specified transformations
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on real handles. We denote the set of real handles as H and the

set of virtual handles as Hv. As aforementioned, the handles

of H ∪ Hv can partition the given domain Ω into a Voronoi

diagram Vor(H ∪ Hv). A dual graph of Vor(H ∪ Hv) can

be constructed by 1) using the sites of every Voronoi cell

as nodes and 2) linking the sites of every two neighboring

Voronoi cells by lines as edges, which is a Delaunay graph. We

denote the Delaunay graph as DG(H∪Hv) and use the symbol

H to represent nodes (real or virtual handles) in DG. The

transformations of handles in Hv are determined as follows:

• For each real handle Hi in H, a harmonic field ̟i(·) is

computed on DG to assign a field value ̟i(Hg) to each

of the other handles. Boundary conditions, ̟i(Hi) = 1
and ̟i(Hj 6=i) = 0, are given to compute the harmonic

field ̟i(·). If there are m handles in H, m harmonic

fields are determined on DG.

• After converting the transformation Ti of each real

handle into a rotation quaternion qi and a translation

vector ti, the rotation and the translation on a virtual

handle Hv ∈ Hv can be determined by

(

qv

tv

)

=
1

̟sum(Hv)

∑

Hi∈H

̟i(Hv)

(

qi

ti

)

(4)

with ̟sum(·) =
∑

Hj∈H ̟j(·).
• Finally, the quaternion and the translation determined on

each virtual handle are converted back into a transforma-

tion matrix to be used in linear blending.

The transformations of virtual handles determined in this

way improve the quality of warping. As illustrated in Figs.5

and 6, deformation of the whole image driven by the transfor-

mations on both real and virtual handles is very natural. The

influence of a real handle decays when the intrinsic-distance

to it increases.

V. IMPLEMENTATION DETAILS

A. Basis Function

In Section III-B, we have listed the required properties

for basis functions to achieve the C2-continuity of weights.

In our implementation, Bézier polynomial is employed for

the function φi(t) so that the constraints for C1- and C2-

continuity at the boundary of the supporting regions can be

satisfied. To ease the evaluation and analysis, each φi(t) is

represented as the y-component (i.e., φi(t) = by(t), t ∈ [0, 1])
of a 2D Bézier curve with degree-n (n ≥ 5)

b(t) =

n
∑

i=0

biBi,n(t), (5)

where Bi,n(t) are the Bernstein polynomials. From the prop-

erty of Bézier curves, we have

b′(0) = n(b1 − b0), b′(1) = n(bn − bn−1)

b′′(0) = n(n− 1)(b2 − 2b1 + b0)

b′′(1) = n(n− 1)(bn − 2bn−1 + bn−2)

Fig. 6. The deformation of a rabbit is driven by four real handles (see the
yellow dots and the frames shown in the top row). The result of deformation
is determined with the help of virtual handles (shown in blue dots). The
transformations at handles (both real and virtual ones) are illustrated by
frames.

for a Bézier curve in n-th order. Incorporating the constraints

in Section III-B, we have

b1 = b0,bn = bn−1,b1 =
b0 + b2

2
,bn−1 =

bn + bn−2

2
.

As we already set bx
i = i/n to let x = t, it is not difficult to

find that b
y
0 = b

y
1 = b

y
2 = 1 and by

n = b
y
n−1 = b

y
n−2 = 0

satisfy all these constraints. For the rest control points, we

can simply assign them as 0.5 or align them along the line

b2bn−2 uniformly.

