arXiv:1603.00713v1 [cs.GR] 2 Mar 2016

LevelMerge: Collaborative Game Level Editing

by Merging Labeled Graphs

Christian Santoni Gabriele Salvati Valentina Tibaldo Fabio Pellacini

Game development is commonly seen as a collaborative effort, with teams of people cooperating
on the same project. Nowadays, a variety of cloud-based services have shown the benefits of
performing tasks in real-time collaboration with others. In this paper, we present a system for
collaborative game levels editing. We model this problem as a special instance of merging labeled
directed acyclic graphs. We propose an algorithm that guarantees that the shared game level is
always coherent between edits, both hierarchically and semantically. We establish real-time
collaboration by initiating merges automatically and by augmenting the game editor interface to
allow users to monitor all others’ edits in real-time. We validate our algorithm by merging complex
edit and large game levels. We further validate the collaborative workflow by running a user study
with expert game developers. It shows that our system works well and collaborative workflows are

beneficial to game development.

Index Terms—Game Design, Collaborative Content Creation, Level Editing, Game Development.

1 INTRODUCTION

AME level editing is the process of constructing a full
G game level starting from 3D asset libraries, e.g. 3d
models, textures, shaders, scripts. In level editing, designers
define the look and behavior of the whole level by placing
objects, assigning materials and lighting parameters, setting
animations and physics properties and customizing the ob-
jects Al and behavior by editing scripts. The heterogeneity
of the task usually translates to a workflow where a team
of people, experts on separate aspects, cooperate to edit
the game level, often working on the same objects (e.g.: a
programmer working on the Al of a character, while an
artist works on its 3D model or its materials). Today this
collaboration is established by using version control systems
designed for text documents, such as Git [1], to manage
different versions and share them amongst users. The merge
algorithms used in these systems though does not perform
well in our case since it does not respect the relations
between game objects necessary to maintain the semantic of
the game level behavior and look. This is a known problem
and commercial systems for game level merging exists, e.g.
PlasticSCM [2], but these are only slightly more robust than
text-based ones. This causes designers to often merge scenes
manually, essentially reapplying others edits in the game
level editor.

Collaborative level editing. The goal of this paper is to
present a system for collaborative game level editing in the
style of cloud-based services such as Google Docs or Clara.io
[3]. Just like in these services, we want designers to edit the
level concurrently, while viewing others’ edits as they are

o Christian Santoni, Gabriele Salvati, Valentina Tibaldo and Fabio Pellacini
are in the Computer Graphics research group at the Department of
Computer Science, ”Sapienza” University of Rome, Italy.

applied. From a system perspective, we differ from these
commercial efforts in two main manners. First, we build
our collaborative editor on an existing game engine, in our
case Unity [4], rather than using a simplified, instrumented
interface. This allows us to create complex and playable
games concurrently. Second, to ensure compatibility with
current editing workflows, we maintain the use of dis-
tributed version control, in our case GIT, as a low-level
component to manage versions and share them amongst
users over a network.

LevelMerge. To support collaborative workflows, we
provide a robust merge algorithm for game levels, we
establish collaboration by automatically merging edits from
multiple users, and we augment the game editor interface to
show the component that all users are editing. This results
in a system for collaborative game level editing, with which
users work on the same level concurrently and seamlessly.
Said another way, the game is always playable during the
concurrent editing session. We show this in the supplemen-
tal video with sped-up collaborative editing sessions on
playable game levels.

Our system works by diffing and merging a shared
game level. During merges, we maintain a coherent state
between concurrent edits, both hierarchically, by preserving
the hierarchical relations in the game level, and semantically,
by ensuring that concurrent edits do not break data depen-
dencies between entities in the scene, e.g. scripts that refer to
assets or animations that refer to rigged models. In the rare
instances of conflicts in parts of the scene, i.e. when spe-
cific edits to game objects cannot be merged automatically,
designers can either resolve the conflict manually within the
editor, or use an automatic conflict resolution algorithm that
applies edits from a preferred branch, chosen by the user.

