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Abstract

More than a decade ago, Chris Johnson proposed the “Theory of Visualization” as one of the top 

research problems in visualization.1 Since then, there have been several theory-focused events, 

including three workshops and three panels at IEEE Visualization (VIS) Conferences. Together, 

these events have produced a set of convincing arguments:

• As in all scientific and scholarly subjects, theoretical development in visualization is a 

necessary and integral part of the progression of the subject itself.

• Theoretical developments in visualization can draw on theoretical advances in many 

disciplines, including, for example, mathematics, computer science, engineering 

science, psychology, neuroscience, and the social sciences.

• Visualization holds a distinctive position, connecting human-centric processes (such as 

human perception, cognition, interaction, and communication) with machine-centric 

processes (such as statistics, algorithms, and machine learning). It therefore provides a 

unique platform to conduct theoretical studies that may impact on other disciplines.

• Compared with many mature disciplines (such as mathematics, physics, biology, 

psychology, and philosophy), theoretical research activities in visualization are sparse. 

The subject can therefore benefit from a significantly increased effort to make new 

theoretical advances.

Min Chen is a professor at the University of Oxford. Contact him at min.chen@oerc.ox.ac.uk.
Georges Grinstein is a research professor at University of Massachusetts. Contact him at ggrinstein@cs.umass.edu.
Chris R. Johnson is a distinguished professor of computer science and directs the Scientific Computing and Imaging (SCI) Institute 
at the University of Utah. Contact him at crj@sci.utah.edu.
Jessie Kennedy is a professor at Edinburgh Napier University. Contact her at j.kennedy@napier.ac.uk.
Melanie Tory is a senior research scientist at Tableau Software. Contact her at mtory@tableau.com.

HHS Public Access
Author manuscript
IEEE Comput Graph Appl. Author manuscript; available in PMC 2018 February 20.

Published in final edited form as:
IEEE Comput Graph Appl. 2017 ; 37(4): 103–112. doi:10.1109/MCG.2017.3271463.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Visualization theory is commonly viewed as a research focus for only a few individual 

researchers. Its outcomes, perhaps in the form of theorems or laws, are perceived as too 

distant from practice to be useful. Perhaps inspired by well-known theoretical breakthroughs 

in the history of science, visualization researchers may unconsciously have high 

expectations for the originality, rigor, and significance of the theoretical advancements to be 

made in a research project or presented in a research paper.

On the contrary, although textbooks tend to attribute major breakthroughs to single pioneers 

at specific times and places, in most cases, such breakthroughs generally take years or even 

decades and are usually the product of numerous incremental developments, including a 

substantial number of erroneous solutions suggested by the pioneers themselves as well as 

many lesser-known individuals. Many complex discoveries did not initially appear to have 

elegant proofs, and it has taken some challenging and often questionable steps to obtain the 

well-formulated solutions we find in modern textbooks. For example, most readers associate 

the theory of general relativity with Albert Einstein’s November 1915 discovery in Berlin. 

According to Petro Ferreira,2 Einstein first speculated about the generalization in 1907. He 

then published two papers with Marcel Grossmann (Zurich) in 1913 that sketched out the 

theory and worked with David Hilbert (Göttingen) on the problem in June 1915. Some of the 

most important discoveries related to the theory of general relativity are Mercury’s 

perihelion shift (Le Verrier, 1859), the 1919 eclipse expedition (Edington, Cottingham, 

Crommelin, and Davidson), the evolving universe (Fredmann, 1922; Lemaître, 1927), the 

expanding universe (Slipper, 1915; Lundmark, 1924; Hubble and Humason, 1929), the big 

bang (Lemaître, 1931), and the black hole (Schwarzschild 1916, Chandrasekhar, 1935; 

Landau, 1938; Oppenheimer and his students, 1939). Some ill-fated solutions also followed 

Einstein’s 1915 discovery, the most notable of which were perhaps the static universe 

(Einstein and de Sitter) and the suspended universe (Eddington).