B. Intrinsic Distance Approximation

Generally, we sample the input domain Ω (the input image)

to be deformed into a dense set of points P . By searching

for k-nearest-neighbors of each point, a graph G(P) spanning

Ω (in discrete form) can be established by using points in

P as nodes and adding links between neighboring points as

edges. Note that user-specified handles should also be added

into P to construct the graph (i.e., H ⊂ P). The intrinsic-

distance from any point q ∈ P to a handle is approximated

by the distance between q and the handle on the graph, which

can be computed efficiently with Dijkstra’s algorithm. Also,

the Voronoi diagram Vor(H) can be obtained by Dijkstra’s

algorithm with multiple sources on G(P), where each sample

is assigned to a Voronoi cell. To determine the weights on a

general point p ∈ Ω that is not a sample in P , a linear blending

based on reciprocal distance weights [18] is employed to

obtain the weight on p from its k-nearest-neighbors in P .

There are more sophisticated parameterization strategies in

[18], which can also be applied here. With the help of this

meshless parameterization, we can easily take an up-sampling
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Fig. 7. An example of warping an image with point and bar handles. As
shown in the Voronoi diagram based on the distribution of virtual handles
and the tessellation of bars, the bar handles dominate the regions around it,
leading to perfect interpolation about the movement of handles.

step in the domain Ω when the point set P becomes sparse

when applying a drastic deformation.

As a special case, intrinsic-distance evaluation for pixelized

images or convex domain is simplified into the computation of

Euclidean distance between two points as the whole domain

is convex, which can be achieved very fast. This also ensures

the computational efficiency of our algorithm.

C. Harmonic Field

After using the virtual handle insertion algorithm to generate

a set of new handles, harmonic fields are computed on a

dual graph of Vor(H) to determine the transformations on

virtual handles. By our boundary condition, all field values

are non-negative when uniform Laplacian is employed. In

other words, the coefficients used in Eq.(4) are non-negative.

Instead of solving a linear system to compute the harmonic

field, we initially assign the field values on all real handles

as one and the weights on all virtual handles are set as zero.

Then we apply Laplacian operators to update their field values

iteratively. The field values on virtual handles can be efficiently

obtained after tens of iterations.

D. Interactive Handles

The point handles can be generalized to different types

of bar handles (e.g. line segments and polygons). Unluckily,

such extension is not straightforward as: 1) the full boundary

of an image to be warped is often expected to be strictly

TABLE I
EXAMPLE STATISTICS

|Hb| |Hp| |V| |S| trd (sec.) tw (sec.)

Tower 12 0 113 7,834 3.75 0.013
Wolf 4 2 1 6,694 0.020 0.001
Portrait 7 0 36 9,438 0.380 0.006
Alligator 0 3 3 9,456 0.409 0.002
Rabbit 0 4 16 22,972 1.700 0.434
Road 3 3 124 13,212 3.18 0.002

fixed when applying a deformation inside the domain; 2)

the transformations of points on any handles should respect

the interpolation property introduced in Section III-C. It also

needs to be processed carefully when a handle is very close to

another. In our implementantion, the generalization of handles

is realized by taking advantage of the properties of Voronoi

diagram (see Fig.7). The bar handles are discretized into a

dense set of bar samples to ensure that all points around the

bar handles should belong to the Voronoi sites centered at

those discrete bar samples, which leads to perfect interpolation

on the bar handles. In practice, we detemine the set of

bar samples for a bar handle by uniformly dividing it into

⌈Lbar/d⌉ segments, where Lbar is its length and d refers to the

minimum Euclidean distance between any handles (point and

bar handles) over the whole domain of computation (refer to

the first figure in Fig.8 (a)). The transformations of bar samples

are calculated as linear combinations of the transformations at

bar handles’ end points.

VI. RESULTS

Our weighting method provides a compact tool to assign

continuous weights for all points in the domain to be warped.

With the help of sophisticated techniques for assigning trans-

formations on the handles (e.g. the pseudo-edge method

in [1]), a natural user interface for image warping can be

achieved.

We have tested this approach in a variety of examples

by using both the point and bar handles. Figures 5 and 6

have already demonstrated the functionality of point handles.