Fig. 1. Example merge computed with our algorithm. The original scene (left) is concurrently edited by two artists (middle), and automatically
merged by our algorithm (right). Our merge algorithm maintains the semantic of user edits making the game playable after merging. The edits are

color coded: green for User A, cyan for User B, red for dropped edits

These simple policies proved to be intuitive to understand
and effective to use in our testing. In our system conflicts are
rare for two reasons. First, since our diff algorithm is very
precise, we have no false positives. Second, we augment the
interface to show where other artists are working. This in
turn mean that artists naturally avoid most conflicts while
working. This is similar to Google Docs showing selections
and cursors for all users.

Results. We tested our prototype implementation by
merging large playable game levels after significant edits
created in Unity [4]. One such merge is shown in Fig. [T} We
tested game levels between 205 and 3172 MB with complex
object hierarchies of between 79 and 2800 nodes. The merge
algorithm ran in between 0.07 and 0.92 seconds, fast enough
to support collaboratively workflows. We allow users to
change the sync interval interactively since sync may require
large scene changes that might be undesirable while editing.

We validated our system running an user study with 6
game developers, already Unity users, of which 3 where
experts designers with game publishing experience. The
study showed that (1) our system was preferred over the
traditional version control workflows, (2) even in small
scenes, our merge algorithm was significantly better than
test-based merging with manual conflict resolution, and (3)
all users felt that this manner of collaboration is a significant
improvement in creating games.

Contributions. To summaries, in this paper we present a
system for collaborative game level editing. In our opinion,
our work has four main contributions. (1) We demonstrate
collaborative game level editing with a workflow that is
compatible with real game engines. (2) We propose a merge
algorithm for game levels that maintains the hierarchical
and semantic relationships between game objects during
merges, leading to merges where the game stays consis-
tently playable. (3) We propose modification to game editors
interfaces to allow for collaboration. (4) We show with a
user study that collaborative workflows are useful in game
editing.

2 RELATED WORK

The use of version control is a well-established practice
in a variety of fields, especially for text based documents.
For 3D assets, these methods are becoming only recently
available. For 3D meshes, both [5] and [6] make use of a
version control approach, developing systems able to diff,
merge and resolve conflicts between different versions of 3D
models. [7] shows a version control formulation for image
editing. We utilize these methods to merge single assets in
our scenes. The works that are mostly related to our system
we are about to present are the online services Clara.io
and OnShape [8]. Although presenting a system for real-
time collaborative workflows, they only focus on 3D polyg-
onal modeling and CAD modeling scenes, respectively. We
instead aim to provide real-time syncing at the whole game
level granularity.

Game level version control. Scenes version control
framework is presented in [9]. In this approach, the whole
scene is represented by a graph and every 3D asset is
treated as an atomic blob of binary data. Concurrent edits
on the same scene node are detected as a conflict even
if the edits are not overlapping at asset level. Moreover,
this approach doesn’t take into account the semantic of
the objects in the scene, an aspect that is necessary to
guarantee coherence between merges of a game level. As
for game scenes’ versioning, to the best of our knowledge,
while integration with version control systems exists, only
one commercial product, PlasticSCM , attempt to add
semantic during merging. While the merge algorithm is not
explicitly documented, our tests suggested that it doesn’t
take into consideration the semantic relationship between
objects, essentially performing a classical line-by-line diff
instead. We instead aim to present a system that considers
the whole game level as a labeled directed acyclic graphs,
performing all diff, merge and conflict resolution operations
on such data structure, maintaining the hierarchical and
semantic coherence of the scene.

Labeled graphs. For their intrinsic hierarchical struc-
ture, graphs are commonly used to represent game levels.

The literature shows in fact multiple examples of works
that adopted this approach. presents an optimized
API for game scenes’ versioning, encoding all the objects
and assets into an unified scene graph. Though, since its
implementation is based on the versioning architecture of
[9], this framework can’t manage the semantic aspects of
merging a game level. presents an architecture capable
to expose a web service interface to the users, to review
and control 3D scenes. The core of the system is based on
openSG [12]], an open source C++ scene graph. In this case
the graph structure is used mostly for performance-related
issues, and the framework doesn’t offer any features useful
to versioning or sharing game levels.

@) (w

Fig. 2. Example game level and corresponding labeled directed graph.
We only show nodes corresponding to the foreground characters. Nodes
in the graph are colored accordingly to the color of the object in the level,
and are labeled with the abbreviation of the node’s type.