During an Alan Turing Institute event in London in April 2016 on the theoretical foundation 

of visual analytics, discussions on the need to build such a theoretical foundation varied 

greatly, with opinions ranging from “Visualization should not be physics-envy” to “It is 

irresponsible for academics not to try.” After two days of presentations, discussions, and 

debates, the attendees gradually converged on a common understanding that a theoretical 

foundation consists of several aspects (see the “Major Aspects of a Theoretical Foundation” 

sidebar for more details) and that every visualization researcher should be able to make 

direct contributions to some aspect of the theoretical foundation of visualization.

During the IEEE VIS Conference in Baltimore, Maryland, in October 2016, a discussion 

panel took this viewpoint further by outlining avenues for pursuing theoretical research in 

each aspect. This article is a structured reflection by the panelists about the discussions 

during that IEEE VIS 2016 panel. In this article, we first review four major aspects of a 

theoretical foundation and then discuss the interactions and transformations between them. 

Figure 1 provides an overview of the discourse in this article.
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Taxonomies and Ontologies

For millennia, humans have been classifying things in the world around them by describing 

and naming concepts to facilitate communication (see the “History of Taxonomy and 

Ontology” sidebar). The most significant and enduring effort is the classification of life on 

Earth, which commenced in Aristotle’s time, became mainstream through the work of 

Linnaeus, and continues to this day with new species being identified and alternative 

classifications of existing species being proposed.3 Alternative classifications (taxonomies) 

arise over time as a result of differing opinions about the importance of differentiating 

characteristics used in creating the concepts (taxa). These differing opinions are usually the 

result of new information becoming available, often through technological advances, which 

can result in the same organism being classified according to different taxonomic opinions 

and subsequently having several alternative names, which may in turn lead to 

miscommunication. Newer classifications are usually improvements on previous ones, but 

sometimes the existence of alternative classifications reflects a disagreement as to how to 

interpret the data on which the classification is based.

Ontologies are representations of different relationships among various concepts. Naturally, 

they are built on the taxonomic classification of the concepts of both entities and 

relationships. Taxonomies and ontologies are means of conceptualizing, understanding, 

organizing, and reasoning about these entities and relationships. They are central to 

communicating about the world around us. They play an increasing role in understanding in 

the visualization field, allowing us to organize and formalize our knowledge.

A brief review of the literature over the past three decades reveals at least 70 publications 

containing some form of visualization taxonomy.3 Three questions are relevant when 

considering visualization taxonomies: What is being classified (domain)? Why is the 

taxonomy being developed (purpose)? How is the taxonomy constructed (process)? 

Taxonomies have been proposed to classify many aspects of visualization, including 

systems, tools, techniques, interaction approaches, data types, user tasks, visual encodings, 

input methods, and evaluation strategies. These aspects can be classified according to 

different criteria. For example, visualization techniques can be classified by the analytical 

tasks they support, the visual encoding or algorithm used, the data type, or the domain in 

which they are employed.

The visualization community has found taxonomies useful in their research. Taxonomies 

offer a shared vocabulary with which we can communicate effectively and reduce 

misunderstanding.4 They orientate us among the vast number of techniques and tools that 

have already been developed, often across disparate domains. Taxonomies are therefore 

frequently adopted in literature surveys to categorize existing work. Furthermore, using 

taxonomies as design spaces can reveal novel research opportunities, for example, by 

conducting gap analysis.

In comparison, the term “ontology” appears much less frequently in the visualization 

literature. This is partly because some studies on ontological relationships are presented as 

qualitative models. Because ontologies are typically described in ontology languages, such 
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as OWL (Web Ontology Language) and RDF (Resource Description Framework), they can 

be used by algorithms in visualization systems. For example, ontologies can be used to 

generate annotations and filter or highlight visual objects automatically in visualization, to 

enable the automated creation of visualization, and to integrate keyword search and visual 

exploration in a user interface.5

Major Aspects of a Theoretical Foundation

Attendees at an Alan Turing Institute event in London in April 2016 on the theoretical 

foundation of visual analytics reached a consensus that a theoretical foundation consists 

of the following aspects.

Taxonomies and Ontologies

In scientific and scholarly disciplines, a collection of concepts are commonly organized 

into a taxonomy or ontology. In the former, concepts are known as taxa and are typically 

arranged hierarchically using a tree structure. In the latter, concepts, often in conjunction 

with their instances, attributes, and other entities, are organized into a schematic network, 

where edges represent various relations and rules.