Especially in Fig.5, the scheme of virtual handles insertion

guarantees the interpolation at real handles. Figure 6 illustrates

the effectiveness of our method in determining transformations

on virtual handles. The example of using bar handles to warp

the shape of a Tower has been shown in Fig.8 (a). Another

example is given in Fig.8 (b) to deform a portrait. Figure.8 (c)

shows a comparison of image manipulation with and without

fixing boundary. To obtain natural bending results, we can add

rotations on handles by heuristics (e.g., the pseudo-edge [1]).

The example in Fig.8 (d) demonstrates the performance of our

approach with a symmetric deformation. When deforming a

symmetric domain by adding symmetric transformations on

the symmetric handles, it is expected to get a symmetric

warped result. This property is strictly preserved by our

formulation.

In prior mesh-based approaches, the numerical system must

be solved once more when new handles are inserted. By

using our weighting formulation, the time cost of adding new

handles is very trivial as the weights are determined in a
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Fig. 8. Experimental Results: (a) an example of manipulating the tower while fixing the image boundary; (b) a portrait edited by bar handles with salient
feature inside the closed loop of bar handles at the left eye preserved; (c) a comparison of image editing with and without fixing its boundary; (d) an example
with symmetric transformations on two symmetric handles to deform a symmetric domain.

TABLE II
COMPARISON WITH DIFFERENT RESOLUTIONS

Number of Time of Computation (sec.)
Vertices Biharmonic Our method

627 0.818 0.024
31, 325 8.691 0.110

619, 649 N/A 20.796

closed-form. Table I lists the statistics of our approach on

different examples, where |Hb| and |Hp| denote the number

of bar and point handles, |V| stands for the number of virtual

handles added in the domain and |S| represents the number

of points used in the computation. The columns under trd
and tw state the time used in the computation of region

decomposition ( including both Voronoi diagram computation

and intrinsic distance evaluation) and weights respectively.

All the tests are conducted on a laptop with Intel Core i7-

3740QM CPU at 2.70GHz and 8GB memory. Our current

version of implementation only uses a single core. As shown

in the table, the computational bottleneck is the computation of

region decomposition that is closely related with the number

of points used in the domain and the type and placement of

handles. But compared with prior approaches, our method has

achieved significant improvement in computational efficiency.

Table II shows an comparison with [1] using the same setup

for the Gingerman model in Fig.1. We fail to test [1] on a

mesh having 617k vertices with the public program provided

by the authors as there are too many vertices. To compare

our technique with another approach [15], both approaches

require reinitialization when inserting a new handle in the

computational domain. As mentioned in [15], it roughly takes

seconds (using Euclidean distance) to minutes (using geodesic

distance) to compute interior distances. In our experiments

with a 3D bar and armadillo model shown in the accom-

pany video, the time costs for precomputation are about 0.1

second (using Euclidean distance) and 1.5 minutes (using

geodesic distance) respectively.

Limitations & Discussion. When using the weighting formu-

lation presented in the paper to deform images, sample points

are adopted as the medium for realizing the computation.

The error-bound of computation on this discrete representation

is controlled by the density of samples. However, during

the process of a sequence of deformations, the density of

points could be changed dramatically. In this sense, a dynamic

up-sampling step should be integrated in the framework to

preserve the error-bound of intrinsic-distance computation.

Super-sampling techniques or texture mapping on a mesh can

be exploited in image editing applications. In our framework,

the time cost of weight evaluation is trivial after resampling.

The bottleneck is the computation of intrinsic-distances on

the sample points. Our current implementation is based on

the Dijkstra’s algorithm. This shortest path problem with

multiple sources can be computed in parallel by using graphics

accelerated hardware, which can result in a significant speed-

up.

Our formulation gives global maxima at the positions of

handles according to the interpolation property. For a shape-

aware deformation, it is also demanded having nonlocal max-
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ima/minima anywhere else in the domain. This has been

verified in our experimental tests. We check the topology of

isocurves on the fields of weights (see Fig.9 for an example).