3 DIFF AND MERGE ALGORITHM

Game Level. In our system, a game level is composed
of a set of objects, such as animated characters, lights,
and cameras. Each object has associated components whose
properties specify the object’s look and behavior such as
transform and material nodes, collision proxies and code
such as shaders and Al scripts. Objects datas are specified
by referencing assets that are not edited directly in the level,
such as rigged meshes, textures, animation data, etc. Said
another way, a game level is an heterogenous collection of
entities of different types that are related to each other.
Level Model. To define a merge algorithm we need
an abstract model of a game level that works across the
heterogeneity of level entities. In our algorithm, we model

3

game levels as labeled direct acyclic graphs (LDAGs), where
nodes are game objects and assets. Each node is specified
by a unique identifier, and a set of single-valued properties
(e.g transforms position, asset parameters). We have two
types of edges, expressing whether or not there is a direct
dependency between parent and child. For direct depen-
dencies, changes in the parents’ nodes are mirrored to the
children, while for indirect dependencies changes need not
be mirrored. Fig. [2|shows a simple scene with its associated
graph. We show edges with both direct dependencies (e.g.:
a container object hierarchically including all the various
components of a 3D mesh), and indirect dependencies (e.g.:
a script with all the assets it instantiates, a particle system
with its generated objects). This definition allows to capture
the heterogeneity of object and their relationships in game
levels and it is where we differ most from standard scene
graphs that are either purely hierarchical or purely data-
driven.

Asset Merging. In our system we treat assets separately
since they cannot be edited directly in the game engine inter-
face; this implies that we do not explicitly model 3D meshes,
textures or code in the graph. Rather, our system can be
seamlessly integrated with algorithms that are specifically
designed to merge each kind of assets, e.g. [6]] for 3D models,
for code, [7] for images. One exception we make is with
code assets that are not merged if they do not compile since
this would break the playability of the game level. This was
found useful also in collaborative code editing.

Level Merging. The merging procedure follows the clas-
sic 3-way diff approach, and is thus based on the analysis
of three separate graphs: the user’s current scene graph, the
shared upon remote scene’s graph and the common ances-
tor graph. We compute the difference between an edited
version and its ancestor, stored explicitly in our system, by
marking nodes as either unchanged or added, deleted or
modified with respect to the ancestor graph. This can be
done efficiently since nodes have unique identifiers in our
system. A node is considered to be modified if any of its
properties have been modified or if any of its parents in
direct dependency has been modified.

We thus obtain the two difference graphs of edited nodes
(by the user and in respect to the remote scene) as the sub-
graphs induced by the edited nodes on the levels graph. We
compute the merged result by applying the modifications as
a whole to the ancestor graph, while detecting if any mod-
ification is in conflict. We proceed by considering the cases
of added, deleted and modified nodes respectively. While
doing so, we maintain the level consistent by ensuring that
the merged graph is still an LDAG. An example of a level
merge without conflicts is shown in Fig.

Nodes that are simply added in one of the difference
graphs can be inserted automatically in the ancestor graph
(since adding nodes cannot create conflicts). In this case, a
new edge is added to the resulting graph between the node
and the parent node in direct dependency with it. If the node
has no parents in the scene, the added edge is between the
node and the scene-root node.

For node deletions, a preliminary check must be per-
formed, in the case such node was also modified by another
user. If this doesn’t happen, the node can be removed safely,
and its subtrees are linked to the deleted node’s parent, to

‘User A

Ancestor

.

Fig. 3. Example merge with dependency changes. Both users add new objects to the scene and User B changes bunny’s direct dependency,
making it child of the doll house. User B also deleted the drawers: since it is not in direct dependency to any modified object, is deleted.

avoid generating disconnected components. Instead, if the
node is modified in the remote graph, then a conflict occurs.
Moreover, deletions affects all nodes in direct dependency
with the deleted node, since they would be deleted too.
Since those child nodes can be in indirect dependency
with other nodes in their subtrees, the deletion operation
can induce disconnected components in the graph. Thus, a
conflict occurs even in the case that there is a modification
for any of the nodes in the subtree induced by the deleted
node. The approach we apply when a conflict is detected
will be explained in the next section.

We will now discuss merge strategies for modified
nodes. Parameter changes are merged comparing single-
value in modified nodes, in pairs of the same type. If the
same parameters are modified in both nodes, a conflict
occurs. Otherwise, both sets of modifications are merged
into the node components.

