
Topological Modeling for Vector Graphics
by

Boris Dalstein

B.Sc., École Normale Supérieure de Lyon, 2010

M.Sc., Université Joseph Fourier, Grenoble, 2012

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

The Faculty of Graduate and Postdoctoral Studies

(Computer Science)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

September 2017

© Boris Dalstein 2017

Abstract

In recent years, with the development of mobile phones, tablets, and web technologies, we have

seen an ever-increasing need to generate vector graphics content, that is, resolution-independent

images that support sharp rendering across all devices, as well as interactivity and animation.

However, the tools and standards currently available to artists for authoring and distributing such

vector graphics content have many limitations. Importantly, basic topological modeling, such

as the ability to have several faces share a common edge, is largely absent from current vector

graphics technologies. In this thesis, we address this issue with three major contributions.

First, we develop theoretical foundations of vector graphics topology, grounded in algebraic topol-

ogy. More speci�cally, we introduce the concept of Point-Curve-Surface complex (PCS complex) as

a formal tool that allows us to interpret vector graphics illustrations as non-manifold, non-planar,

non-orientable topological spaces immersed in R2
, unlike planar maps which can only represent

embeddings.

Second, based on this theoretical understanding, we introduce the vector graphics complex (VGC)

as a simple data structure that supports fundamental topological modeling operations for vector

graphics illustrations. It allows for the direct representation of incidence relationships between

objects, while at the same time keeping the geometric �exibility of stacking-based systems, such

as the ability to have edges and faces overlap each others.

Third and last, based on the VGC, we introduce the vector animation complex (VAC), a data struc-

ture for vector graphics animation, designed to support the modeling of time-continuous topolog-

ical events, which are common in 2D hand-drawn animation. This allows features of a connected

drawing to merge, split, appear, or disappear at desired times via keyframes that introduce the

desired topological change. Because the resulting space-time complex directly captures the time-

varying topological structure, features are readily edited in both space and time in a way that

re�ects the intent of the drawing.

ii

Lay Summary

In recent years, it has become increasingly important for digital artists to be able to draw images,

animations, and interactive graphics that can be displayed equally well on a wide range of screens,

from mobile phones to movie theaters. Unfortunately, the tools currently available for this task

su�er from many limitations, such as the inability to easily animate two shapes sharing a common

edge, for example two countries sharing a border.

To overcome these limitations, we have developed new mathematical models to represent 2D

drawings and animations, and have built new digital tools based on these models. They allow

artists to draw and animate shapes which are connected to one another, using novel interactive

techniques. Positive initial reception suggests that these new techniques are readily embraced

by artists, thus we expect our work to have a large in�uence in the future of digital drawing

tools.

iii

Preface

A version of Chapter 4 has been published in the following:

• ACM Transactions on Graphics, 33(4), 2014 [Dalstein et al. 2014b]

(Proceedings of SIGGRAPH 2014)

The ideas originated in discussions between myself and Michiel van de Panne. It comes from the

realization that fundamental research on non-animated vector graphics was needed �rst, before

being able to properly tackle the problems of animated vector graphics, addressed in Chapter 5

(whose ideas originated �rst). I conducted the implementation, testing, and contributed to writ-

ing the manuscript. Michiel van de Panne and Rémi Ronfard provided guidance, insights, and

contributed to the writing of the manuscript.

A version of Chapter 5 has been published in the following:

• ACM Transactions on Graphics, 34(4), 2015 [Dalstein et al. 2015]

(Proceedings of SIGGRAPH 2015)

The ideas originated in discussions between myself and Rémi Ronfard, as part of my master’s

thesis. I conducted the implementation, testing, and contributed to writing the manuscript. Michiel

van de Panne and Rémi Ronfard provided guidance, insights, and contributed to the writing of the

manuscript.

A version of the content provided as appendices of this dissertation has been informally distributed

as the following:

• Point-Curve-Surface Complex: A Cell Decomposition for Non-Manifold Two-Dimensional

Topological Spaces. University of British Columbia, technical report, 2014 [Dalstein et al.

2014a]

The ideas originated in discussions between myself and Michiel van de Panne. I conducted most

of the theoretical analysis and derivations, and wrote the manuscript. Michiel van de Panne and

Rémi Ronfard provided guidance and insights.

iv

Preface

We have not yet submitted Chapter 3 for publication. This chapter builds on the ideas developed in

[Dalstein et al. 2014a], providing important improvements and clari�cations. I conducted most of

the theoretical analysis and derivations, and wrote the manuscript. Michiel van de Panne provided

guidance.