Principles and Guidelines

A principle is a law or rule that must be followed and is usually expressed in a qualitative 

description. A guideline describes a process or a set of actions that may lead to a desired 

outcome or, alternatively, actions to be avoided to prevent an undesired outcome. The 

former usually implies a confidence in the high degree of generality and certainty of the 

causality concerned, whereas the latter suggests that a causal relation may be subject to 

specific conditions.

Conceptual Models and Theoretic Frameworks

The terms models and frameworks have broad interpretations. Here we consider that a 

conceptual model is an abstract representation of a real-world phenomenon, process, or 

system, featuring different functional components and their interactions. A theoretic 
framework provides a collection of measurements and basic operators and functions for 

working with these measurements. The former provides a tentative description of 

complex causal relations in the real world, and the latter provides a basis for evaluating 

different models quantitatively.

Quantitative Laws and Theoretic Systems

A quantitative law describes a causal relation of concepts using a set of measurements 

and a computable function confirmed under a theoretic framework. Under a theoretic 
framework, a conceptual model can be transformed into a theoretic system through 

axioms (postulated quantitative principles) and theorems (confirmed quantitative laws). 

Unconfirmed guidelines are thus conjectures, and contradictory guidelines are paradoxes.

For designers, taxonomies and ontologies play a role in systemizing the design process and 

can be employed at multiple stages, such as domain characterization and abstraction, 

selection of appropriate visual encodings and interaction techniques, and formulation of data 
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and information flows. In addition, taxonomies and ontologies provide the basis for studying 

causal relationships, thereby facilitating the development of guidelines and qualitative 

models.

Building taxonomies and ontologies is an investigative science because they often feature 

partial and evolving hypotheses. A number of considerations therefore arise during the 

process, including determining the subpopulation to study; identifying the characteristics 

used to define a class, a relation, or the level of specificity; comparing the importance of 

different characteristics; differentiating among various terms used for specifying 

characteristics; selecting the effective visualization techniques for visualizing large 

taxonomies and ontologies; automatically generating a taxonomy or ontology from text 

analysis of visualization literature; and automatically evolving a taxonomy or ontology using 

machine learning.

History of Taxonomy and Ontology

The term taxonomy comes from the Greek word taxis (meaning “order” or 

“arrangement”) and the suffix -nomos (meaning “law” or “science”).1 Plato was among 

the first to formulate methods for grouping objects based on their similar properties. 

Aristotle wrote Categories, which provides an in-depth study of classes and objects.

Naming and classifying plants and animals dates back to the origin of human languages. 

The development of modern botanical and zoological taxonomy is often attributed to Carl 

Linnaeus (1707–1778), a Swedish botanist, who defined many of the rules that 

taxonomists use today. The development of taxonomy in biology facilitated the paradigm 

shift in the 19th century when the theory of evolution was proposed.

The automatic construction of a hierarchical categorization scheme began in the 1960s 

with applications such as decision-tree based classification, computational phylogenetics, 

and topic analysis in text mining.

The term ontology comes from the Greek prefix onto- (meaning “being” or “that which 

is”) and suffix -logia (meaning “logical discourse,” “study,” or “theory”).2

The term ontologia first appeared in the works by German philosophers Jacob Lorhard 

(1606) and Rudolf Göckel (1613). It refers to the philosophical study of the concept of 

“being” and its variants—for example, “becoming,” “existence,” and “reality” as well as 

the categorization of the concept and the relationships between different categories. 

Taxonomy is often viewed as a subset of ontology, which primarily considers the 

grouping relationships. Ontology can be seen as a generalization of taxonomy by 

allowing for different types of relationships among different entities.

An ontology is a form of knowledge representation,3 where entities are defined with 

names, types, properties, and different relationships with other entities. Its applications in 

computer science include artificial intelligence, the Semantic Web, biomedical 

informatics, library science, systems engineering, software engineering, and many more. 

The methodology has also been used in visualization.4

References
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Taxonomies and ontologies are fundamental tools that help with understanding, 

communication, and development in the visualization field. Still, a number of challenges and 

open questions remain: Can we define a methodology for creating, comparing, and 

integrating taxonomies and ontologies? At what levels and granularity should taxonomies or 

ontologies be specified? How do we select one or more taxonomies (or ontologies) for our 

work? The visualization field continues to change, so taxonomies and ontologies must 

evolve as well. We must continue to improve their construction and use.