Though, applying edits in this manner might induce
graphs that contain cycles. After the merge and conflict
resolution phases, we thus check their presence. If a cycle is
detected, we remove it by sorting the nodes contained in the
cycle in terms of height in the LDAG (topological order). We
then remove the first edge with lowest height, representing
an indirect dependency. In this way we avoid propagation
of changes. If there is no indirect edge, we drop the direct
one with smallest height.

Conflict resolution. In summary, conflicts may arise
when multiple users modify the properties of the same
node or when operations are applied by one user on a node
deleted by another. While in these cases the user can resolve
the conflict manually, just like in version control, we also
provide an automatic conflict resolution algorithm that can
apply the edits of a branch over the ones from the other
branch, where the user selects the prioritized branch. This
policy is common in text-based version control systems,
and aims to automatize what users usually do manually,
manipulating directly the conflicting files and selectively
applying the local edits rather than the remote ones, or
vice-versa. An example of how a conflict is automatically
resolved (respectively selecting merge policy 1) and 2)) for a

merged scene is shown in Figure @] In our testing we found
that users preferred to auto-resolve conflicts, which were
very rare, by accepting edits from the shared repository thus
aiding in faster collaboration.

4 SYSTEM IMPLEMENTATION AND LIMITATIONS

Our implementation leverages on two main systems, Git
as a version control backend and Unity as a game
editor and engine. Here we describe implementation details
necessary for reproducing our work.

Integration with Git. We follow common practice in
game version control to handle our collaboration backend.
We establish collaboration by having users share a cen-
tralized Git repository and use Git to store level versions
and as a protocol to efficiently communicate scene diffs.
We chose Git since it is a well-know, scalable and robust
versioning protocol, and since it allows users to have the
whole working tree locally stored, thus allowing them to
work locally at full speed, while relying on network transfer
only for user-to-user synching. Given the size of graphics
assets, which may take several seconds just to download on
alocal LAN, this last feature is of paramount importance. In
Git, users can register specialized diff and merge algorithms
that are triggered on different file types. We integrate our
merge algorithm by registering it for merging full level files
and handle assets by integrating specific algorithms dis-
cussed before. For code assets, we selectively synch them to
the main repository when they successfully compile, while
maintaining a separate repository for sharing intermediate
versions.

Integration with Unity. We implemented our algorithm
on Unity3D 5 [4], a commercial game engine. We chose a
commercial engine since it allows us to test fully-functioning
games at scale and since it is widely adopted in the commu-
nity. Our algorithm though does not depend on Unity per se,
since we work on arbitrary labeled graph. Here we describe
the steps for integrating our algorithm in the Unity editor.
We take a lightweight approach for integration and rather
than modifying directly the engine data structures, we act

Ancestor

Fig. 4. Example merge in the presence of conflicts. A conflict arises since User B modifies the material associated to the front green planet, while
User A deletes it from the scene. In case of conflicts, users can either resolve them manually or set a preference of which branch to maintain. In
this case, we resolved the conflict by maintaining branch A. The results show that, accordingly to the chosen policy, the object isn’t deleted in the

merged scene, and retains the edits done by User A.

on the serialized levels. For each merge, we parse Unity’s
serialized format into our own representation, merge the
level LDAGs, and rewrite a new scene. We integrate this
merge procedure directly in the game editor, by issuing
synching actions within the editor itself with a plugin and
issuing scene reloads after merges, which happens asyn-
chronously to game editing to avoid locking the interface.
Still, Unity does lock during scene reloading, since it has
to refresh assets’ caches. For this reasons, users felt that it
was comfortable to sync only every few seconds to avoid
locking the interface during asset reloading for a smoother
workflow (note that only happens when strictly necessary).

As stated before, we also extend the Unity interface to
support collaboration between users. As shown in Fig.
we show colored indicators in the “hierarchy inspector”, for
edits done on objects instantiated in the game level, and in
the “asset browser”, for modifications done on the assets,
where the color uniquely identify users. We considered
applying this approach also in 3D scene viewer, but felt this
would not work since coloring the actual objects the scene
would hinder materials appearance. In our opinion this
feature helps users significantly in understanding the actual
development state of the scene and also reduces unwanted
conflicts, preventing multiple people to work on the same
entities at the same time.