v

Table of Contents

Abstract . ii

Lay Summary . iii

Preface . iv

Table of Contents . vi

List of Figures . xi

Acknowledgments . xvi

1 Introduction . 1

1.1 Contributions . 2

1.2 Informal Definition of the Vector Graphics Complex 3

1.3 Outline of Dissertation . 5

2 Background and Related Work . 6

2.1 Historical Background . 6

2.2 Related Work in Vector Graphics . 13

2.3 Related Work in Topological Modeling . 16

2.4 Related Work in Animation . 30

3 The Theoretical Foundations of Vector Graphics Topology 37

3.1 First Concepts of Topology . 38

3.1.1 Topology According to Computer Scientists 39

3.1.2 Topology According to Mathematicians 40

3.1.3 Topology According to Computational Geometers 42

3.1.4 Topology According to 3D Modeling Artists 43

3.2 The Non-Planar Nature of Vector Graphics 47

3.2.1 Design Decisions . 48

3.2.2 Non-Planarity and Overlapping . 49

vi

Table of Contents

3.2.3 Non-Orientability . 50

3.2.4 Non-Manifoldness . 50

3.2.5 N-Sided Faces . 51

3.2.6 Closed Edges . 51

3.2.7 Faces with Inner Holes . 52

3.2.8 Non-Planar Faces . 53

3.2.9 Faces without Boundary . 54

3.2.10 Cut and Glue Closed Edges . 55

3.2.11 Cut Faces at Vertices and along Closed Edges 56

3.2.12 Cut Faces with Inner Holes . 56

3.2.13 Cut Non-Planar Faces . 58

3.2.14 The Face-Cut Classification . 60

3.3 PCS Complexes . 62

3.3.1 Abstract PCS complexes . 63

3.3.2 PCS complexes . 64

3.3.3 Examples and Discussions . 66

3.3.4 Vector Graphics Complexes . 72

3.4 Conclusion . 76

4 Vector Graphics Complexes: The Topology of Vector Illustrations 77

4.1 Introduction . 77

4.2 Motivation and Overview . 79

4.3 Vector Graphics Complex . 82

4.3.1 Topology . 82

4.3.2 Geometry . 85

4.3.3 Vector Graphics Complexes as Colored Incidence Graphs 86

4.3.4 Implementation . 90

4.4 Topological Operators . 92

4.4.1 Creation and Deletion Operators . 93

4.4.2 Glue and Unglue Operators . 94

4.4.3 Cut and Uncut Operators . 95

4.5 Depth Ordering . 96

4.6 User Interface . 98

4.7 User Feedback . 99

4.8 Limitations and Future Work . 102

4.9 Conclusion . 103

5 Vector Animation Complexes: The Topology of Vector Animations 105

vii

Table of Contents

5.1 Introduction . 105

5.2 Space-Time Topology . 106

5.2.1 Animating Vertices . 106

5.2.2 Animating Stroke Graphs . 107

5.2.3 Animating Vector Graphics Complexes 109

5.3 Formal Definition . 112

5.3.1 Vector Animation Complex . 112

5.3.2 Key Vertex . 113

5.3.3 Key Closed Edge . 113

5.3.4 Key Open Edge . 113

5.3.5 Key Face . 114

5.3.6 Inbetween Vertex . 114

5.3.7 Inbetween Closed Edge . 114

5.3.8 Inbetween Open Edge . 115

5.3.9 Inbetween Face . 115

5.3.10 Halfedge . 116

5.3.11 Path . 116

5.3.12 Cycle . 117

5.3.13 Animated Vertex . 117

5.3.14 Animated Cycle . 117

5.4 Interpolation Scheme . 122

5.5 User Interface . 123

5.6 Results . 125

5.7 Discussion . 128

5.8 Conclusion . 131

6 Conclusion . 133

Bibliography . 136

Index . 143

Appendices

A Concepts of Algebraic Topology . 145

A.1 Topological Spaces and Homeomorphisms . 145

A.2 Manifolds with Boundary and Compact Manifolds 146

A.3 Points, Curves, and Surfaces . 147

viii

Table of Contents

A.4 Classification of Compact n-Manifolds for n ≤ 2 147

A.5 Non-Manifold Topological Spaces . 150

A.5.1 Abstract Simplicial Complexes . 151

A.5.2 CW Complexes . 151

A.6 Geometric Realizations and Quotient Spaces 152

A.7 Immersions vs. Embeddings . 155

B Non-Combinatorial Definition of PCS Complexes 156

B.1 Cell Complex . 156

B.2 Relation Between ∂c and Bc, Compactness, and Subcomplexes 159

B.3 Comparison with CW Complexes . 160

B.4 PCS Complex . 162

C Equivalence between PCS-Decomposable and 2-Triangulable Spaces 168

D Topological Operators on PCS Complexes . 171

D.1 Notations . 171

D.2 Algebraic Operations on Halfedges, Paths and Cycles 173

D.2.1 Paths . 173

D.2.2 Flipping Halfedges, Paths and Cycles 174

D.2.3 Converting Open Halfedges to Paths and Paths to Cycles 174

D.2.4 Concatenating Paths . 175

D.2.5 Rotating Non-Simple Cycles . 175

D.2.6 Extracting Subpaths from Paths and Non-Simple Cycles 177

D.3 Cell Creation . 177

D.4 Cell Deletion . 181

D.5 Glue Cells . 183

D.6 UnGlue Cells . 185

D.7 Cut Cells . 190

D.7.1 Cutting an Open Edge (at a Vertex) 192

D.7.2 Cutting a Closed Edge (at a vertex) 193

D.7.3 Cutting a Face at a Vertex . 194

D.7.4 Cutting a Face at an Edge . 194

D.7.5 Cutting an Orientable Face at a Closed Edge 198

D.7.6 Cutting a Non-Orientable Face at a Closed Edge 199

D.7.7 Cutting a Face at an Open Edge Starting and Ending at the Same Hole 202

D.7.8 Cutting a Face at an Open Edge Starting and Ending at Different Holes 208

D.7.9 Flipping Cycles of Non-Orientable Faces 208

ix

Table of Contents

D.8 Uncut Cells . 210

E Simplification of PCS Complexes . 220

E.1 Simplification of Cell Complexes . 220

E.2 Equivalence of Cell Complexes . 223

E.3 Uniqueness of Minimal PCS Complex . 225

x

List of Figures

1.1 Ivan Sutherland’s Sketchpad Program . 1

1.2 Vector Graphics Complex: Example C++ Implementation 4

2.1 Early computers . 7

2.2 Vector Displays vs Raster Displays . 7

2.3 PostScript . 9

2.4 Adobe Illustrator 1 . 10

2.5 Animating a 3-Way Join . 11

2.6 European Union as SVG . 12

2.7 SVG Representation . 13

2.8 Dynamic Planar Maps . 14

2.9 Stroke Graphs . 15

2.10 Diffusion Curves . 16

2.11 Comparison with Existing Topological Structures 17

2.12 Winged-Edge Data Structure . 18

2.13 Halfedge Data Structure . 19

2.14 Quad-Edge Data Structure: Edge Direction and Orientation 20

2.15 Quad-Edge Data Structure . 20

2.16 Radial-Edge Data Structure: Edge-Uses . 21

2.17 Radial-Edge Data Structure . 22

2.18 Combinatorial Maps . 24

2.19 Generalized Maps . 25

2.20 Self-Sewing Faces . 26

2.21 Two-Dimensional Simplicial Complexes . 27

2.22 CW Complexes . 28

2.23 Selective Geometric Complexes . 29

2.24 Keyframes with Inconsistent Topology . 31

2.25 Stroke Correspondence using Manifold Learning 31

2.26 Cartoon Retargeting . 32

2.27 Texture Transfer . 33

xi

List of Figures

2.28 Shape Morphing . 33

2.29 Non-Photorealistic Rendering . 34

2.30 Animation as Space-Time Modeling . 35

3.1 Non-Planarity of Vector Graphics Topology 37

3.2 Effect of Connectedness on the Behavior of Graphical Objects 38

3.3 Homeomorphic Graphs . 39

3.4 Homeomorphism Counter Example . 40

3.5 Homeomorphic Spaces . 41

3.6 Catmull-Clark Subdivision Surfaces . 42

3.7 Head Topologies . 43

3.8 Quad Mesh Isomorphism . 44

3.9 Topology vs Geometry . 45

3.10 Geometric Realization vs Immersion . 45

3.11 Vector Graphics Topological Space and Immersion 47

3.12 Proof of Non-Planarity and Non-Orientability 49

3.13 Proof of Non-Manifoldness . 50

3.14 N-Sided Faces . 51

3.15 Closed Edges . 51

3.16 Face with One Inner Hole . 52

3.17 Faces with N Inner Holes . 52

3.18 Non-Planar Faces . 53

3.19 Faces without Boundary . 54

3.20 Cut and Glue Closed Edges . 55

3.21 Cut Faces at Vertices and along Closed Edges 56

3.22 Cut Planar Faces with Inner Holes . 57

3.23 Cut Non-Planar Faces . 58

3.24 Cut Non-Planar Faces with Closed Edges . 59

3.25 Face-Cut Classification . 61

3.26 Formal Steps to Define a PCS Complex . 62

3.27 Examples of PCS Complexes . 66

3.28 Examples of PCS Complexes . 68

3.29 Consistent Parameterization . 69

3.30 Homeomorphism and Isomorphism of PCS Complexes 70

3.31 Multiplicative Notation and Cut Operators on Möbius Strips 72

3.32 Sequence of VGC Operators on a Möbius strip 73

3.33 Relations between PCS Complexes and VGCs 74

xii

List of Figures

3.34 Relevance of the Cut-Face Classification for VGCs 75

4.1 Vector Graphics Illustrations and Their Topology 77

4.2 SVG Representation . 79

4.3 Limitations of Existing Representations . 79

4.4 Vertices, Open Edges, and Closed Edges . 80

4.5 Faces . 81

4.6 Cell . 82

4.7 Topology of a Square . 84

4.8 Face with Many Cycles . 85

4.9 Incidence Graph . 87

4.10 Incidence Graph of a Möbius Strip . 88

4.11 Different Renders for Different Cycles . 88

4.12 Coloring of Incidence Graph for Open Edges 89

4.13 Coloring of Incidence Graph for Faces . 89

4.14 Glue and Unglue Operators . 94

4.15 Cut and Uncut Operators . 95

4.16 Simplify Operator via Global Uncut . 96

4.17 Illustration of the Raise Algorithm . 97

4.18 Partial Ordering . 97

4.19 Examples of Non-Manifold Topologies . 99

4.20 User Example . 100

4.21 More User Examples . 100

4.22 More User Examples . 101

4.23 Partial Unglue . 103

4.24 Comparison of Multiway Joins . 103

4.25 Possible Artefacts of Invisible Edges . 104

5.1 Overview of Vector Animation Complexes Cell Types 105

5.2 Sequential Keyframing vs. Topological Keyframing 107

5.3 Stroke Graph Animation With Time-Varying Topology 108

5.4 Topology of Inbetween Edges . 109

5.5 Intuition behind animated cycles . 110

5.6 Example of Valid Animated cycle . 118

5.7 Node-Cell Consistency Invariants . 120

5.8 Invalid Doubly-Linked Lists . 121

5.9 Animated Cycle Violating the Cycle Uniqueness Invariant 122

5.10 Interpolation Scheme . 123

xiii

List of Figures

5.11 Result: Double Torus . 126

5.12 Result: Animated Ribbon . 126

5.13 Result: Flapping Bird . 127

5.14 Result: Head Turning . 128

6.1 Example of Challenging Figure to Author with Current Tools 133

A.1 Example of 2-Manifold without Boundary . 146

A.2 Example of 2-Manifold with Boundary . 146

A.3 Classification of n-manifolds for n ≤ 2 . 147

A.4 Polygonal Presentation of the Torus . 148

A.5 Polygonal Presentation of the Klein Bottle . 148

A.6 Polygonal Presentation of the Sphere . 148

A.7 Polygonal Presentation of the Projective Plane 148

A.8 Example of Non-Manifold Space . 150

A.9 Example of Simplicial Complex . 150

A.10 Different Cell Decompositions of the Sphere 150

A.11 Example of Valid Cell Decomposition, but Invalid CW complex 152

A.12 Example of Quotient Space . 153

A.13 CW Complex Seen as a Quotient Space . 154

A.14 Immersion vs. Embedding . 155

A.15 Different Immersions of the Klein Bottle . 155

B.1 Gluing Conditions . 158

B.2 Example of Valid CW Complex but Invalid PCS Complex 161

B.3 Example of Valid CW Complex but Invalid PCS Complex 161

B.4 Example of Valid 1-Complex . 162

B.5 Examples of Invalid 1-Complexes . 163

B.6 Cell Decompositions of Face Boundary . 164

B.7 Examples of Valid PCS Complexes . 165

B.8 More Examples of Valid PCS Complexes . 166

C.1 Illustration of the Proof of Proposition 7 . 168

D.1 Examples of SmartDelete Operator . 181

D.2 Cut-Torus and Cut-Möbius . 187

D.3 Example of Cut Operator . 190

D.4 Face-Cut Classification . 195

D.5 Illustration of the 9 Ways to Cut a Face at a Closed Edge 196

xiv

List of Figures

D.6 Illustration of the 10 Ways to Cut a Face At an Open Edge 197

D.7 Specifying a Cut using Edge-Uses . 204

E.1 Reduced Star and Atomic Simplification . 220

xv

Acknowledgments

First and foremost, I would like to thank my supervisor Michiel van de Panne. Michiel has been

an inspiration at every single step of the program. He was an exceptional mentor, a sincere friend,

and an unconditional believer in my ideas, no matter how crazy they were. It is often said that

�nding the right supervisor is one of the most important steps towards a successful PhD program;

I am very glad that I got that step right. Whenever I was not sure which path to take, he would

ask me: "Which do you think would have the most impact?". This question is now shaping almost

every decision I take, thank you for adding this new lens to my set of world views.

I would like to thank Rémi Ronfard, Joanna McGrenere, Will Evans, Karon MacLean, Dinesh Pai,

Alla She�er, Hsi-Yung Feng, Daniel Sýkora, and all the anonymous reviewers for their insightful

feedback and discussions on the content of my research. There is no doubt that it would be of much

lesser quality without you. Feeling part of such a friendly but rigorous academic community was a

true privilege. Part of this work was supported by ERC Advanced Grant “Expressive”, by GRAND,

and by NSERC.

I would like to thank Estelle Charleroy, Etienne Colas, anonymous artists, and all of the members

of the VPaint forum for their invaluable user feedback. This entire work would be meaningless

without you. Hearing your excitement for the technology gave me con�dence that I was on the

right track, more than any mathematical proof could. Special thanks to James Lopez for both

his feedback and allowing me to use his work from Hullabaloo. Your dedication to hand-drawn

animation is an inspiration, and I too wish that this beautiful art form never dies.

I would like to thank all my friends who were a constant reminder that there is more to life than

Computer Science. I will never thank you enough for the friendly breakfasts, lunches, and dinners,

the Swing and Salsa dancing, the camping, hiking, kayaking, skiing, and mountaineering, the

ping-pong playing, the movie nights, and other types of nights I may not remember well. I would

like to thank St. John’s College for exposing me to so many diverse cultures and opinions, the

Varsity Outdoor Club for converting me to an outdoor enthusiast, and Pixar for realizing one of

my childhood dreams while taking a useful break from my PhD. Last but not least, I would like to

thank my parents, my sister, and all my family for always being supportive despite my tendency

to �y very far away from where they live. Most importantly, I would like to thank my partner

Elodie, writing this thesis would have been much harder without her love and support.

xvi

Chapter 1

Introduction

This �gure was removed due to copy-

right restrictions. It was a frame from

[MIT Lincoln Laboratory 1964] showing

Ivan Sutherland drawing three line seg-

ments incident at a common vertex.

This �gure was removed due to copy-

right restrictions. It was a frame from

[MIT Lincoln Laboratory 1964] show-

ing Ivan Sutherland editing the common

vertex of three incident line segments.

Figure 1.1: Ivan Sutherland’s Sketchpad program in action. Source: [MIT Lincoln Laboratory 1964], Copyright
1964 MIT Lincoln Laboratory.

Pioneered in 1963 by Ivan Sutherland in his highly in�uential PhD thesis introducing the graphical

program Sketchpad [Sutherland 1963], vector graphics refers to the use of basic mathematical prim-

itives, such as straight lines, ellipses, rectangles, and Bézier curves, to represent two-dimensional

images, animations, and interactive graphics.

One of the core functionality of Sketchpad was to allow users to simultaneously edit three or more

incident lines by simply moving the point where they meet, as demonstrated in Figure 1.1. In the

abstract of his PhD dissertation, Sutherland writes:

“Sketchpad stores explicit information about the topology of a drawing. If the user

moves one vertex of a polygon, both adjacent sides will be moved. If the user moves

a symbol, all lines attached to that symbol will automatically move to stay attached

to it. The topological connections of the drawing are automatically indicated by the

user as he sketches.”

Therefore, already back in 1963, Sutherland understood the value of explicitly storing topological

information about a drawing, such as the incidence relationship between lines: it allows users to

interact with the drawing in intuitive ways which would otherwise not be possible. In fact, not

1

1.1. Contributions

only did Sutherland pioneer vector graphics, but he also pioneered topological modeling.

However, something surprising happened. Fast-forward to 2016. The leading commercial vector

graphics editor in the industry, Adobe Illustrator CC 2016, poorly supports this feature. The leading

open-source vector graphics editor, Inkscape 0.91, does not support this feature at all. The leading

and widely adopted open �le format for vector graphics, W3C SVG 1.1, does not support this

feature at all. Despite how obviously useful this feature is, despite being described in the abstract

of one of the most well-known PhD dissertations in computer graphics history, and despite the

apparent simplicity of implementing it, this feature is largely absent in today’s vector graphics

landscape.

How can this be possible? What went wrong? One can only speculate. However, it may be a hint

that in fact, there are some non-obvious, intrinsic properties of vector graphics that make imple-

menting this feature harder than it looks. Some fundamental problems that 50 years of research

failed to identify and solve. Somehow, a fascinating sub�eld of computer graphics, topological

modeling for vector graphics, failed to materialize in the 1970s to tackle these problems. This thesis

is a long overdue analysis of these problems, and a �rst attempt to solve a few of them.

1.1 Contributions

The �rst contribution of this thesis, presented in Chapter 3, is the development of theoretical foun-

dations of vector graphics topology, grounded in algebraic topology. Importantly, we introduce

the concept of Point-Curve-Surface complex (PCS complex) as a formal tool to interpret vector

graphics illustrations as non-planar topological spaces immersed in R2
. This contrasts with planar

maps which interpret vector graphics illustrations as planar topological spaces embedded in R2
.

Using immersions of non-planar spaces instead of embeddings of planar spaces is a key paradigm

shift that allows us to rigorously reconcile overlapping with shared boundary, two useful vector

graphics features that were mutually exclusive in previous work.

Our second contribution, and probably the most impactful in practice, is the introduction in Chap-

ter 4 of the vector graphics complex (VGC). The VGC is a data structure that supports topological

modeling operations for vector graphics illustrations, based on the theoretical foundations devel-

oped in Chapter 3. Unlike stack-based representations, adopted for instance by the W3C SVG

standard and the vast majority of today’s vector graphics systems, the VGC allows for the coordi-

nated editing of edges sharing a common vertex, and faces sharing a common edge. Unlike planar

maps, much rarer but implemented for instance in Adobe Flash, and Adobe Illustrator since the

introduction of the LivePaint tool in 2005, the VGC allows edges and faces to overlap, keeping the

geometric �exibility of stack-based representations. The VGC is a strict superset of all representa-

2

1.2. Informal De�nition of the Vector Graphics Complex

tions currently in use, adding useful functionalities without sacri�cing any existing ones. Also, it

is reasonably simple to understand and easy to implement (see Section 1.2). Therefore, we believe

that it has the potential to become a de facto standard representation for vector graphics in the

future.

The third and last contribution of this thesis is the introduction in Chapter 5 of the vector ani-

mation complex (VAC). The VAC is a data structure for vector graphics animation, extending the

VGC to the time dimension, and designed to support the modeling of time-continuous topological

events. It other words, it allows the representation of drawings animated continuously over time,

instead of using discrete frames, including when their topology is non-constant. Examples include

two lines merging into one, a line growing from a vertex, or one face splitting into two, such as

cell mitosis. Such topological events are extremely common in 2D traditional hand-drawn anima-

tion (there are typically several of them per second), but until now there was no practical data

structure to model them. Our representation is based on a novel animation paradigm, which we

call topological keyframing, that is designed to overcome the topological limitations of traditional

keyframing. This paradigm can also be applied outside the scope of vector graphics animation,

but is particularly well suited in our application case, since topological events are more common

in 2D animation than 3D animation.