Principles and Guidelines

A guideline embodies a wisdom advising a sound practice. This may be a course of action to 

take or to avoid in achieving a goal. Guidelines are commonly outlined based on 

accumulated experience and knowledge about some causal relations in a process. It takes 

courage and conviction to propose a new guideline. And it takes a lot more courage and fair-

mindedness to accept critiques about the proposed guideline and then retract or refine it.

Some guidelines stand the test of time and become principles. Many others are effective in 

only specific circumstances. Because of the qualitative nature of framing guidelines and the 

typically self-directed mechanism for creating and evolving guidelines, now and then some 

may be defined without rigorous care, generalized beyond their intended application, 

become out of date, or conflict with other guidelines. Many documents about guidelines 

often contain a disclaimer: “By definition, following a guideline is never mandatory. 

Guidelines are not binding and are not enforced.”6

In many disciplines, such as biology and medicine, guidelines have played an indispensable 

role and are rigorously evaluated, critiqued, and maintained. In other disciplines, such as 

physics, chemistry, and engineering, old wisdoms have gradually been transformed into 

quantitative laws and quantitative process management. In the visualization field, guidelines 

have no doubt played a positive role in designing and developing visualization systems as 

well as in education. (See the “Examples of Visualization Guidelines” side-bar for more 

details.) For example, Miriah Meyer and her colleagues considered guidelines to be an 

integral part of an agile process for developing visual designs and visualization systems, 

helping designers make choices.7 Torre Zuk and his colleagues argued that guidelines can be 

used as heuristics for evaluating visual designs and visualization systems.8

These recommendations inevitably place a huge burden on the correctness and effectiveness 

of guidelines. If visualization guidelines are going to play a pivotal role, as these researchers 

suggested,7,8 we will need to take several steps:
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• develop mechanisms for curating, evaluating, critiquing, and refining guidelines 

in an open and transparent manner;

• establish a culture of open, democratic, evidence-based discourse on the 

guidelines and enable broader participation in the discourse beyond the current 

scale of a few papers and blogs; and

• inspire researchers to study guidelines, including their evolution and applicability 

in different conditions using scientific methods, and when appropriate 

opportunities arise, transform guidelines into quantitative laws and process 

management.

Social scientists have established research methods for collecting and analyzing qualitative 

data in order to infer concrete theoretical insights, which include taxonomies, ontologies, 

guidelines, and conceptual models. One such method is grounded theory.9 It involves 

observing practical phenomena in the wild (to ground the theory in real-world data), 

identifying categories of the instances (events, processes, occurrences, participants, and so 

on), making links between categories, and establishing relationships between them. The 

method utilizes descriptive labeling (referred to as coding) to conceptualize discrete 

instances of phenomena systematically. It advocates continuous comparative analysis and 

negative case analysis to ensure the coding is comprehensive, meticulous, and up to date. It 

encourages researchers to interact with data by asking questions, broadening the sampling 

space by exploring related phenomena, and writing memos.

By enabling categorization and relationship discovery, the grounded theory method can 

facilitate the development of visualization taxonomies and ontologies by supporting the 

analysis of causal relationships. By pursuing both positive and negative case studies and 

undertaking continuous comparative analysis, we facilitate the evaluation, critique, revision, 

and improvement of guidelines. By enabling the curation of a relatively complete and 

coherent set of causal relationships functioning in a system, we help establish a conceptual 

model.

Examples of Visualization Guidelines

In the visualization field, various books, research papers, and online media recommend 

several hundred different guidelines. Here we offer just a subset of examples:

• Maximize the data-ink ratio: E.R. Tufte, The Visual Display of Quantitative 
Information, Graphics Press, 1983, p. 93.

• Overview first, zoom and filter, then details on demand: B. Shneiderman, 

“The Eyes Have It: A Task by Data Type Taxonomy for Information 

Visualizations,” Proc. IEEE Symp. Visual Languages, 1996, pp. 336–343.