Limitation: Selective conflict resolution. When editing
sequences become long, a user might want the aid of a
specialized interface to selectively resolve conflicts, akin to
Git “cherry picking”. Currently, users can resolve conflicts
by editing the partially merged scene, or automatically
resolve conflicts with our simple policies. In this scenario,
a specialized interface might be fruitful.

Limitation: Expand assets’ merging strategies. In our
system we treat assets as atomic entities, relying on external
algorithms for their merges. One asset that we cannot han-
dle currently is merging keyframed animation data since no
published algorithm exists for this kind of asset. Further-
more, it may be possible to introduce more mathematically

~

,/’/ Create v | (arAll

P Player
| > Bean
= v Worlds
> Moon
P PlanetSnow
¥ PlanetDesert
Planet
» Rocks
» Beans
Gems
b Earth
P PlanetCrass
¥ PlanetBlue
Planet
» Rocks
» Beans
Gems
.| P PlanetRed

Fig. 5. A screenshot of the extended Unity’s interface we present to the
users. When the sync system is active, users are notified by colored dots
of other users’ edits on objects of the scene (on the left, in the hierarchy
inspector) and assets (bottom center, in the asset explorer). Every user
is uniquely identified by a color.

sound manners of merging material properties, instead of
averaging their values, by taking advance of linearized
editing spaces [13].

Limitation: Ul improvements. As a result of the infor-
mal user study we run, some of the users complained about
the fact that our indicators were not sufficiently visible. So,
a possible improvement could be to place such indicators
directly in the scene, near the currently modified compo-
nents. Also, it would be useful to notify the user also on the
specific components’ attributes on which other people are
working on.

Limitation: On-the-fly modifications in simulation
mode. Finally, our system blocks the syncing algorithm
when an user enters “simulation mode”, i.e when the game

is fully built and the level is played. An interesting extension
could be to allow users to all enter the simulation mode and
share modifications to the scene while actually playing it.

5 RESULTS

We tested our merge algorithm by merging large edits on
complex scenes. We implemented our system as an unopti-
mized Python script running on a 2.6 GHz desktop machine.
We purposely tested merging after a significant amount
of edits were performed to validate the robustness of our
approach. Within normal collaboration, users can choose
the frequency of merging. In our testing, we choose to sync
every roughly 10 seconds, which works well since in level
editing many edits are not necessary as frequent (as they
could be, for example, in 3D modelling), especially when
using large assets and editing code. The supplemental video
shows collaborative editing sessions on one of our scenes,
as well as walkthroughs of the final merged versions for the
larger scenes (since editing sessions lasted too long).

5.1 Merge Algorithm

Table [1| shows statistics on merging large edits in four
different game levels, shown in Figs. M| and [} Games
were playable before and after the merge and no user
intervention was involved in the merging. We chose scenes
of different complexity in terms of asset size and graph
dimensions, from a simple interior scene (room) scenes, to
a space game with detailed planets (planets), from a large
first person environment (vikings) to a detailed laboratory
interior (lab). For these scenes, the whole level (including
assets) ranged from 149 to 3172 MB of data, while the
corresponding graphs range from 79 to 2800 nodes.

We performed a variety of edits to the scenes room, plan-
ets and lab including adding and deleting objects, changing
materials and textures, adding and deleting lights, changing
Al code and shaders, modifying physics behavior and nav-
igation meshes. This corresponds to graph diffs spanning
between 31 and 545 nodes, a considerable edit with respect
to the original scene. The merge of those scenes took, on
average, between 0.07 and 1.4 seconds. The speed of the
merge algorithms support collaborative workflow very well,
being faster than modifying code or loading large assets. We
merged without any manual intervention resolving conflicts
by automatically choosing a preferred branch. After the
merge, the level maintains all its hierarchical and semantic
relationship, and in fact is playable as is.

As a final test, we performed significant modifications
to the vikings scene, amounting to roughly 1.5 hours per
branch. The goal of this test was to stress test the system
under the most demanding conditions, rather than in the
condition normally used for collaborative workflows. Even
in this case our merge algorithm produce a consistent scene,
but with a considerable slowdown, taking roughly 6.16
seconds. Note that manually merging this scene in any
reasonable time would have been impossible.