The VGC and the VAC have been implemented as an open-source vector graphics editor called

VPaint, which can be freely downloaded at http://www.vpaint.org, with binaries available for

Windows, MacOS X, and Linux. Experimenting with the topological tools of VPaint before or while

reading this thesis can be a good way to build some initial intuition before dwelving into technical

details. Note that you are free to use, modify, and/or extend VPaint for your own research.

1.2 Informal Definition of the Vector Graphics Complex

Let us now provide an informal de�nition of the VGC, since it is concise enough to �t in this

introduction and is a helpful piece of knowledge to have before reading any other chapter of this

dissertation. To illustrate the de�nition, we also provide a C++ implementation and �rst examples

in Figure 1.2.

A VGC is a topological structure made of four types of cells: vertices, open edges, closed edges, and

faces. A vertex is simply de�ned as a 2D point. An open edge is de�ned as a 2D directed curve

that starts and ends at some vertices, possibly equal. A closed edge is de�ned as a 2D directed

closed curve, with no start or end vertex at all. Finally, a face is de�ned as a 2D closed region

delimited by vertices and edges, ordered in cycles. A cycle is de�ned as either: a closed sequence

of consecutive open edges; or a single closed edge; or a single vertex.

3

http://www.vpaint.org

1.2. Informal De�nition of the Vector Graphics Complex

1 class Cell {
2 std :: unordered_set <Cell*> star;
3 };
4

5 class Vertex : public Cell {
6 Point p;
7 };
8

9 class Edge: public Cell {
10 Vertex *start , *end;
11 DirectedCurve curve;
12 };
13

14 class Halfedge {
15 Edge *edge;
16 bool direction ;
17 };
18

19 class Cycle {
20 Vertex * steiner ;
21 std :: vector <Halfedge > halfedges ;
22 };
23

24 class Face: public Cell {
25 std :: vector <Cycle > cycles ;
26 };
27

28 class VGC {
29 std :: unordered_set <Cell*> cells;
30 };

start

open edge

vertex

(case start != end)

end

closed edge

end

open edge

(case start == end)

start

two incident faces

e1

e2

e3

e4

e5

e6

e7

e8

v
f1

f2

f1->cycles = [e1e
−1
2 e−1

3 e4]
f2->cycles = [e2e

−1
5 e6e

−1
6 e7; v; e−1

8]

(start == end == nullptr)

Figure 1.2: Example C++ implementation of the VGC. In addition to the minimal information required, this
implementation also stores the star of each cell c, which is the set of cells c′ whose boundary contains c.

Typically, one of the cycles represents the outer boundary of the face, and the other cycles represent

inner holes, possibly degenerate (missing curves/points). However, because the cycles of a given

face may intersect, the distinction between outer boundary and inner holes is in general ill-de�ned.

For this reason, the VGC does not explicitly store whether a cycle is an outer boundary or an inner

hole.

Cycles made of consecutive open edges may use the same edge e any number of times, and each of

these edge-uses independently speci�es whether e is traversed in its intrinsic direction, or in the

opposite direction. We use the term halfedge to refer to an edge with such speci�ed direction, and

we respectively denote by e and e−1
the two possible directions. This allows us to denote cycles

using a convenient multiplicative notation, such as γ = e2e
−1
5 e6e

−1
6 e7. Cycles made of a single

closed edge e may use it multiple times, but all uses must be with the same direction, i.e., either

γ = en or γ = e−n. This represents a cycle that circles around the same closed edge multiple

times. Finally, cycles made of a single vertex v are called Steiner cycles and denoted γ = v.

4

1.3. Outline of Dissertation

1.3 Outline of Dissertation

Chapter 2. Background and Related Work. In this chapter, we provide a brief history of

vector graphics, computer animation, and topological modeling, as well as an overview of relevant

work and the state of the art in these �elds.

Chapter 3. The Theoretical Foundations of Vector Graphics Topology. In this chapter,

we �rst give precise de�nitions of many concepts used throughout this dissertation, such as the

de�nition of topology and overlapping. Then, we introduce the concept of PCS complex as a formal

tool to interpret vector graphics illustrations as two-dimensional topological spaces immersed in

R2
. This provides an in-depth understanding of the non-planar, non-orientable nature of vector

graphics shapes, and shows why topological modeling for vector graphics is in fact much harder

than it seems. This chapter can be read independently of the other chapters.

Chapter 4. Vector Graphics Complexes: The Topology of Vector Illustrations. This

chapter provides an analysis of the vector graphic complex, together with many practical consid-

erations, results, and informal discussions. This chapter can be read independently of the other

chapters, but reading Chapter 3 beforehand makes it more insightful, as it provides a rationale for

most design decisions behind the VGC, and a framework to rigorously infer the set of topological

operators acting on VGCs.

Chapter 5. Vector Animation Complexes: The Topology of Vector Animations. This

chapter introduces the vector animation complex, a topological data structure to represent vector

graphics animations whose topology can change over time. Reading Chapter 4 is recommended

before reading this chapter. Indeed, each time-slice of a VAC is nothing else but a VGC, thus a

good understanding of the VGC is required to understand the VAC.

Chapter 6. Conclusion. Finally, we conclude the dissertation with a summary of the contri-

butions of this thesis, and discuss its implications and the road that is still ahead of us.

5

Chapter 2

Background and Related Work

Vector graphics, computer animation, and topological modeling are some of the core sub�elds that

have driven research in the early years of computer graphics. In order to better understand where

this thesis �ts in the big picture, let us recall some of the most relevant bits of the fascinating history

of computer graphics. Most of the historical elements presented here come from various sources

which include the two textbooks Fundamentals of Computer Graphics [Shirley and Marschner 2009]

and Fundamentals of Interactive Computer Graphics [Foley and Van Dam 1982], the books CG 101

[Masson 1999] and Creativity, Inc. [Catmull and Wallace 2014], and the online content of a course

from Ohio State University [Carlson 2003]. However, please note that our aim here is not to be

exhaustive. For conciseness, we omit a lot of key players, and only focus on those that we think

better help understand why and how we arrived where we are today, in the �elds most relevant to

this thesis. For a more exhaustive and accurate history, I highly recommend to read the references

provided above, especially [Carlson 2003] which is easily accessible and a fascinating read. Then,

following Section 2.1, we survey the state of the art in the �elds most related to this thesis.

2.1 Historical Background

Computers are useful to humans only to the extent that we are able to communicate with them,

and improving this communication has always been of critical importance to the development

of computing technology. Computer graphics, and especially the introduction of graphical user

interfaces (GUIs), was one of the key communication medium that has allowed computers to reach

the general public, without which we wouldn’t have computers in our pockets today.

From Punched Cards to Graphical Displays In the early age of computing, a standard com-

munication medium was the 80-column IBM punched card, introduced by Hollerith in 1928, and

used until the 1970s. During this period, there was barely any interactivity: computers were given

data and programs to execute from humans via punched cards (and later tapes or keyboards) and

gave an answer to humans also via punched cards, text printed on paper, lights, bells, or switches.

For instance, The ENIAC computer (Figure 2.1a), completed in 1946 at the University of Penn-

sylvania, used punched cards both as input and output. A few years later, the more advanced

6

2.1. Historical Background

(a) The ENIAC computer (b) The UNIVAC I computer

Figure 2.1: (a) The ENIAC computer. Source: Wikipedia, Copyright 2005 Paul W Sha�er, University of
Pennsylvania, licensed under CC BY-SA 3.0. (b) The UNIVAC I computer. Source: Wikipedia, submitted by user
‘Daderot’, Public Domain.

(a) Vector display (b) Raster display

Figure 2.2: The two types of CRT displays, at the origin of the terminology vector graphics vs raster graphics.
Source: inspired from [Carlson 2003].

UNIVAC I computer (Figure 2.1b), commercialized in the United States starting 1951, also accepted

punched cards as input/output. However, it also accepted magnetic tapes, and could be hooked to

other output devices such as an electric typewriter, and more importantly in the context of this

dissertation, an early Tektronix oscilloscope.

Raster Displays vs Vector Displays Oscilloscopes, and more generally cathode ray tubes

(CRTs), are indeed the �rst type of graphical display systems that were used with computers.

There are two types of CRT displays: vector displays and raster displays, also called random-scan

displays and raster-scan displays [Foley et al. 1990, Chapter 4]. In both cases, a CRT is made of an

electron gun emitting a stream of electrons that eventually hits a phosphor-coated screen, emitting

light. However, in CRT vector displays, the trajectory of the electron gun follows a sequence

7

2.1. Historical Background

of user-speci�ed MoveTo(X,Y) and LineTo(X,Y) commands (Figure 2.2a), while in CRT raster

displays it follows a �xed trajectory covering the whole screen with a prede�ned number of scan

lines (Figure 2.2b). Note that vector displays were incapable of drawing many features that are

now common in vector graphics, such as lines of varying width, �lled interiors of given contours,

and speci�c join styles between vector lines (e.g., miter joins, as seen in Figure 2.5). All of these

are possible with raster displays via rasterization algorithms. This limitation of vector displays,

and thus of Sketchpad, may in fact be an important reason why Sketchpad was able to feature

topological modeling, while current vector graphics applications do not. Vector displays were used

up to the 1970s due to their more a�ordable price, but are now obsolete in favor of today’s raster

displays. The distinction between these two types of displays is at the origin of the terminology

vector graphics versus raster graphics.

Sketchpad: Pioneering Interactive Computer Graphics In 1959, the TX-2 computer was

built at the MIT [Reilly 2003, p261], and included a nine-inch CRT vector display as output, as well

as a light pen as input, a technology also developed at the MIT as part of the Whirlwind project a

few years earlier. The combination of this graphical input/output enabled Ivan Sutherland to build

Sketchpad [Sutherland 1963], the �rst ever GUI, which is one of the most signi�cant milestones

ever achieved in computer graphics history, and especially interactive graphics. Notably, the an-

cestor of vector graphics was born. As mentioned in the Introduction, it is interesting to note that

this ancestor of vector graphics featured some aspects of topological modeling, such as the correct

representation of 3-way joins (see Figure 1.1), which Adobe Illustrator does not properly support

today. However, it is important to recall that due to the limitations of the vector display, Sketch-

pad’s topological model did not have to support faces (2D regions �lled with a given color), nor

to support the rendering of various join styles, both of which are important features that Adobe

Illustrator had to support early on. These features make topological modeling much harder, as we

will see in Chapter 3.

DAC-1: Pioneering Computer-Aided Design In the same period of time, roughly from 1959

to 1967, computer-aided design (CAD) also started to emerge, with IBM and General Motors work-

ing together on a project called DAC-1 (Design Augmented by Computers). This project aimed at

proving the feasibility of using computers to solve problems related to vehicle-body design [Krull

1994]. They were using a similar system as Sketchpad, with a CRT display as output and a light

pen as input, but instead were working on three-dimensional mathematical car models. Very early,

they also noticed the importance of storing the topology of the model, i.e., not just the shape of the

surfaces, but also the incidence relationship between the di�erent surfaces. From this point on, the

CAD industry became one of the strongest driving forces of computer graphics, with topological

modeling at its core. In contrast, within the �eld of vector graphics, topological modeling failed

to take root, which motivates this thesis.

8

2.1. Historical Background

This �gure was removed due to copyright restrictions. It was a frame from [Capen et al. 2014]

showing an excerpt of PostScript syntax and the corresponding illustration.

Figure 2.3: The PostScript graphics language for printing. Source: [Capen et al. 2014], Copyright 2014 Adobe
Systems Inc.

From Sketchpad to Pixar and Adobe In 1968, Ivan Sutherland, the author of Sketchpad,

moved to the University of Utah to become a professor, and co-founded Evans and Sutherland

with his friend and colleague David Evans. With their colleagues, students, and employees, in a

few years, they went on to make many early breakthroughs in computer graphics, such as texture

mapping, Z-bu�ering, subdivision surfaces, and hidden surface removal. One of their doctoral stu-

dents was Edwin Catmull, who started his PhD in 1970. After graduating in 1974, Edwin Catmull

led the new and highly in�uential Computer Graphics Lab at New York Institute of Technology

(NYIT), then moved to California in 1979 to work for George Lucas at LucasFilm, where he led the

Graphics Group that eventually became Pixar when spun-o� as a separate corporation in 1986,

with the �nancial support of Steve Jobs. Another employee of Evans and Sutherland was John

Warnock, whose importance is even greater in the context of this thesis. John Warnock started

working for Evans and Sutherland in 1976, then moved in 1978 to Palo Alto to join Xerox PARC,

also a very in�uential research center in computer graphics. John Warnock was interested in de-

veloping a graphics language to control printing, and he left Xerox in 1982 to co-found Adobe,

where he developed PostScript (released in 1984), then Adobe Illustrator (released in 1987), which

is the �rst software product of Adobe [Capen et al. 2014].