• Rainbow color map guidelines: B.E. Rogowitz and L.A. Treinish, “Data 

Visualization: The End of the Rainbow,” IEEE Spectrum, vol. 35, no. 12, 

1998, pp. 52–59, and D. Borland and R.M. Taylor II, “Rainbow Color Map 

(Still) Considered Harmful,” IEEE Computer Graphics & Applications, vol. 

27, no. 2, 2007, pp. 14–17.
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• 10 guidelines for data visualization: C. Kelleher and T. Wagener, “Ten 

Guidelines for Effective Data Visualization in Scientific Publications,” 

Environmental Modelling & Software, vol. 26, no. 6, 2011, pp. 822–827.

• 14 guidelines for data visualization: schoolofdata. org/2013/04/26/data-

visualization-guidelines-by-gregor-aisch-international-journalism-festival/.

• Six guidelines for creative visualization: www.tut.com/article/details/12-6-

guidelines-for-creative-visualization/?articleId=12.

Conceptual Models and Theoretic Frameworks

A conceptual model can be a representation of an idea, process, or system. It is typically 

used to describe and explain the causal relationships exhibited in phenomena in a physical, 

biological, economic, social, or any other type of system that may be intuitively observable, 

cannot be experienced directly, or may be totally hypothesized.

The descriptions of many models are accompanied by visual representations that help link 

conceptualization with observation. The physicist Richard Feynman created new visual 

abstractions of the physics and mathematics of quantum electrodynamics so that he could 

more easily reason about the complex mathematics.10 Feynman famously had his van 

painted with his illustration of the interactions of subatomic particles (see Figure 2).

In most disciplines, model development has been a driving force for progression. It fuels and 

guides the advancement of a subject by enabling abstraction, proposition, prediction, and 

validation (using experimentation, mathematics, and computation). Models are central to 

what researchers do, both in their research and when communicating their explanations. The 

development of the standard model in particle physics was a collective effort of scientists 

around the world throughout the second half of the 20th century. In the same way, the 

discovery of the double helix model of DNA was an iterative research endeavor in the early 

1950s. Many intermediate steps, ranging from the partial model alpha helix and the incorrect 

triple helix model by Linus Pauling to x-ray diffraction experiments by Rosalind Franklin 

and others, paved the way for James Watson and Francis Crick to formulate the landmark 

model in biology.

In the visualization field, researchers have proposed more than a dozen conceptual models 

for describing the relationships among data, visualization systems, analytical techniques, 

interaction methods, human perception and cognition, user tasks, and application contexts.3 

The goal of such models is to help us describe, understand, reason about, and predict what 

people can do in a visualization process and environment, which actions might lead to which 

results in given circumstances, and which workflow is more efficient or effective than others.

For example, a personal visualization model for fitness tracker data11 helped explain why 

the on-calendar visualization approach was more effective than a traditional fitness feedback 

tool, and more importantly, it provided a theoretical basis from which general design 

guidelines for behavior feedback tools can be derived. Another example is a human 

cognition model for visualization.12 Based on human ergonomics and cognitive psychology, 
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the model defines human leverage points, where cognitive experiments can be conducted for 

quantitative and qualitative evaluation of visualizations. Similarly, sense-making models 

have played an important role in supporting the design of interactive analysis tools.13

Hence, building correct and effective conceptual models for visualization must be an 

endeavor on the part of the visualization community. Learning from other disciplines, we 

must significantly increase our efforts in experimentation, theorization, and computational 

simulation and validation.

Experimentation and Qualitative Theorization

The visualization literature includes more than 40 empirical studies for studying human 

perception and cognition in visualization as well as more than 40 others for comparing 

different visualization techniques. In addition, through numerous application case studies, 

visualization researchers have had firsthand experience observing a variety of data, 

visualization systems, analytical techniques, interaction methods, human perception and 

cognition, user tasks, and application contexts in the wild.

These empirical studies and application case studies provide opportunities to formulate new 

models, perform continuous comparative analysis, probe negative experience, critique and 

improve existing models, broaden theoretical sampling, and explore model unification and 

theoretical saturation, all of which are advocated by the grounded theory methodology we 

mentioned earlier. Rigorously building and analyzing qualitative models will inevitably 

motivate further theorization through the development of quantitative models.