5.2 User Study

We run a user study with experts and novice Unity users,
to measure the goodness of the merge policy and validate

6

the benefits of a more tight collaborative workflow in game
development. During the study we gave users both guided
and free tasks, to perform in small groups, working in co-
operation. In each task we compare two merge workflows:
our algorithm vs a text-based workflow (using GIT merge
with manual conflict resolution). During the experiment, we
provided users with a working game level similar to room.
We tested a wide range of tasks typical for game editing:
scripting, light editing, shaders editing, assets” parameters
tuning, texture and materials editing, game logic and game
Al scripting.

Goal. The aim of the user study is to measure the
goodness of the merge algorithm in terms of user fruition,
by testing whether our merge algorithm integrates with the
user’s editing behaviour in a way that can be approachable
for users.

Subjects. We recruited 9 users, 7 experts and 2 novices.
We define expert subjects as game designers that have either
won a game jam competition, were author of a publication
about game design, or have published a game in an app
store. The novices were 3D artists with at least 4 years
of experience in a company. In all tasks we ask users to
cooperate with other users for completing a common goal,
in groups of 2 — 3 users each time, without mixing experts
and novices.

Tasks. We run four guided task and an open task of
about half an hour. Each task had two repetitions, each for
a different merge workflow. After each change of merge
policy, we ask user to rate the difficulty of completing
the task on a scale from 1 to 5, where 1 is “hard to be
completed”, and 5 is “very easy to complete”. At the end
of each task, we asked users an open feedback about the
task.

In the guided tasks, we asked each user to complete
actions that we designed, as they can lead the scene to
inconsistent states such as cycles, disconnected components
or edits drop. We tested the following conflicts resolution
strategies: same objects addition, hierarchical conflict, se-
mantic conflict, deletion conflict. In the open task we asked
user to freely edit the game scene, with the must of adding a
script. We give them some suggestions about the script, and
about the scene resource.

Experimental Procedure. We provide users with a start-
ing playable game level and a variety of assets and ask them
to perform various editing tasks. The experiment lasted
one and a half hours plus the additional times for training
and final survey completion. No talking was allowed dur-
ing task completion neither before starting tasks. To avoid
learning effects, we randomized the order in which the
merge algorithms were presented in the various tasks. To
avoid “good subject” effects, users did not know what was
changing between repetitions. Since using Git merge can
lead to level graphs that are inconsistent, we allow users to
edit directly the scene file or to use Git tools for reverting
files in case of conflicts. We left to users the choice to skip a
task or to consider it blocking in a way such that the scene
can not be recovered.

Results. We extend the rating scale of the experiment we
gave to users, considering with values 0 the case in which
users marked the task as blocking or if they revert the scene
via Git, rolling to a previous scene state thus losing all edits.

ancestor merge ancestor ancestor diff A diff B merged merged

name size (MB) time (s) nodes edges nodes nodes nodes edges

room 205 0.07 79 84 168 85 244 248

planets 149 0.80 2702 3352 545 31 2184 2710

lab 3172 1.40 2800 3156 131 303 3142 3498

vikings 1620 6.16 2249 2318 361 467 2384 2452
TABLE 1

Summary statistics of merged scenes. Editing time for vikings was significantly higher than the other levels, amounting to roughly 1.5 hours per

branch.

Ancestor

Fig. 6. In this final image, we perform edits to a scene (lab) with a complex graph and large assets to show that our systems scales well with scene
complexity. All the information regarding the merge are displayed in Table[T]

The average rate in term of “how hard has been to complete
task” for the two samples are 4.11 for our merge and 1.85
for git merge. During the experiment, git’s merge corrupted
the 23.6% of scenes. All users except one of the novices felt
the difference between the two merging methods and both
novices and experts reported the scene corruption as the
worst event happened during task completion.

Informal Feedback. We collect informal feedback on the
project overall and the main concept expressed by users
is that this can be an amazing tool for increasing commu-
nication and to shorten development time. Here we cite
some of the sentences taken from the experts: “I think this
should be the ideal path for making actively communicate different
professions increasing quality of results . .. obviously this system
would extremely make easier teamwork, decrease deployment time
and would be gratifying for teams that will notice realtime system
progression”.