PostScript and Adobe Illustrator Released in 1984, PostScript (see Figure 2.3) can be seen as

the �rst widely adopted vector graphics �le format, hence the �rst widely adopted vector graphics

representation. However, it was designed as a unifying language that every printer could under-

9

2.1. Historical Background

This �gure was removed due to copy-

right restrictions. It was a frame from

[Capen et al. 2014] showing the splash-

screen from Illustrator 1.

(a) Splash screen of Adobe Illustrator 1

This �gure was removed due to copy-

right restrictions. It was a frame from

[Capen et al. 2014] showing a screenshot

from Illustrator 1.

(b) Screenshot of Adobe Illustrator 1

Figure 2.4: Adobe Illustrator 1, released in 1987. Source: [Capen et al. 2014], Copyright 2014 Adobe Systems
Inc.

stand, and therefore focused on simplicity, not art-directability. In addition, in its early days (before

Illustrator was released), it had to be written by hand by programmers, which further emphasizes

the focus on simplicity. These practical considerations may be one of the reasons why topological

information, such as incidence relationships between paths, was left out of this standard. In 1987,

Adobe released the �rst version of Illustrator (see Figure 2.4) as a graphical front-end to create

PostScript art, as well as typographic fonts. Illustrator did not support the topological modeling

features that were pioneered within Sketchpad, perhaps as a natural consequence of PostScript

not supporting the encoding of topological information. Therefore, the �rst version of Adobe Il-

lustrator did not support the coordinated editing of edges sharing a common vertex (supported in

Sketchpad), or the coordinated editing of faces sharing a common edge (not supported in Sketch-

pad either, since Sketchpad did not support �lled regions at all). This choice was understandable

at the time: as we will see in Chapter 3 and 4, implementing these features is in fact far from trivial

when color �lling and edge styling is also a requirement, and therefore given the many technical

constraints of writing software back in 1987, the features that did make it to Illustrator 1.0 were

already a big achievement. However, it is surprising that very little progress has been made since

then to identify and address these issues. Notably, nearly 30 years later, Adobe Illustrator CC 2016

still does not properly support these features. Even though the LivePaint tool (Adobe’s implemen-

tation of dynamic planar maps [Asente et al. 2007]) provides some aspects of coordinated editing,

the objects created with this tool cannot interact with the more traditional paths which are still

widely used and required as input to most Illustrator’s tools. Converting LivePaint groups to paths

causes the topological information to disappear, and therefore causes edge joins not to be properly

rendered. Finally, the full range of topological operators common in every CAD application, such

as merging or splitting edges, is not supported.

10

2.1. Historical Background

(a)

(b)

(c)

(d)

(e)

(f)

(g)

desired

three stroked

two stroked

two stroked

two stroked

one �lled

three VGC edges

SVG paths

SVG paths

SVG paths

SVG paths

SVG path

with shared vertex

(future work)

Figure 2.5: Styling issues when animating—or interacting with—a 3-way ‘miter’ join. (a) Desired style. (b-
f) Incorrect styling using SVG in various ways. (g) Example of artefact-free styling that might be achieved using
VGC edges. However, note that in this thesis we only solve how to store the topological information, and the �ve
images in the last row were manually produced individually. How to computationally produce a good-looking,
artefact-free miter join style from the topological information is a hard problem on its own, left for future work.

11

2.1. Historical Background

(a) (b)

Figure 2.6: In order to represent geographic maps in SVG, such as here the 2016’s European Union, one
must duplicate geometric information at the boundary between countries, because SVG does not allow the rep-
resentation of shared edges between faces. (a) SVG content as seen by end users. (b) Underlying topological
representation. Source: modi�ed from Wikipedia, submitted by user ‘Ssolbergj’, licensed under CC BY-SA 3.0.

Adobe’s Heritage Most vector graphics �le formats and tools that followed PostScript and

Adobe Illustrator used a similar data representation, and the topological modeling features of

Sketchpad seem to have been forgotten by the vector graphics community. One can only speculate

why, but it is probably an unfortunate combination of many factors. Perhaps subsequent tools had

to stay compatible with the industry standard set by Adobe. Perhaps they were simply heavily

in�uenced by PostScript and Illustrator. Perhaps the few industrial players who tried to develop

topological modeling for vector graphics did not have the mathematical background or time re-

quired to tackle the issues that we identify and/or address in this thesis. Perhaps the academic

researchers who could have tackled these issues were not aware of them, because vector graphics

topology appears like a solved topic. Perhaps there is too little research on vector graphics in gen-

eral, because most research leans towards 3D graphics which is more appealing to the majority of

scientists. In any case, the consequence of the lack of research in vector graphics is that to this

day, in 2016, the currently leading open standard for vector graphics, W3C SVG 1.1, still does not

include any topological information [SVG Working Group 2011]. Therefore, something as seem-

ingly simple as three edges sharing a vertex cannot be intuitively modeled, stylized, and animated

in your browser (see Figure 2.5). Also, any geographic map must store redundant geometric in-

formation at the boundary between countries, because the current standard does not allow faces

to share common edges (see Figure 2.6). The latter issue has already been identi�ed by the com-

munity, and extensions of SVG have been proposed [Moissinac 2010] to solve it, but they are not

12

2.2. Related Work in Vector Graphics

1 <path
2 d="M 5,5 L 200 ,5 L 200 ,200"
3 stroke -width="10"
4 stroke =" darkgreen "
5 fill=" lightgreen "/>

Figure 2.7: The SVG representation, with an example SVG code (left), and the �nal output (right). The d
attribute speci�es the geometry of the path, which in this case should be read as MoveTo(5,5), then LineTo(200,5),
then LineTo(200,200).

part of the current SVG 2.0 Candidate Recommendation [SVG Working Group 2016], thus are very

unlikely to be part of the future SVG 2.0 standard. Also, the solution is an ad-hoc primitive to

support this speci�c feature, and not the fundamental change that is required to make topological

information a �rst-class citizen of the representation, as we propose in this thesis.

In the three remaining sections of this chapter, we respectively review the most relevant subset of

the state of the art in vector graphics, topological modeling, and animation.

2.2 Related Work in Vector Graphics

SVG Representation The most common way to represent vector graphics illustrations, both in

academic and commercial systems, consists of using a set of independent paths which are layered,

or stacked, on top of one another, such as the SVG representation [SVG Working Group 2011]. Even

though there exist some nuances between di�erent systems (e.g., Adobe Illustrator vs. Inkscape),

they are essentially identical from a topological standpoint, therefore, for conciseness, we collec-

tively refer to all such stacking-based representations as the SVG representation. Each path is a

one-dimensional curve, for example represented via Bézier control points, which can be either

open or closed. To specify how each path is to be rendered, style attributes are attached to them.

For instance, in SVG, the stroke attribute speci�es the color of the curve, the stroke-width

attribute speci�es the width of the curve, and the fill attribute speci�es the color of the 2D re-

gion “inside” the curve (where “inside” is de�ned by a winding rule, and open paths are implicitly

closed using a straight line), as illustrated in Figure 2.7. The SVG representation is fundamen-

tally limited in its ability to model even basic topological constructs, such as joining an edge (or

path) to the middle of another edge, or sharing an edge between two faces, as we have seen in

Section 2.1.

Depth Ordering Most stacking-based systems use a back-to-front rendering of paths, group

of paths, and layers to designate the occlusion relationships among objects, which are then com-

posed together using alpha-blending [Porter and Du� 1984]. However, illustrations with cycles

13

2.2. Related Work in Vector Graphics

(a) Paths (b) Colored (c) Edited

Figure 2.8: Two examples of dynamic planar maps illustrations. (a) Open and/or closed paths are given as
initial input. (b) These paths de�ne a partition of the canvas into regions that can be independently colored.
(c) Heuristics are used to preserve colored regions while the input paths are edited. Source: [Asente et al. 2007],
used with permission.

in the occlusion relations require developing work-arounds or alternate solutions. One approach

is to develop local orderings [Wiley and Williams 2006, McCann and Pollard 2009] that allow for

the stacking order to be speci�c to a particular area of the illustration. For cases where the illus-

tration arises from known 3D geometry, algorithms exist to identify the cycles and automatically

split a face so as to break the occlusion cycle [Eisemann et al. 2009]. Another solution that is par-

ticularly well suited to the depiction of knots and folds is to implement deformations to the 3D

geometry so as to produce a desired local stacking order as speci�ed by a user [Igarashi and Mitani

2010]. Other work is aimed at the automatic extraction of 2D contiguous faces from underlying

3D geometry [Karsch and Hart 2011].

Planar Maps Besides stacking-based systems, it is also common—although less common—to

represent vector graphics illustrations using planar maps [Baudelaire and Gangnet 1989]. A pla-

nar map is a topological structure that is able to represent a partition of R2
into regions, delimited

by a set of intersecting 2D paths given as input (see Figure 2.8a), which can then be independently

assigned style attributes such as color �lling (see Figure 2.8b). One advantage of planar maps over

stacking-based systems is that they can represent faces sharing common edges, which makes them

more suitable for a wide class of illustrations that cannot be easily decomposed into independent

paths. However, a di�culty of this approach is that the planar map needs to be recomputed when-

ever the original 2D paths are edited. By default, the need to compute a new planar map results

in a loss of the attribute information stored with the original faces of the planar map. In prac-

tice, it is in fact possible to devise heuristics for establishing correspondences between the new

faces and the original faces, thereby allowing the attribute information to be carried over after

edits [Asente et al. 2007] (see Figure 2.8c). Also, planar maps, as their name suggests, are unfortu-

14

2.2. Related Work in Vector Graphics

This �gure was removed due to copyright restrictions. It was a �gure from [Whited et al. 2010]

showing two keyframes and the automatically generated inbetweens.

Figure 2.9: Example of inbetween frames that can be automatically generated by leveraging the topological
information encoded in stroke graphs. Source: [Whited et al. 2010].

nately not able to represent regions that overlap with one another, which is a signi�cant hindrance

for artistic freedom. Several planar maps can be stacked as layers, but then shapes in di�erent lay-

ers cannot be topologically connected, unlike with our representation. Closely related to planar

maps, [Takayama et al. 2013] proposes a curve network representation well-suited for free-form

sketching of patches decomposing a 3D mesh, useful for user-guided quad remeshing.

Stroke Graphs Stroke graphs [Whited et al. 2010] represent the topology of a drawing as a

graph, where nodes represent where strokes end or intersect, and edges represent the strokes

themselves. This topological information can be used to establish automatic stroke correspon-

dences between two keyframes of a traditional 2D animation, and provide topology-aware in-

terpolation of the strokes (see Figure 2.9). Also, it can be used to vectorize pencil line drawings

with accurate topology [Noris et al. 2013, Favreau et al. 2016]. However, stroke graphs do not ad-

dress the issue of the representation of faces, and, to the best of our knowledge, no previous work

with stroke graphs discussed overlapping edges (even though the data structure supports them),

or the usefulness of this structure as an interactive drawing paradigm. Our work can be seen as

an extension of stroke graphs to support closed edges and faces, together with a theoretical anal-

ysis of the consequences of allowing overlapping, and its application as an interactive drawing

paradigm.

Smooth-Shaded Vector Images In order to to represent vector graphics images with smooth

shading, the simplest option is to �ll each path with a linear or circular color gradient instead

of a solid color. This method is standard and has been widely available across all vector graph-

ics systems for decades. A more recent technique is to use a gradient mesh, for instance de�ned

as a Coons surface [Coons 1967]. This technique is implemented for instance in recent versions

15

2.3. Related Work in Topological Modeling

Figure 2.10: Example of smooth-shaded vector illustration obtained using di�usion curves. Source: [Orzan
et al. 2008], used with permission.

of Adobe Illustrator and Corel CorelDraw, and has been successfully used to accurately vector-

ize photograph images [Sun et al. 2007]. More recently, [Orzan et al. 2008] introduced di�usion

curves, where smooth-shaded vector images are represented by two-sided colored paths, possibly

intersecting, whose color a�ect nearby regions via a di�usion equation (see Figure 2.10). However,

none of these representations are meant to or are able to represent the topology of line drawings,

and therefore are not suitable for topological modeling. Though, they can potentially be used to-

gether with our topological representation to provide smooth shading, which we leave for future

work.

2.3 Related Work in Topological Modeling

In Section 2.2, we have discussed the limitations of existing vector graphics representations: the

SVG representation [SVG Working Group 2011] and di�usion curves [Orzan et al. 2008] do not

store any incidence relationships, stroke graphs [Whited et al. 2010] do store incidence rela-

tionships between edges but do not represent faces, and planar maps [Baudelaire and Gangnet

1989, Asente et al. 2007] do store incidence relationships between both edges and faces but can

represent neither overlapping edges nor overlapping faces. Therefore, we found that none of these

representations were good candidates to support topological modeling for vector graphics. In this

section, we now review representations that have actually been successful to support topological

modeling, but outside of the realm of vector graphics. In this thesis, we took inspiration from these

existing topological structures, and adapted them to the problems at hand.