Quantitative Theorization

In many applications, especially in the physical sciences, models are often formulated using 

a particular mathematical framework. For example, in physics, Newton invented calculus 

(also credited to Leibniz) to underpin classic mechanics. Einstein used Riemannian 

geometry to underpin his general theory of relativity. Today, we commonly see publications 

entitled mathematical framework X for model Y. In some situations, a model Y may itself 

have evolved into an elegant mathematical framework that can be used to underpin other 

models. For example, information theory, which is underpinned by probability theory, has 

become a fundamental framework for telecommunication, data communication, data 

compression, and data encryption.

Several mathematical frameworks have been proposed for underpinning quantitative 

theorization in visualization, including information theory14 and algebra.15 Naturally, we 

hope that some qualitative models in the visualization literature can be described using such 

a framework with quantitative measurements, which may not be quite accurate initially. 

Lack of accuracy does not always mean wrong, however. We must remember that Newton’s 

first law of motion could not be fully validated until the technology for creating the 

conditions for a vacuum became available. Having errors is not always unhelpful. We must 

remember that the discrepancy between the prediction of Newtonian gravity and the 

observed orbit of Mercury inspired the discovery of the theory of general relativity.
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Computational Simulation and Validation

In most disciplines where visualization techniques are routinely deployed, together with 

experimentation and theorization, computational science now constitutes the “third pillar” of 

scientific inquiry, enabling researchers to build and test models of complex phenomena. 

Advances in computing and connectivity make it possible to capture, analyze, and develop 

computational models for unprecedented amounts of experimental, observational, and 

simulation data to address problems previously deemed intractable or beyond imagination.16

Once we have quantitative models of visualization phenomena and processes, we can 

simulate such models computationally, validating them against experimental results and 

making predictions about causal relations in a visualization process. For example, we can 

model the relationships among volume datasets, volume-rendering algorithms, and resultant 

imagery data. The model can be used to predict the discretization errors, order of accuracy, 

and convergence performance as well as verify if they meet the requirements of the 

application concerned.17 The cognition literature shows that human observers’ perception 

errors may not linearly correlate with discretization errors, so it would be exciting to extend 

such a model to include more elements of human perception and cognition.

Quantitative Laws and Theoretic Systems

In all branches of science, many quantitative laws are regarded as disruptive discoveries 

because they represent great leaps in our understanding about causal relationships from 

numerical uncertainty to numerical certainty.18 As we discussed earlier, any visualization 

guideline that has stood the test of time should be regarded as a principle. Furthermore, any 

principle in visualization can be formulated and proved under a theoretical framework. (See 

the “An Example Theoretic System: Probability Theory” sidebar for an example.) For 

example, part of Ben Shneiderman’s guideline “overview first, zoom, then details on 

demand” was proved using information theory (including an anomaly investigation).14 The 

filtering part of the guideline likely requires a more complex proof because defining the 

filtering that would result in desired details might require additional variables.

In many disciplines, some laws have parameters that may be constants. The discovery of 

such fundamental constants (such as the speed of light and absolute zero temperature) 

transforms postulated laws into truly quantitative laws. Discovering values that would fit 

such parameters often requires extensive experimentation. For example, in psychology, 

Fitts’s law has two parameters that vary according to the choice of input device, and 

Stevens’ law also has two parameters that vary according to the choice of physical stimulus. 

These parameters suggest that a more general quantitative law may be hidden underneath. 

For example, if Newton’s second law of motion had used volume instead of mass, it would 

have required an object-dependent parameter that we now know as density. Worse, if it were 

surface area instead of mass, one would need more object-dependent parameters.

The visualization discipline provides great opportunities for postulating parameterized laws 

and for discovering values for such parameters in different scenarios. From such discoveries, 

we could potentially make more fundamental leaps in our understanding as long as we 

continue to investigate the causes of the unattractive parameterization.
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When a number of quantitative laws share a common measure space that includes all 

variables to be measured and all measurement functions, they indicate the existence of a 

theoretical system, where new quantitative laws can be inferred from existing ones. (See the 

“A Skeleton of a Theoretic System for Visualization” sidebar for an example.) In 

mathematics, axiomatization has been one of the driving forces in discovering rich axiomatic 

systems, each of which is underpinned by a set of primitive axioms. Historically, the early 

efforts that aimed to derive a self-complete axiomatic system motivated many innovations 

(such as in geometry), but they often failed to achieve the aim itself. Such failures led to 

Gödel’s incompleteness theorems, which confirmed that such a self-complete axiomatic 

system is unattainable for any slightly complex theoretical system. Nevertheless, discovering 

axioms in the theoretical system is a noteworthy achievement in itself as long as we are 

aware of the axioms’ limitations. Such a discovery is analogous to the pursuit of curating, 

evaluating, critiquing, and revising guidelines to discover principles.