If there is a closed loop formed by isocurves of wi(·) at

one place except the center of the handle hi(·), a local

maximum/minimum is generated there. No such case is found

in all our examples. More examples for verification can be

found in the supplementary material. It should be admitted

that a theoretical proof for nonlocal maxima/minima property

is lacking here as a technical guarantee.

The deformations driven by linear blending are not always

injective and therefore can generate the results with foldovers

and self-intersections. Recently, some researches have been

conducted in this thread to produce injective mappings (e.g.,

[19]), which are mainly mesh-based. In a function based

formulation, the injectivity of a mapping can be checked by

the positiveness of Jacobian. But the interpolation property

is not preserved any more in those methods trying to hold

the injectivity of mappings. We argue that a simultaneous

satisfaction of both the interpolation and injectivity property

is paradoxical. Other method preserving the interpolation

property also violate the injectivity as our approach (see an

comparison in [20]). We will unavoidably see foldovers in

some warped results if the handles are dragged too much (see

Fig.10 for an example).

As analyzed in Section III-B, when inserting a new handle,

the distribution of virtual handles needs to be recomputed

to ensure no violation of condition 3 happens in the whole

domain, which is the current computational bottleneck of this

proposed method. A dynamic mechanism can be realized in

practice to perform a resampling of virtual handles only if

unsatisfaction of condition 3 is detected as a trick to reduce

computational overhead. As indicated in the Table I and II,

the time cost for determination of virtual handles and region

decomposition is negligible for small-scale meshes and trivial

for large-scale ones.

VII. CONCLUSION & FUTURE WORK

In this work, we present a method to efficiently determine

weights of linear blending for image warping. Our formulation

is in a closed-form and can be easily used in a variety

of applications. Equipped with the virtual handle insertion

algorithm, good properties of weights generated by prior mesh-

based methods can all be preserved in this approach. A variety

of examples have been shown to demonstrate the effectiveness

of our approach.

There are some potential improvements for our technique.

First, the tessellation of bar handles is simple and naı̈ve in

the current version. As it will affect the result of warping, we

are curious about finding a locally adaptive and non-uniform

strategy to further strengthen our result. A similar scenario is

about the density of underlying mesh. Although the validity

of our method about mesh density applies to infinity, the

distribution of real and virtual handles will converge when

the mesh is fine enough, indicating the possible existence of a

density threshold which can help reduce the computational

overhead of this approach (see Fig.4(b)(c)). Second, it is

Fig. 9. The verification of nonlocal maxima/minima is taken by analyzing
the topology of isocurves on the scalar fields of weights. The handles (real
and virtual) in this example are the ones shown in Fig.5.

Fig. 10. Self-intersection can be found for the methods respecting handle
interpolation.

interesting to investigate how to resolve the problem when

self-intersection is detected, which will be one of our future

work. We may restrict the movement of handles to avoid the

occurrence of foldovers. Besides, only linear blending scheme

in 2D is tested in the paper. Actually our method can be

extended directly to 3D models for shape deformation without

any modifications (see two examples in the accompany video).

Lastly, we plan to further apply the weights generated in

this approach to more advanced skinning applications, such

as the blending of two rigid motions will result in a rigid

motion, which is a very important property when deformation

of articulated characters is computed by the skinning methods.
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biharmonic weights for real-time deformation,” ACM Trans. Graph.,
vol. 30, no. 4, pp. 78:1–78:8, Jul. 2011. [Online]. Available:
http://doi.acm.org/10.1145/2010324.1964973

[2] A. Jacobson, T. Weinkauf, and O. Sorkine, “Smooth shape-aware
functions with controlled extrema,” Comp. Graph. Forum, vol. 31, no. 5,
pp. 1577–1586, Aug. 2012.