In Figure 2.11, we provide a comparison between these existing structures and the VGC, high-

lighting how none of the existing structures satis�ed our requirements. We wanted a topological

16

2.3. Related Work in Topological Modeling

Winged-Edge / Halfedge

Quad-Edge

Radial-Edge / Partial Entity

Combinatorial Maps

Cell-Tuples / Generalized Maps

Chains of Maps

Simplicial Complexes

CW Complexes

Geometric Complexes / SGC / STC

PCS Complexes

SVG-Like Representations

Planar Maps

S
c
a
l
e
s

t
o

a
r
b
i
t
r
a
r
y

d
i
m

e
n
s
i
o
n

Vector Graphics Complexes

A
d
m

i
t
s

c
o
m

b
i
n
a
t
o
r
i
a
l
r
e
p
r
e
s
e
n
t
a
t
i
o
n

O
v
e
r
l
a
p
p
i
n
g

S
h
a
r
e
d

b
o
u
n
d
a
r
i
e
s

N
o
n
-
p
l
a
n
a
r

t
o
p
o
l
o
g
i
e
s

N
o
n
-
o
r
i
e
n
t
a
b
l
e

t
o
p
o
l
o
g
i
e
s

N
o
n
-
m

a
n
i
f
o
l
d

t
o
p
o
l
o
g
i
e
s

N
-
s
i
d
e
d

f
a
c
e
s

F
a
c
e
s

w
i
t
h

i
n
n
e
r

h
o
l
e
s

C
l
o
s
e
d

e
d
g
e
s

N
o
n
-
p
l
a
n
a
r

/
n
o
n
-
o
r
i
e
n
t
a
b
l
e

f
a
c
e
s

U
n
i
q
u
e

m
i
n
i
m

a
l
d
e
c
o
m

p
o
s
i
t
i
o
n

N/A

N/A

Figure 2.11: Comparison between existing topological structures and ours (in bold). The two question marks
mean that we conjecture this property to be true, although we have no formal proof yet. The parentheses
mean that even though vector graphics complexes do not explicitly encode non-planarity or non-orientability
information for individual faces, they do allow for the representation of faces which humans would perceptually
interpret as being non-planar or non-orientable. Note that by non-planar faces, we mean non-genus-0 faces,
i.e., faces which cannot be embedded in a plane. Most of these data structures do support “curved” faces (such
as a half-sphere), but very few support non-planar faces (such as a torus or a Möbius strip).

structure with a representational power similar to the SGC [Rossignac and O’Connor 1989], but

with the geometric �exibility of stacking-based systems (the SGC can only represent embeddings,

and does not admit a purely combinatorial representation, unlike the SVG representation). We

were able to achieve this by narrowing our scope to dimension 2, allowing us to make less com-

promises on other features. Ultimately, the VGC can be seen as a variant of the radial-edge data

structure [Weiler 1986], extending it to support closed edges and non-planar faces, but with no

radial ordering of edge-uses, no face-uses, no shells, and no regions.

Array-Based Data Structures One of the simplest and most compact ways to represent a

triangle mesh is as an array P = [p1, . . . , pn] of n positions pi ∈ R3
, together with an array

17

2.3. Related Work in Topological Modeling

1 class Vertex {
2 Point p;
3 Edge *edge;
4 };
5

6 class Edge {
7 Vertex *start , *end;
8 Face *left , *right;
9 Edge *startLeft , * startRight ;

10 Edge *endLeft , * endRight ;
11 };
12

13 class Face {
14 Edge *edge;
15 };
16

17 class WingedEdgeDS {
18 std ::set < Vertex *> vertices ;
19 std ::set <Edge*> edges;
20 std ::set <Face*> faces;
21 };

end

start

left right

endRig
ht

endLeft

sta
rtL

eft startRight

Figure 2.12: Example implementation of the winged-edge data structure.

I = [i1, i2, i3, . . . , i3m−2, i3m−1, i3m] of 3m indices ij ∈ [1..n], where each consecutive triplet

of indices represents one triangle. The array I stores the topology of the mesh, while the array

P , optional for applications that only care about topology, stores the geometry of the mesh. The

same idea can be easily adapted to store quad meshes, or arbitrary polygonal meshes. In some

cases, the size of the array I can be reduced by grouping triangles into “triangle strips”, avoiding

to repeat redundant indices. In such cases, the amortized per-triangle storage cost can be as low

as one index i ∈ N. Due to their simplicity and compactness, these types of representations are

very popular as data formats (e.g., OBJ) or APIs (e.g., OpenGL), but they are generally not suitable

for interactive topological modeling sessions or geometry processing, since most topological edits

or adjacency queries have a O(n+m) complexity.

Winged-Edge Data Structure The winged-edge data structure [Baumgart 1972] is a simple

data structure that supports topological modeling for manifold, orientable polygonal meshes. Most

local topological edits and adjacency queries can be achieved in amortizedO(1) orO(ln(n)) time.

The idea is to store, for each edge e, its two end vertices vstart and vend (in an arbitrary order),

its two incident faces fleft and fright (in an order consistent with vstart and vend), and its four

“wing edges”, that is, the four edges which are incident to e and in the boundary of either fleft

or fright (see Figure 2.12). Each vertex (resp. face) arbitrarily points to one of its incident (resp.

boundary) edges. The other incident (resp. boundary) edges can be discovered by traversing the

structure.

18

2.3. Related Work in Topological Modeling

1 class Vertex {
2 Point p;
3 Halfedge * halfedge ;
4 };
5

6 class Halfedge {
7 Vertex * vertex ;
8 Face *face;
9 Halfedge *previous , *next;

10 Halfedge * opposite ;
11 };
12

13 class Face {
14 Halfedge * halfedge ;
15 };
16

17 class HalfedgeDS {
18 std ::set < Vertex *> vertices ;
19 std ::set < Halfedge *> halfedges ;
20 std ::set <Face*> faces;
21 };

vertex

face

o
p

p
o

s
i
t
e

next

pre
vio

us

Figure 2.13: Example implementation of the halfedge data structure.

Halfedge Data Structure The halfedge data structure [Weiler 1985, Kettner 1999] is equivalent

to the winged-edge data structure, but allows for slightly more e�cient traversal by splitting each

edge into two halfedges (see Figure 2.13). For instance, traversing all boundary edges of a given

face can be directly achieved via face->halfedge->next->next->next->..., while with the

winged-edge data structure, it requires some bookkeeping and a conditional statement to decide

whether "next" should be endLeft or startRight. However, this performance gain is in fact

negligible, and not the primary reason to prefer this structure. More fundamentally, it is useful to

be able to refer to “a given edge, as seen from the perspective of a given face”, which is one way

to interpret the concept of halfedge. This interpretation turned out to be a key idea that most sub-

sequent topological data structures relied upon, equivalent to the concept of edge-use extensively

analyzed by Weiler in his PhD dissertation [Weiler 1986]. This concept was later formalized and

generalized to arbitrary dimension by [Brisson 1989] with the introduction of cell-tuples, which

we detail later in this section. But for now, let us just observe that in the case of orientable surfaces

without boundary, each edge is used exactly two times (i.e., each edge has exactly two incident

faces), which is why we only need two "halfedges" to represent this class of surfaces.

Quad-Edge Data Structure The quad-edge data structure [Guibas and Stol� 1985] extends

the ideas of the halfedge data structure in order to represent non-orientable surfaces. Intuitively,

the ability to refer to "an edge, as seen from a face" is extended to also specify from which side

of the surface the edge is considered. As suggested by the original authors, imagine a small bug

19

2.3. Related Work in Topological Modeling

e

Onext
(e)

(a) (b) (c)

e Sym(e) Flip(e) Sym(Flip(e))

Figure 2.14: Illustration of the concept of edge direction and edge orientation in the quad-edge data struc-
ture. (a) The four di�erent ways to walk along an edge, keeping the edge on your right. (b) Onext(e) is the
edge obtained by rotating counterclockwise around the origin vertex of e. (c) Sym(e) is the edge obtained by
switching the direction of e, and Flip(e) is the edge obtained by switching the orientation of e.

1 class EdgeRef {
2 QuadEdge *q;
3 int r;
4 int f;
5 };
6

7 class QuadEdge {
8 Data data [4];
9 EdgeRef onext [4];

10 };
11

12 class QuadEdgeDS {
13 std ::set < QuadEdge *>
14 quadEdges ;
15 };

data

onext

e = (q, 0, 0) Rot(e) = (q, 1, 0)

Sym(e) = (q, 2, 0) Flip(e) = (q, 0, 1)

Figure 2.15: Example implementation of the quad-edge data structure.

walking on the surface, along an edge (see Figure 2.14a). The bug can be on either side of the edge,

and on either side of the surface, resulting in four di�erent con�gurations. In the quad-edge data

structure, these four con�gurations are represented by splitting each edge into four edges, each

with a given direction (from which vertex to which vertex), and a given orientation (which side of

the surface)
1
. In order to traverse the data structure, each directed oriented edge e points to three

other directed oriented edges: Sym(e), Flip(e), and Onext(e) (see Figure 2.14b,c).

In addition, the authors make the choice to explicitly represent in their data structure the dual

of the mesh. This means that each of the four directed oriented edge e is paired with a dual

1

Interestingly, while many authors use direction and orientation interchangeably, those who do make a di�erence are

generally consistent with the usage of Guibas and Stol�. Fundamentally, direction is a purely one-dimensional concept,

while orientation requires the existence of two-dimensional objects (e.g., “edge direction” vs. “surface orientation”). One

can say that a closed edge is “oriented clockwise”, but note how this only makes sense if the edge is embedded in an

orientable surface, and an orientation of this surface is chosen (this choice may be implicit). If the edge is embedded

in a non-orientable surface, one can still choose a local orientation of the surface, which is what the quad-edge data

structure e�ectively does.

20

2.3. Related Work in Topological Modeling

(a) (b) (c)

f1

f3

f2

e1

fu1

fu2
mate

e1

fu3

fu4

fu5
fu6

eu1

eu2
eu3

eu4

eu5

eu6

radialmate

next

previous

Figure 2.16: Illustration of the concept of edge-use and face-use in the radial-edge data structure. (a) The six
di�erent ways to walk along an edge shared by three faces. (b) The corresponding six edge-uses (red), six face-
uses (blue), and the previous and next pointers of one of the six edge-uses. (c) Cross-section of these edge-uses
and face-uses, and their corresponding mate and radial pointers. Source: inspired from [Weiler 1986], Figure 17
– 6, page 198.

edge, e�ectively splitting in eight the original non-directed non-oriented edges of the mesh (see

Figure 2.15, right). To navigate between primal and dual elements, each of the eight directed

oriented edge e points to Rot(e), the dual edge obtained after a “90° counterclockwise rotation

around its midpoint”. While this representation of the dual mesh is quite elegant and allows for

a very compact implementation, it is in fact less fundamental than the aforementioned concept

of edge direction vs. orientation. Indeed, as noted by [Brisson 1989], the dual elements are not

necessary for representational power, and a variant of the quad-edge data structure without these

dual elements would still be able to represent non-orientable surfaces.

As detailed in [Guibas and Stol� 1985], implementations of the quad-edge data structure do not

need to allocate separate objects for each of the eight directed oriented edges. Instead, a single

quad-edge q can be used as reference, and all eight edges e can be referred to as triplets e = (q, r, f),

with r ∈ {0, 1, 2, 3} and f ∈ {0, 1}. This way, the functions Rot(e), Flip(e), and Sym(e) are

implicitly given by Rot(q, r, f) = (q, r + 1, f), Flip(q, r, f) = (q, r, f + 1), and Sym(q, r, f) =
Rot2(q, r, f) = (q, r + 2, f), thus do not require any additional storage. Only Onext(e) needs to

be explicitly stored, and taking advantage of symmetries, storing four of the eight Onext(e) per

quad-edge is actually enough (see Figure 2.15, left).

Radial-Edge Data Structure The radial-edge data structure [Weiler 1986] further extends the

ideas of the halfedge and quad-edge data structures, in order to represent non-manifold surfaces,

such as when an edge is shared by three faces (Fig. 2.16a). Intuitively, in this speci�c case, the edge

is used six times: once for each of the two sides of each of the three incident faces (Fig. 2.16b).