An Example Theoretic System: Probability Theory

(Ω, E, P) is a measure space, where Ω is the sample space, E is the event space, and P(e) 

is the probability measure of an event e ∈ E.

Axioms

1. The probability of an event is a nonnegative real number: P(e) ∈ R, P(e) ≥ 0, 

∀e ∈ E.

2. The probability that at least one of the elementary events in the entire sample 

space will occur is 1: P(Ω) = 1.

3. Any countable sequence of mutually exclusive events (e1, e2, …) satisfies the 

following: .

Example Law: Monotonicity

If EA is a subset of or equal to EB, then the probability of EA is less than or equal to the 

probability of EB. That is, if EA ⊆ EB, then P(EA) ≤ P(EB).

A Skeleton of a Theoretic System for Visualization

(Ω, Θ, Ξ) is a measure space, where Ω is the sample space, Θ is a state space defined by a 

subset of all possible alphabets in visualization (such as data (D), task (T), medium (M), 

visual representation (V), human capability (H), and interaction (I)), and Ξ is a subset of 

all possible measures in visualization (such as probability, mutual information, accuracy, 

time, cognitive load, error, and uncertainty).

Axioms

1. It may be defined based on a principle (that has stood the test of time), and it 

cannot be deduced from other axioms.

2. …

Example Law: Optimal Visual Representation
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Let v ∈ V be a visual representation, where v is optimal under a particular goodness 

measure M ∈ Ξ. Let S be the state space based on all variables Θ – {V}—that is, the 

subset of Θ without the visual representation V. With appropriate definitions of M and S, 

we have M(v, s) ≥ M(w, s), ∀w ∈ V, ∀s ∈ S.

One challenge in formulating a theoretical system for visualization is that there appear to be 

many variables in a visualization process, such as the source datasets, visualization tasks, 

display media, interaction devices, human viewers’ knowledge and experience, interaction 

actions, application contexts, and so on. Some measurements are more attainable, such as 

data size, accuracy, and time. Other measurements may be problematic in terms of their 

theoretical conceptualization or practical implementation, such as information, knowledge, 

cognitive load, and task performance. Nevertheless, a theoretical system can be built bit by 

bit. We might start with a subset of these variables, while fixing other variables to a set of 

constants related to a scenario. We could also identify principles applicable to such a 

scenario and use them to formulate axioms and laws. Then, we could derive new laws based 

on existing axioms and laws in the system and test these new laws using experimentation 

and simulation. Any negative testing results will motivate further investigations into the 

theoretical system itself as well as the experimentation and simulation methods, yielding 

new improvements and advancements. New laws derived and confirmed in this way can be 

disseminated as new guidelines in practice.

The development of small theoretical systems will naturally lead to new advancements 

through integration and unification. For example, one theoretical system may focus on 

cognitive load in its measure space, and another may focus on training costs. Their 

unification would result in a more elegant and applicable theoretical system. We can expand 

our horizons in the endeavor to build theoretical systems for visualization, for example, 

addressing the relationships between visualization and emotions, aesthetics, language, social 

objects, or ethics.

Building a Theoretical Foundation

The visualization field has already seen more than 100 research papers on different aspects 

of a theoretical foundation for visualization. A recent keyword search using the term 

“visualization theory,” for example, returned a wide variety of topics. Intriguingly, all 

returned items contained the word “measure” or variants of it. All included some ordered or 

numerical measurements, such as reliability, accuracy, correctness, limits, or optimality. 