[3] K. Singh and E. Fiume, “Wires: A geometric deformation technique,” in
Proceedings of the 25th Annual Conference on Computer Graphics and
Interactive Techniques, ser. SIGGRAPH ’98. ACM, 1998, pp. 405–414.

[4] W. von Funck, H. Theisel, and H.-P. Seidel, “Vector field based shape
deformations,” ACM Trans. Graph., vol. 25, no. 3, pp. 1118–1125, Jul.
2006.

[5] R. W. Sumner, J. Schmid, and M. Pauly, “Embedded deformation for
shape manipulation,” ACM Trans. Graph., vol. 26, no. 3, Jul. 2007.

[6] M. Botsch and O. Sorkine, “On linear variational surface deformation
methods,” IEEE Transactions on Visualization and Computer Graphics,
vol. 14, no. 1, pp. 213–230, Jan. 2008.

[7] M. Botsch, M. Pauly, M. Wicke, and M. H. Gross, “Adaptive space
deformations based on rigid cells,” Comput. Graph. Forum, vol. 26,
no. 3, pp. 339–347, 2007.

[8] O. Sorkine and M. Alexa, “As-rigid-as-possible surface modeling,”
in Proceedings of the Fifth Eurographics Symposium on Geometry
Processing, ser. SGP ’07. Eurographics Association, 2007, pp. 109–
116.

[9] A. Jacobson and O. Sorkine, “Stretchable and twistable bones for
skeletal shape deformation,” ACM Trans. Graph., vol. 30, no. 6, pp.
165:1–165:8, Dec. 2011.

[10] S. Schaefer, T. McPhail, and J. Warren, “Image deformation using
moving least squares,” ACM Trans. Graph., vol. 25, no. 3, pp. 533–
540, Jul. 2006.

[11] P. Joshi, M. Meyer, T. DeRose, B. Green, and T. Sanocki, “Harmonic
coordinates for character articulation,” ACM Trans. Graph., vol. 26,
no. 3, Jul. 2007.

[12] M. Ben-Chen, O. Weber, and C. Gotsman, “Variational harmonic maps
for space deformation,” ACM Trans. Graph., vol. 28, no. 3, pp. 34:1–
34:11, Jul. 2009.

[13] S.-M. Hu, H. Zhang, C.-L. Tai, and J.-G. Sun, “Direct manipulation
of ffd: efficient explicit solutions and decomposible multiple point
constraints,” The Visual Computer, vol. 17, no. 6, pp. 370–379, 2001.

[14] M. Botsch and L. Kobbelt, “Real-time shape editing using radial basis
functions,” Comput. Graph. Forum, vol. 24, no. 3, pp. 611–621, 2005.

[15] Z. Levi and D. Levin, “Shape deformation via interior rbf,” IEEE

Transactions on Visualization and Computer Graphics, vol. 20, no. 7,
pp. 1062–1075, 2014.

[16] Y. Wang, A. Jacobson, J. Barbič, and L. Kavan, “Linear subspace
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APPENDIX - CONJECTURE

Following the definition of intrinsic distance d(·, ·) in Sec-

tion III-A, we consider the partition of a connected closed

domain D ⊂ Rn into cells. We first give some fundamental

definitions:

• Anchor points A = {h | h ∈ D} are a set of points that

are predefined in the domain D.

• Size of a cell V centerd at hi is defined as rd(hi) =
supp∈V(hi) d(p,hi);

• Separation of hi to other cells is defined as rh(hi) =
infhj (j 6=i)

d(hi,hj).

The domain D is partitioned with regard to a set of anchor

points in a Voronoi-diagram-like manner. Specificly, a point p

belongs to a cell centered at hi if d(p, hi) ≤ d(p, hj), j 6= i.
Conjecture: For any given set of anchor points A, there exists

at least an expanded set H based on A (i.e. A ⊆ H), with

regard to which the partition of D into cells satisfies the

following non-intrusive condition

rd(hi) ≤ rh(hi), hi ∈ H.