21

2.3. Related Work in Topological Modeling

1 class RadialEdgeDS {
2 Model * models ;
3 };
4

5 class Model {
6 Model *previous , *next;
7 Region * regions ;
8 };
9

10 class Region {
11 Model * owningModel ;
12 Region *previous , *next;
13 Shell * shells ;
14 };
15

16 class Shell {
17 Region * owningRegion ;
18 Shell *previous , *next;
19 // Mut. excl. alternatives :
20 // 1. Non - degenerate
21 FaceUse * faceUses ;
22 // 2. Wireframe
23 EdgeUse * edgeUses ;
24 // 3. Steiner vertex
25 VertexUse * vertexUse ;
26 };
27

28 class Face {
29 FaceUse * faceUses ;
30 FaceGeometry geometry ;
31 };
32

33 class Loop {
34 LoopUse * loopUses ;
35 };
36

37 class Edge {
38 EdgeUse * edgeUses ;
39 EdgeGeometry geometry ;
40 };
41

42 class Vertex {
43 VertexUse * vertexUses ;
44 VertexGeometry geometry ;
45 };
46

47 class FaceUse {
48 Shell * owningShell ;
49 FaceUse *previous , *next;
50 FaceUse *mate;
51 LoopUse * loopUses ;
52 Face *face;
53 bool orientation ;
54 };
55

56 class LoopUse {
57 FaceUse * owningFaceUse ;
58 LoopUse *previous , *next;
59 LoopUse *mate;
60 Loop *loop;
61 // Mut. excl. alternatives :
62 // 1. Non - degenerate
63 EdgeUse * edgeUses ;
64 // 2. Steiner vertex
65 VertexUse * vertexUse ;
66 };
67

68 class EdgeUse {
69 VertexUse * startVertexUse ;
70 EdgeUse *mate;
71 Edge *edge;
72 // Mut. excl. alternatives :
73 // 1: Used as wireframe of
74 // shell
75 Shell * owningShell ;
76 // 2: Used as edge of
77 // loop use
78 LoopUse * owningLoopUse ;
79 EdgeUse *previous , *next;
80 EdgeUse * radial ;
81 bool direction ;
82 };
83

84 class VertexUse {
85 VertexUse *previous , *next;
86 Vertex * vertex ;
87 // Mut. excl. alternatives :
88 // 1. Used as Steiner vertex of
89 // shell
90 Shell * owningShell ;
91 // 2. Used as Steiner vertex of
92 // loop use
93 LoopUse * owningLoopUse ;
94 // 3. Used as start vertex of
95 // edge use
96 EdgeUse * owningEdgeUse ;
97 };

Figure 2.17: Example implementation of the radial-edge data structure. “Mut. excl.” is a shorthand for
“Mutually exclusive”, which means that only one of the alternatives has non-null pointers.

22

2.3. Related Work in Topological Modeling

The two sides of each face are explicitly represented as two face-uses, all uses of each edge are

explicitly represented as edge-uses, and all uses of each vertex are explicitly represented as vertex-

uses. By “explicitly represented”, we mean that objects of type VertexUse, EdgeUse and FaceUse

are dynamically allocated (i.e., they have an identity), and they store pointers to neighboring uses

in a linked-list fashion (see Figure 2.16b,c and Figure 2.17). This concept of explicit uses also exists

in the halfedge data structure (each halfedge can be interpreted as one edge-use), but contrasts

with the quad-edge data structure and the VGC, where these uses are implicit
2
.

In addition, unlike the other data structures that we have seen so far in this section (but like the

W3C SVG representation, planar maps, and the representations we introduce in this thesis), the

radial-edge data structure allows faces to have inner holes. In other words, faces are not necessarily

topological disks. However, they must still be genus-0 (i.e., orientable and without handles), unlike

in our PCS complex where we also waive this restriction. Both the outer boundary and inner

holes (which, for curved surfaces, are topologically indistinguishable) are represented in the radial-

edge data structure using the concept of loop, which is analogous to our concept of cycle3
. Each

loop is used exactly twice—once for each side of the face it belongs to—and these two loop-uses

point to one another via their mate pointer. However, one can notice that the edge-uses that

compose a given loop-use essentially contain the same information as the edge-uses that compose

its mate loop-use. There exist many variants of the radial-edge data structures (e.g., [Gursoz et al.

1990, Marcheix and Gueorguieva 1995]), and the partial entity structure [Lee and Lee 2001] is one

that factorizes this duplicated information to propose a more compact representation.

Finally, the radial-edge data structure also de�nes the concepts of regions and shells, which are

the three-dimensional counterparts of faces and loops, in order to represent solid objects. Since

the VGC only aims at representing two-dimensional objects, it has no equivalent of these con-

cepts.

Nef Polyhedra A Nef polyhedron [Nef 1978] is a point-set of Rn de�ned via boolean operations

of halfspaces. In other words, in the case of R3
, it represents an arrangement of 3D solids, possi-

bly non-manifold and with degeneracies (e.g., isolated points), whose boundaries are de�ned by

planes, i.e., edges are straight lines and faces are non-curved surfaces. [Granados et al. 2003] in-

2

In the case of the VGC, this is re�ected by the fact that the classes Vertex, Edge, and Face are used with pointer

semantics, but the classes Halfedge and Cycle are used with value semantics, making it impossible to "point" to a

halfedge. However, we acknowledge that this implicit vs. explicit choice is more an implementation detail than a funda-

mental property of the model. For instance, instead of being implemented as “std::vector<Halfedge> halfedges”,

VGC cycles may be implemented as “EdgeUse *edgeUses”, where edgeUses is the �rst node of a doubly linked-list,

each node pointing to the “previous” and “next” edge-use, and possibly also pointing to “radial” edge-uses. These choices

correspond to trade-o�s between readability, maintainability, storage costs, and performance costs, which we do not

analyze in this thesis.

3

In the VGC, we favored the terminology cycle instead of loop for consistency with graph theory and algebraic

topology: a (directed) path is a sequence of (directed) edges, and a cycle is simply a closed path.

23

2.3. Related Work in Topological Modeling

1 template <unsigned int n>
2 class Dart {
3 Dart* beta[n];
4 };
5

6 template <unsigned int n>
7 class CombinatorialMap {
8 std :: vector <Dart <n>*> darts;
9 };

d

β2(d)
β1(d)

Figure 2.18: Example implementation of combinatorial maps.

troduces a data-structure similar to the radial-edge data structure to represent such non-manifold

spaces. The concept of sphere map, �rst introduced in [Dobrindt et al. 1993], is used to provide

an explicit representation of the possibly non-manifold geometry around each vertex, unlike in

the radial-edge data structure where all vertex-uses of a given vertex are stored in no particular

order, and unlike in the VGC where even incident faces of a given edge are not ordered (since this

information is meaningless for vector graphics). However, since Nef polyhedra only represent

non-curved surfaces, non-orientable surfaces or edges used three times by the same face are not

supported, unlike in the radial-edge data structure and the VGC.

Combinatorial Maps Combinatorial maps [Edmonds 1960, Lienhardt 1989, Lienhardt 1991,

Lienhardt 1994, Damiand and Lienhardt 2014], or n-maps, can be seen as an extension of the

halfedge data structure for arbitrary dimension. An n-dimensional combinatorial map is de�ned

as a tuple (D,β1, . . . , βn) where:

1. D is a �nite set of elements called darts;

2. β1 is a permutation on D;

3. β2, . . . , βn are involutions on D;

4. ∀i ≤ [1..n− 2], ∀j ≤ [i+ 2..n], βi ◦ βj is an involution on D.

Let us clarify this de�nition in the case of the dimension 2. The �rst condition states that the

structure is made of objects called darts. Imagine cutting each edge in two pieces at the midpoint,

each of the two pieces would be a dart (see Fig. 2.18). You can also interpret each dart as a pair

(vertex, edge), i.e., a vertex "as seen from an edge", or a halfedge. The second condition states that

each dart d points to a "next" dart β1(d). This is the equivalent of the "next" pointer in the halfedge

data structure. β1 is a permutation, which simply means that it is invertible. In other words, each

dart also has a "previous" dart β−1
1 (d). The third condition states that each dart d points to an

"opposite" dart β2(d). This dart corresponds to the second piece of the original edge that was cut

at the midpoint. β2 is an involution, which simply means that the opposite of the opposite of a

24

2.3. Related Work in Topological Modeling

1 template <unsigned int n>
2 class Dart {
3 Dart* alpha [n+1];
4 };
5

6 template <unsigned int n>
7 class GeneralizedMap {
8 std :: vector <Dart <n>*> darts;
9 };

d

α0(d)

α2(d)
α1(d)

d′ = α0 ◦ α2(d)

Figure 2.19: Example implementation of generalized maps.

dart is the same dart. In other words, β2 groups the darts by pairs, each pair being one edge. The

last condition ensures that topological constraints are satis�ed, which is always true for n = 2.

Please refer to [Lienhardt 1989, Levy and Mallet 1999] for more details on why the condition is

required for higher dimensions. Note that unlike the VGC, combinatorial maps do not support

non-orientable or non-manifold surfaces.

Generalized Maps Generalized maps [Lienhardt 1989, Lienhardt 1991, Lienhardt 1994, Damiand

and Lienhardt 2014], or n-G-maps, are a generalization of combinatorial maps to support non-

orientable surfaces. An n-dimensional generalized map is de�ned as a tuple (D,α0, . . . , αn)
where:

1. D is a �nite set of elements called darts;

2. α0, . . . , αn are involutions on D;

3. ∀i ≤ [0..n− 2], ∀j ≤ [i+ 2..n], αi ◦ αj is an involution on D.

Let us clarify this de�nition in the case of the dimension 2. Unlike combinatorial maps, each

original edge of the represented surface is not split in two, but in four darts (see Fig. 2.19). Similarly

to the quad-edge data structure, this additional granularity permits the representation of non-

orientable surfaces. Each dart can be interpreted as a triplet (vertex, edge, face), i.e., a vertex "as

seen from an edge, as seen from a face". For each dart d = (v, e, f), the involution α0 pairs d with

the only dart α0(d) = (v′, e, f) seen from the same edge and the same face, but a di�erent vertex.

The involution α1 pairs d with the only dart α1(d) = (v, e′, f) seen from the same vertex and

the same face, but a di�erent edge. Finally, the involution α2 pairs d with the only dart α2(d) =
(v, e, f ′) seen from the same vertex and the same edge, but a di�erent face (see Fig. 2.19).

The involution α2 can be interpreted as "sewing" together the edges of di�erent faces. Using this

sewing interpretation, one can observe that α0 and α2 are not independent, since sewing one dart

d mandates how α0(d) should be sewed. More precisely, for any given d, once α0(d) and α2(d)
are de�ned (see Fig. 2.19), then it should be clear that d′ = α0 ◦α2(d) is the fourth dart composing

25

2.3. Related Work in Topological Modeling

e

v
f

d1 d2
d1 d2

e

v

f

Figure 2.20: Two examples of "self-sewing" faces, i.e., faces whose boundary is partly sewed to itself. In other
words, the same edge is "used" two times by the same face. Unlike n-G-maps, cell-tuples cannot represent such
faces, because the tuple (v, e, f) corresponds in fact to two darts d1 and d2, instead of a single dart. Formally,
this limitation is expressed by the fact that cell-tuples can only represent “regular” cell decompositions of n-
manifolds (we give more detail in our following paragraph on regular CW complexes).

the edge, and that we also have d = α0 ◦ α2(d′). Therefore, α0 ◦ α2 must be an involution, which

is expressed by the third condition of the de�nition.

Cell-Tuples In the same year that Lienhardt introduced generalized maps
4
, Brisson introduced

the cell-tuple structure [Brisson 1989]. Apart from not supporting "self-sewing" faces (see Fig-

ure 2.20), the cell-tuple structure is equivalent to generalized maps, but with a di�erent formalism,

centered around this idea of vertex "as seen from an edge, as seen from a face". The connection

between cell-tuples and generalized maps is well explained and illustrated in [Levy and Mallet

1999]. Given a subdivided
5 n-manifold, Brisson �rst de�nes the familiar concept of incidence: a

cell c is incident to another cell c′ if and only if c is contained in the boundary of c′. In this case,

we write c < c′ . If more speci�cally, we have dim(c) = dim(c′) − 1, then we write c ≺ c′.

This de�nes a partial ordering of the cells, which in turns de�nes the incidence graph of the

subdivided manifold. Finally, a cell-tuple is de�ned as an n + 1-tuple (c0, c1, . . . , cn) such that

c0 ≺ c1 ≺ · · · ≺ cn (i.e., a path in the incident graph from a leaf to a root [Levy and Mallet 1999]).

In the case n = 2, this simply means that a cell-tuple is a triplet (v, e, f) where v is an endpoint

of e, and e is a boundary edge of f . Brisson then proves that for every ck−1 ≺ ck ≺ ck+1, there

is a unique c′k 6= ck such that ck−1 ≺ c′k ≺ ck+1. For each k in [0..n], this de�nes a function

switchk(c0, . . . , ck−1, ck, ck+1, . . . , cn) = (c0, . . . , ck−1, c
′
k, ck+1, . . . , cn) on cell-tuples. These

functions are equivalent to the involutions αk that de�ne generalized maps.