Some papers discussed these measurements in the context of a framework, a model, or some 

form of a theory, and most included the word “quantify” or its variants. In addition to 

traditional quantities such as accuracy, precision, and time, the search results revealed some 

ambitious attempts to measure particular forms of human insight, understanding, 

performance, creativity, knowledge, cognitive load, learning, confidence, and many other 

attributes. A similar search of the visualization community returned more than 200 

individual authors within the community.

Building a theoretical foundation should not be equated with creating a theory. Theoretical 

research is about creating new fundamental knowledge in each aspect and about making 
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transformations, as shown in Figure 1. Taxonomies are essential for identifying all concepts 

(variables) and their states (values) in visualization. Ontologies are essential for identifying 

the interactions among these concepts (functions and relational variables). Under the 

contextual framework of taxonomies and ontologies, guidelines and principles postulate 

causal relationships. By organizing a collection of causal relationships coherently in an 

ontology that may also define other relationships, we can establish a qualitative model. In 

return, the development of a model informs us of any need for a new concept in a taxonomy 

or a new relationship in an ontology, while motivating us to discover new guidelines or study 

the conflicts of guidelines. The grounded theory method and other research methods in 

social sciences can help us achieve such transformations methodologically and 

systematically.

Using a quantitative theoretic framework, we can transform a qualitative model into a 

quantitative model, providing opportunities for model validation using experiments and 

computational simulation. Similarly, guidelines and principles can be quantitatively defined, 

leading to a more formal approach to defining causal relationships in visualization. When a 

quantitative model is structured as a theoretical system, we can infer new laws and prove or 

disprove a postulated law (for example, formulated based on a guideline) using existing 

axioms and laws in the system. A quantitative model, law, or theoretical system is predictive 

and therefore falsifiable. In turn, developing theoretical systems and investigating their 

extension and unification will stimulate new taxonomies, ontologies, guidelines, and models, 

thereby enriching visualization’s theoretical foundation.

Building a theoretical foundation for visualization is the collective responsibility of the 

visualization community. In the literature, hundreds of authors have already contributed to 

different aspects of the foundation. The visualization community has demonstrated its ability 

in formulating taxonomies, proposing guidelines, and creating models. It possesses the 

unparalleled experience of working with a spectrum of visualization users and has 

accumulated much insight about the cost-benefits of many visualization and visual analytics 

workflows in different applications. Through collaboration, the community has acquired 

knowledge for empirical studies, mathematical modeling, and computational simulation and 

is continuing to learn new skills.

The community needs to build its confidence in directing a new generation of research 

students and postdoctoral researchers to tackle fundamental problems. Perhaps reviewers 

need to adjust their expectations of novelty to reflect the actual theoretical research activities 

of other scientific disciplines. For example, arvix.org lists 6,202 articles in 2016 alone in the 

category of “High Energy Physics – Theory.” The collective effort to build a theoretical 

foundation in physics is enormous, making any significant breakthroughs much less 

romantic than portrayed by the media.

Making significant theoretical advances will lead to significant advances in practical 

visualization applications. For example, we all talk about “design” as an action in practice. 

A design space is commonly defined by a taxonomy or ontology. Most guidelines are 

proposed for improving designs. Most models suggest that designs or design processes can 

be optimized. When we have mathematically proven the correctness of a design guideline, 
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this implies that the guideline must be obeyed in practice under the conditions defined by the 

corresponding quantitative law.

We hope every visualization researcher can find at least one pathway in this article through 

which to explore unanswered questions, known problems, and identified deficiencies in the 

theoretical foundation of visualization. No doubt, there are other pathways featuring unasked 

questions, unknown problems, and unidentified deficiencies. Like any research, building a 

theoretical foundation for visualization presents many challenges. It may not be all smooth 

sailing. We must always respect such challenges “in theory,” but we should never be afraid 

of them “in practice.”
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Figure 1. 
A theoretical foundation typically evolves through iterative developments. The development 

of each aspect both influences and benefits from that of others. A successful transformation 

between different aspects indicates a theoretical enhancement of understanding. Note that 

the third aspect, “Conceptual Models and Theoretic Frameworks,” is represented by two 

boxes in the figure.
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Figure 2. 
Richard Feynman’s 1975 Dodge van. Feynman had the behavior model of subatomic 

particles painted on the sides. (Courtesy of ArtCenter College of Design.)
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