6 CONCLUSIONS

In this paper we presented a system for real-time collabora-
tive game level editing. We solved the problem of merging
the levels modeling them as a labeled directed cyclical
graphs, and performing all diffing, merging and conflict
resolution operations on that data structure. In this way, we
guarantee that the merged scene is alway hierarchically and
semantically coherent between edits. We present to the user
three different policies to automatically merge and solve
conflicts. For assets, we provide specific merge strategies for

3D models, eulerian transformations applied to objects, and
materials, and we structured our system to be extensible to
include new strategies for other kinds of assets. For code
sharing, our system periodically performs compile checks,
to guarantee that the shared code (and, consequently, the
whole project) is always runnable. Finally, we present to the
users an interface that notifies them about other people’s
current edits. We found our system to be reliable, robust and
scalable both to scene’s complexity and to long edit sessions.

REFERENCES
[1] S. Chacon, Pro Git. APress, 2009.
[2] PlasticSCM, “Plasticsem documentation,” http://www.

plasticscm.com, 2015.

Clara.io, “Clara.io documentation,” http://clara.io, 2015.
Unity3D, “Unity3d documentation,” https://unity3d.com/| 2015.
J. Dobo$ and A. Steed, “3d diff: An interactive approach
to mesh differencing and conflict resolution,” in SIGGRAPH
Asia Technical Briefs, 2012, pp. 20:1-20:4. [Online]. Available:
http://doi.acm.org/10.1145/2407746.2407766

J. D. Denning and F Pellacini, “Meshgit: Diffing and
merging meshes for polygonal modeling,” ACM Trans. Graph.,
vol. 32, no. 4, pp. 35:1-35:10, 2013. [Online]. Available:
http://doi.acm.org/10.1145/2461912.2461942

H.-T. Chen, L.-Y. Wei, and C.-FE. Chang, “Nonlinear revision
control for images,” ACM Trans. Graph., vol. 30, no. 4, pp.
105:1-105:10, 2011. [Online]. Available: http://doi.acm.org/10.
1145/2010324.1965000

OnShape, “Onshape documentation,” http://www.onshape.com,
2015.

J. Dobos and A. Steed, “3d revision control framework,” in
Proc. of 17th International Conference on 3D Web Technology, 2012,
pp. 121-129. [Online]. Available: http://doi.acm.org/10.1145/
2338714.2338736

(3]
(4]
(5]

(6]

(7]

(8]
(9]

http://www.plasticscm.com
http://www.plasticscm.com
http://clara.io
https://unity3d.com/
http://doi.acm.org/10.1145/2407746.2407766
http://doi.acm.org/10.1145/2461912.2461942
http://doi.acm.org/10.1145/2010324.1965000
http://doi.acm.org/10.1145/2010324.1965000
http://www.onshape.com
http://doi.acm.org/10.1145/2338714.2338736
http://doi.acm.org/10.1145/2338714.2338736

[10]

[11]

[12]

[13]

J. Dobos, K. Sons, D. Rubinstein, P. Slusallek, and A. Steed,
“Xml3drepo: A rest api for version controlled 3d assets
on the web,” in Proc. of International Conference on 3D
Web Technology, 2013, pp. 47-55. [Online]. Available: http:
//doi.acm.org/10.1145/2466533.2466537

A. Schiefer, R. Berndt, T. Ullrich, V. Settgast, and D. W.
Fellner, “Service-oriented scene graph manipulation,” in Proc. of
International Conference on Web 3D Technology, 2010, pp. 55-62.
[Online]. Available: http://doi.acm.org/10.1145/1836049.1836057
D. Reiners, G. Vo, and]. Behr, “Opensg: Basic concepts,” in
OpenSG Symposium, 2002.

F. Di Renzo, C. Calabrese, and F. Pellacini, “Appim: Linear spaces
for image-based appearance editing,” ACM Trans. Graph., vol. 32,
no. 6, pp. 194:1-194:9, 2014.

http://doi.acm.org/10.1145/2466533.2466537
http://doi.acm.org/10.1145/2466533.2466537
http://doi.acm.org/10.1145/1836049.1836057

	1 Introduction
	2 Related work
	3 Diff and merge algorithm
	4 System Implementation and Limitations
	5 Results
	5.1 Merge Algorithm
	5.2 User Study

	6 Conclusions
	References