Chains of Maps Chains of maps [Elter and Lienhardt 1992, Elter and Lienhardt 1993, Elter and

Lienhardt 1994, Damiand and Lienhardt 2014], or n-chains, are an extension of generalized maps

to support non-manifold spaces. For conciseness, we only provide in this paragraph a simpli-

4

In fact, at the same conference, Symposium on Computational Geometry ’89.

5

Formally, a manifold with a �nite regular CW decomposition; informally, a manifold subdivided into vertices, edges,

faces, etc.

26

2.3. Related Work in Topological Modeling

1 class Vertex {
2 std :: vector <Edge*> incidentEdges ;
3 };
4

5 class Edge {
6 Vertex * startVertex , * endVertex ;
7 std :: vector < Vertex *> incidentFaces ;
8 };
9

10 class Triangle {
11 Edge *e1 , *e2 , *e3;
12 };
13

14 class TriangleMesh {
15 std :: vector < Vertex *> vertices ;
16 std :: vector <Edge*> edges;
17 std :: vector < Triangle *> triangles ;
18 };

Figure 2.21: Example implementation of two-dimensional simplicial complexes.

�ed, slightly inaccurate de�nition of n-chains; please refer to the original papers (e.g., [Elter and

Lienhardt 1993]) for details. The idea is to iteratively build a non-manifold space by gluing the

boundary of cells of higher dimensions to cells of lower dimension, a common technique used in

algebraic topology (see CW complexes). More speci�cally, the i-th step of the process de�nes all

cells of dimensions i via an i-G-map Gi = (Di, αi0, . . . , α
i
i), together with a tuple (σi0, . . . , σii−1),

where σij is an application from Di
to Dj

, gluing the boundary of i-cells to lower-dimensional j-

cells. An n-chain is then de�ned as the structure ((Gi)i=0,...,n, (σij)0≤j<i≤n) composed of all n+1
generalized maps and all σij . While chains of maps are indeed able to represent non-manifold

spaces, and provide a useful theoretical insight, they do not seem to have been widely used in

practice. One reason may be that most application cases only focus on the dimension 2 or 3, for

which more compact (and arguably more intuitive) representations exist.

Simplicial Complexes Simplicial complexes are one of simplest and most popular structures to

represent non-manifold topological spaces. They are taught in most introductory class in algebraic

topology [Munkres 2000, Hatcher 2001, Lee 2011], and are widely used in practice in the computer

graphics industry [De Floriani et al. 2010]. In the two-dimensional case, a simplicial complex is

simply a triangle mesh (possibly non-manifold and with isolated vertices and edges). We give an

example and one of many possible implementations in Figure 2.21. Simplicial complexes easily

scale to arbitrary dimension: we give a formal de�nition in Appendix A, together with some con-

text and discussion. The simplicity and representational power of triangle meshes makes them

highly suitable for many applications. However, their obvious disadvantage is that the repre-

sented objects must be decomposed into triangles. For some applications, this is neither desired

27

2.3. Related Work in Topological Modeling

v1 e1 v2

e2

f
v1

e1

v2
e2

f

(a) (b)

v1
v4

v2

v3

e3

e4

e1

e2

f

(c) (d)

v

f

Figure 2.22: (a) Example of CW complex. (b) Illustration of the glue operations that de�ne the CW complex.
(c,d) Two more examples of valid CW complexes.

or practical, since it would result in many triangles, when a more compact subdivision with less

cells could be used. For instance, in the case of vector graphics, shapes are naturally authored by

drawing their boundary (a directed closed curve), and rendered using a winding rule. It would be

prohibitive and non-intuitive to ask artists to manually author triangles, and while a triangulation

can be automatically computed, a triangle mesh still would not capture the higher-level semantics

of the drawing (for instance, de�ning per-triangle style attributes wouldn’t make sense). One ap-

proach could be to use a triangle mesh together with a partition of the triangles into “meta-cells”

(for instance, nearly manifold cells [De Floriani et al. 2003]), and only attach style attributes to

these meta-cells. Our approach can be seen as directly representing these meta-cells without the

underlying triangulation, which is possible for the dimension 2 thanks to the known classi�cation

of compact 2-manifolds (see Appendix A), but would be impossible for higher dimensions.

CW Complexes CW complexes [Munkres 2000, Hatcher 2001, Lee 2011] are one of the most

(perhaps the most) used structures in modern algebraic topology to represent non-manifold spaces.

Their de�nition, which we recall in Appendix A, provides a sweet balance between simplicity and

genericity that makes them a powerful tool as a proof mechanism. Unfortunately, not all CW

complexes can be represented with a computer due to their non-combinatorial nature, thus they are

“too generic” for use within computer graphics. Nonetheless, their theoretical importance makes

them highly relevant to the �eld of topological modeling, including this thesis, and we informally

describe them in this paragraph. Like chains of maps, CW complexes are built iteratively by gluing

the boundary of cells of higher dimension to cells of lower dimension (see Figure 2.22a,b). In the

case of two-dimensional CW complexes, a “cell” means a point, an edge, or a topological disk. Note

that such cells are continuous pointsets, that is, geometric objects (unlike in chains of maps, where

cells are represented as darts, that is, combinatorial objects). For each cell c, a “glue” operation is

de�ned as a continuous function Φc from the boundary of the cell c to cells of lower dimension

(unlike in chains of maps, where the glue operation is a combinatorial function from darts to darts).

The function Φc does not have any other restrictions than to be continuous, in particular, it does

28

2.3. Related Work in Topological Modeling

x2 + y2 − z2 = 0

(a)

z − 1 = 0

(b) (c)

Figure 2.23: (a) Example of algebraic variety. (b) Decomposition of the variety into extents, with singularities
highlighted in red. (c) Example selective geometric complex (SGC) whose cells are open subsets of extents.

not have to be di�erentiable or invertible, which is what makes the class of all CW complexes very

generic and not representable combinatorially (the set of all continuous functions is not countable).

For example, in Figure 2.22c, the function Φf makes a “switch-back” in the interior of e1, and

thus is not invertible. There isn’t even a requirement that a vertex exists at the switch-back. In

Figure 2.22d, the whole boundary of the disk f is mapped by Φf to a single vertex v, thus creating

a sphere. This last situation is allowed neither by chains of maps nor by the radial-edge structure,

but is allowed by our PCS complexes and vector graphics complexes. In fact, notice how in this

example, there isn’t even a single edge! Therefore, it is obvious that the concept of cell-tuple

cannot be used to represent such a subdivision.

Regular CW Complexes If for each cell c, the function Φc is in fact invertible and its inverse

is continuous (i.e., if Φc is an homeomorphism, more on this later), then the CW complex is called

regular. In other words, regular CW complexes do not allow the boundary of cells to be glued to

themselves, as in Figure 2.22c,d, or in Figure 2.20. With this additional restriction, all (�nite) regular

CW complexes can in fact be represented be any of the aforementioned non-manifold structures,

except simplicial complexes. However, in the context of vector graphics, it is sometimes useful

to represent non-regular CW complexes. In fact, as we detail in Chapter 3, it is even useful to

represent cell decompositions which are not CW complexes at all, for instance decompositions

that involve disks with inner holes represented as one single face. Such faces are already allowed

by SVG, planar maps, the radial-edge data structure, and selective geometric complexes.

Selective Geometric Complexes Simplicial complexes and CW complexes share the common

idea to build non-manifold spaces by gluing together simple manifold pieces (respectively, n-

simplices and n-disks). Selective geometric complexes (SGCs) [Rossignac and O’Connor 1989]

and their extension structured topological complexes (STCs) [Rossignac 1997] take the opposite

approach by starting with a given non-manifold space, and decomposing it into manifold pieces,

de�ning what they call a geometric complex. More speci�cally, the de�nition of a SGC starts with

29

2.4. Related Work in Animation

the concept of algebraic variety, that is, a subset of Rn de�ned as the zero level set of a given �nite

set of degree-n polynomials (see Figure 2.23a). Such variety generally has singularities (cusps, self-

crossing, isolated lower-dimensional pieces, etc.), and these singularities de�ne a partition of the

variety into extents, where each extent is a connected sub-manifold of the variety (see Figure 2.23b).

A cell is then de�ned as any connected open subset of an extent, and a geometric complex is de�ned

as a �nite collection of cells cj , with j ∈ J , such that:

1. ∀i 6= j, ci ∩ cj = ∅

2. ∀j ∈ J, ∃I ⊂ J, ∂cj =
⋃
I ci

A selective geometric complex is then de�ned as a geometric complex where each cell stores an

extra attribute called “active”, specifying whether the cell should be included in the pointset de�ned

by the SGC (see Figure 2.23c, where dashed lines represent inactive edges). This allows SGCs to

represent non-closed pointsets.

Note how the de�nition of geometric complexes allows closed edges and disks with inner holes, as

illustrated in Figure 2.23c (more generally, it allows cells which are not necessarily homeomorphic

to n-disks). This was a deliberate and important design decision taken by the authors, which they

motivate in [Rossignac 1997, Section 3.6]. Our PCS complexes and vector graphics complexes also

allow such cells, for very similar reasons, which we detail in Chapter 3. This makes SGCs and PCS

complexes very similar in terms of intent and topological expressiveness. In fact, the notion of SGC

was an important source of inspiration for the design of our structures. Unfortunately, due to their

de�nitions relying on explicit embeddings in Rn, SGCs lack the geometric �exibility that we desire

for vector graphics. Notably, like planar maps, SGCs do not support the concept of overlapping.

This stems from the lack of a purely combinatorial de�nition from which to de�ne an immersion.

More precisely, while a combinatorial structure is associated with every SGC (an augmented in-

cidence graph), this combinatorial structure alone does not fully specify the non-manifold object

up to homeomorphism. In other words, some topological information is encoded in the polyno-

mial coe�cients of the underlying algebraic variety, such as whether a face is orientable, or how

many times a bounding edge is “used” by the face. Finally, even though STCs cyclically order the

faces around any given edge, neither SGCs nor STCs cyclically order the edges bounding a given

face. For vector graphics applications, we require such cycles for the unambiguous computation

of winding numbers, used for rendering.

2.4 Related Work in Animation

Topology-unaware inbetweening Cartoon animation [Thomas and Johnston 1987, Blair 1994,

Williams 2009] consists in drawing a �nite sequence of pictures that gives the illusion of motion.

30

2.4. Related Work in Animation

? ?

Figure 2.24: Three keyframes with inconsistent topology, making automatic inbetweening challenging. Orig-
inal design by James Lopez, used with permission.

This �gure was removed due to copyright restrictions. It was four images from [Liu et al. 2011]

showing the di�erent steps involved to apply their technique.

Figure 2.25: Illustration of the di�erent steps to compute stroke correspondence using shape descriptors and
manifold learning. Source: modi�ed from [Liu et al. 2011].

31

2.4. Related Work in Animation

Figure 2.26: Illustration of an approach that transfer existing cartoon motion to new shapes. Source: [Bregler
et al. 2002], used with permission.

It was expected that automatic inbetweening of vectorized strokes would make cartoon animation

easier, but this task appeared to be much more complex than expected [Catmull 1978], one reason

being inconsistent topology between keyframes (see Figure 2.24). Early stroke-based approaches

[Burtnyk and Wein 1971, Reeves 1981, Fekete et al. 1995] are manual (the animator selects pairs

of strokes to interpolate) and topology-unaware (strokes are interpolated independently, unaware

of their neighbors). More recently, [Liu et al. 2011, Yu et al. 2012] have proposed to use shape

descriptors and machine learning techniques to compute stroke correspondences automatically,

however, the shape descriptors are based on stroke sampling and therefore are also topology-

unaware (see Figure 2.25). Nonetheless, once the per-sample correspondence is computed, this

information is aggregated per-stroke, possibly allowing one stroke to split into several strokes, as

we also allow in our vector animation complex, among many other topological events.

Topology-aware inbetweening [Kort 2002] introduces semantic relations between strokes (e.g.,

intersecting, or dangling), together with inference rules to �nd stroke correspondences automati-

cally. To the best of our knowledge, this is the �rst work attempting to leverage topology to solve

the correspondence problem. However, this approach could only be applied for cases that can

be resolved via an invariant layering, and it is unclear whether it can scale to complex examples.

Later, [Whited et al. 2010] introduced stroke graphs, a concept which we already presented in

Section 2.2. Given two stroke graphs and initial stroke correspondences, the two graphs can be

traversed in parallel to propagate stroke correspondences, stopping at topological inconsistencies.

Unfortunately, unlike the method we introduce in Chapter 5, none of these methods can produce

space-time continuous animations with time-varying topology, since it is not allowed by their

representation. Also, none of these methods address coloring.

Data-driven inbetweening An alternative approach to generate cartoon animations is to reuse

existing content. [Bregler et al. 2002] extracts animated a�ne transformations and weight coe�-

32

2.4. Related Work in Animation

Figure 2.27: Automatic painting using LazyBrush: (a) original drawing F1 with color scribbles S1, (b) seg-
mentation R1 of F1 using scribbles S1, (c) painted drawing (F1 + R1), (d) initial overlap of the source F1
with scribbles S1 and the target frame F2, (e) registration of the source frame F1 with the target frame F2, and
transfer of scribbles S1 using as-rigid-as-possible deformation �eldW12, (f) painted drawing (F2 +R2) using
transferred scribblesW12(S1). Source (image + caption): [Sýkora et al. 2011], used with permission.

Figure 2.28: Example inbetweens obtained using shape morphing. Source: [Baxter et al. 2009], used with
permission.

cients from existing cartoons, which can be transferred to new shapes (see Figure 2.26). [de Juan

and Bodenheimer 2006] performs a semi-automatic segmentation of the input video to combine

parts of existing content together. New inbetweens can be generated by de�ning an implicit space-

time surface interpolating extracted contours, however, no change in topology is allowed, since

interpolated contours are always closed curves. [Zhang et al. 2009] proposes a method to vector-

ize input cartoon animations, allowing to edit them. However, their outputs are stacked layers of

paths, thus cannot represent topological events.

Shape morphing Another way to generate inbetweens is shape morphing, where a shape is a

closed curve (its boundary), together with a raster image (its interior). The simplest method to

interpolate two given shapes consists in computing a linear interpolation of the positions of all

samples along the boundary. Unfortunately, this method typically causes "shrinkage", that is, it

does not preserve the area of the shapes to interpolate. Instead, [Sederberg et al. 1993] proposes to

interpolate the lengths and relative angles of curve segments. Later, [Alexa et al. 2000] proposes

to interpolate compatible triangulations of the shapes by minimizing an as-rigid-as-possible en-

ergy, and uses texture blending for the interior pixels. This technique was widely successful, and

several improvements have been developed [Fu et al. 2005, Baxter et al. 2009]. Also, the approach

has been adapted for interactive shape manipulation [Igarashi et al. 2005]. One of the �rst steps

in these methods consist in �nding an initial arc-length correspondence between the two closed

curves, which can be achieved using curvature-based methods [Sebastian et al. 2003]. An alterna-

tive approach to shape morphing is introduced by [Sýkora et al. 2009], where they align the two

33

2.4. Related Work in Animation

Figure 2.29: Example of non-photorealistic rendering obtained using snaxels. Source: [Karsch and Hart 2011],
used with permission.

shapes using an iterative method, alignment which can be used for temporal noise control [Noris

et al. 2011], or texture transfer [Sýkora et al. 2011], as illustrated in Figure 2.27. Unfortunately,

none of these methods can produce space-time continuous animations of vectorized curves with

changing topology, since by de�nition every shape has the topology of a disk, and their interior is

not vectorized, typically leading to blurring artifacts (see Figure 2.28).

Stylizing 3D animation A natural approach to handle image-space topological events is to

animate in a di�erent space where no topological events occur, e.g., 3D animation [Lasseter 1987],

in which case a �xed number of degrees of freedom can be keyframed independently. From a 3D

model, one can compute vectorized 2D feature lines (e.g., [Bénard et al. 2014]), from which it is

possible to extract cycles for coloring using depth-ordered paths [Eisemann et al. 2009] or planar

maps [Karsch and Hart 2011], which can be further processed in 2D for stylization (see Figure 2.29).

However, the 3D-to-2D conversion is typically a per-frame process and therefore does not output

a time-continuous 2D animation. To address this issue, [Karsch and Hart 2011] track snaxels’ 3D

positions in the original mesh to generate correspondences across 2D frames, [Buchholz et al. 2011]

computes a parameterization of the space-time surface swept by the silhouette lines, and [Bénard

et al. 2012] uses an image-space relaxation method to deform, split and merge active strokes at

frame i to match the feature lines of frame i+ 1. Unfortunately, unlike the method we introduce

in Chapter 5, all of these methods require to create a 3D animation beforehand. In addition, their

output representation either does not support vectorized coloring [Buchholz et al. 2011, Bénard

et al. 2012], or breaks the animation into contour sequences that do not change in topology [Karsch

and Hart 2011]. In Chapter 5, we present a novel representation that we believe could be used as

output of these existing methods to address their limitations.

34

2.4. Related Work in Animation

Figure 2.30: Representing an animation as a space-time non-manifold object. Source: [Buchholz et al. 2011],
used with permission.

Using hybrid “2.5D” models To have better image-space control of style, but still animate

in a space free from topological events, [Fiore et al. 2001, Rivers et al. 2010] introduce hybrid

models where shapes are de�ned in 2D, but their interpolation and depth-ordering is guided by

3D information. Unfortunately, these approaches tend to reduce the space of possible animations

(compared to freeform hand-drawn animation), and only allow the representation of topological

events which are solved by depth ordering.

Space-time modeling Finally, another approach to generate 2D animations, the one we adopt

in Chapter 5 of this thesis, is to consider animated lines as surfaces in space-time [Fausett et al.

2000, Kwarta and Rossignac 2002, de Juan and Bodenheimer 2006, Southern 2008, Buchholz et al.

2011], and animated faces as volumes in space-time [Fausett et al. 2000, Southern 2008]. There-

fore, animating becomes modeling in space-time, which makes possible to represent topological

events, unlike when using the model-then-animate paradigm (see Figure 2.30). The time dimen-

sion can also be replaced by more abstract parameters [Ngo et al. 2000, Fausett et al. 2000], leading

to 4D or even higher dimensional objects. Recently, space-time meshes have also been used for

�uid simulation inbetweening [Raveendran et al. 2014]. In theory, any non-manifold topologi-

cal representation could be used to apply these concepts, as long as they can represent objects

of su�ciently high dimension. For instance, simplicial complexes [De Floriani et al. 2010] could

be a natural choice for their simplicity and scalability in dimension. Other popular non-manifold

representations which we have presented in Section 2.3, such as selective geometric complexes

[Rossignac and O’Connor 1989], or the radial-edge data structure [Weiler 1985], could be used as

well. However, none of these representations have been designed to represent space-time objects.

Therefore, while they are very appropriate for their intended use (e.g., solid modeling), they are

less intuitive to manipulate for space-time modeling. What makes our concept of vector anima-

35

2.4. Related Work in Animation

tion complex stands out is that by design, it treats the time dimension separately from the space

dimensions, enabling a keyframing paradigm similar to what animators are already familiar with.

For instance, instead of a 1D entity called “edge”, we make the distinction between two types of

1D entities: a key edge (1D in space; 0D in time), which represents an edge at a given time, and

an inbetween vertex (0D in space; 1D in time), which represents an interpolation between two key

vertices. Even though they are both 1D in space-time, they are created, edited, and visualized

di�erently, re�ecting a cleaner semantics.

36

Chapter 3

The Theoretical Foundations of Vector
Graphics Topology

Figure 3.1: Allowing 2D vector graphics shapes to overlap and to share edges enables users to depict non-
planar topologies, possibly non-orientable, such as here a Möbius strip.

Vector graphics technologies have been around for a long time. In fact, the vector graphics sys-

tem Sketchpad [Sutherland 1963] is generally considered to have pioneered interactive computer

graphics, which makes vector graphics one of the oldest sub�elds of computer graphics. However,

despite its seniority, the theoretical foundations required to rigorously study topological modeling

for vector graphics are still lacking. In this chapter, we introduce the notion of PCS complex as a

formal tool to better understand the mathematical nature of vector graphics topology, and from

which modern vector graphics systems can be derived. In particular, vector graphics complexes,

which we introduce in Chapter 4, are largely based on PCS complexes. Those readers who prefer

to get a better understanding of the practical applications before diving into the theory, you may

safely skip this chapter for now and read it last. However, for those who do not mind a little theo-

retical detour before getting to the more practical contributions of this thesis, reading this chapter

�rst is likely to make reading the other chapters much more insightful and enjoyable.

In Section 3.1, we shall start by clarifying the meaning of topology, which is either combinatorial

or geometric depending on the context. In Section 3.2, we show that in the case of vector graphics,

reasonable design decisions result in a topology that includes some of the most generic classes of

curves and surfaces. Importantly, it includes non-planar surfaces (such as non-orientable surfaces,

see Figure 3.1), an unfortunate reality which brings many complications that were largely over-

looked by previous work in vector graphics. In particular, the cut topological operators are far

more complicated for non-planar surfaces than for planar ones. As an example, it is not obvious

37

3.1. First Concepts of Topology

(a) (b)

non-connected
⇒

⇒

two

lines

connected

two

lines

(c)

Figure 3.2: Whether or not two lines are connected a�ects: (a) rendering, such as here the rendering of a
Miter join; (b) user interaction, such as here a drag-and-drop action of one of the two lines; and (c) keyframe
interpolation.

what happens if you cut a Möbius strip. Once the topological nature of vector graphics objects has

been determined, we introduce the notion of PCS complex in Section 3.3. It is a topological struc-

ture that satis�es our design decisions, and that admits a combinatorial representation from which

vector graphics complexes are derived. Finally, we summarize and conclude in Section 3.4.

3.1 First Concepts of Topology

Topology is a word whose precise meaning depends on the context it is used. This section is about

clarifying this terminology: What do we mean by “topology”? What do we mean by: “These two

line drawings have the same topology”? Or: “This surface has the topology of a disk”?

At its core, topology is about representing how objects are connected to one another. And this is why

topology obviously matters for interactive graphics: the behavior of graphical objects depends on

whether or not they are connected to one another, and the nature of this connection. For instance,

rendering two lines depends on whether or not the two lines are connected (see Figure 3.2a). The

result of a drag-and-drop user interaction depends on whether or not lines are connected (see

Figure 3.2b). And in the context of computer animation, interpolation between two keyframes

depends on whether or not lines are connected (see Figure 3.2c).

38

3.1. First Concepts of Topology

6∼=

∼=

Figure 3.3: Top: two homeomorphic graphs. Bottom: two non-homeomorphic graphs.

3.1.1 Topology According to Computer Scientists

As computer scientists, we typically work within a discrete world, most often �nite. Therefore, we

only manipulate a �nite number of objects, and connections between these objects can be easily

expressed as a graph G = (V,E), where every object is represented as a node ni ∈ V , and where

a “direct connection” between two objects is represented as an edge (ni, nj) ∈ E. It should be

clear that this graph represents how objects are connected to one another, which was our informal

de�nition of topology. This is the reason why, within computer science, the word topology often

refers to a graph.

For instance, in computer network architecture, the topology of a network refers to a graph where

each node ni represents a computer (either a server, a router, or an end-user device), and each edge

(ni, nj) is a pair that indicates that there is a direct communication link between the two comput-

ers. This graph contains all the information about how the computers are connected, such as: Are

two computers direct neighbors? Are they at all connected to one another, possibly indirectly?

If yes, what is the shortest communication path between these two computers? Is the network

robust to link failure, i.e., are there at least two paths between any pair of computers? Note that

this representation not only stores whether or not any pair of computers are connected (=connect-

edness), but also stores how any pair of computers are connected (=topology). For instance, linear

and circular networks (see Figure 3.3, bottom) are both fully connected, but they do not have the

same topology: the �rst one becomes disconnected after any given cut, while the second one stays

connected. In fact, we will see throughout this chapter that the concept of cut, and whether or not

it disconnects objects, plays a fundamental role in topology. For instance, cutting a Möbius strip

along its centerline does not disconnect it, while cutting a cylinder does.

In most academic contexts where the topology of a model (e.g., a computer network) is expressed

39

3.1. First Concepts of Topology

discontinuity of f−1

0

π

2

π

3π
2

2π

0 2π

f : [0, 2π)→ S1

Figure 3.4: The function f(θ) = (cos(θ), sin(θ)) de�ned from [0, 2π) to the unit circle S1 is continuous
and bijective, but its inverse is not continuous. Therefore, it is not a homeomorphism. In fact, it is possible
to prove that there exist no homeomorphism from [0, 2π) to S1, and therefore that these two spaces are not
homeomorphic, i.e., they “have a di�erent topology”. Source: inspired from [Lee 2011], Figure 2.5.

as a graph, it is said that two models “have the same topology” if and only if the two graphs are

homeomorphic (see Figure 3.3). By de�nition, two graphs are said to be homeomorphic if and

only if they can be obtained from one another with a �nite number of edge subdivisions (splitting

one edge into two edges), and edge simpli�cations (the inverse operation).

However, there are some contexts where “have the same topology” means instead that the two

graphs are isomorphic, which is much a stronger concept that simply means that the two graphs

are identical up to node renaming. We will discuss this in more details in Section 3.1.4.

3.1.2 Topology According to Mathematicians

On the other hand, most mathematicians who study topology work with continuous geometric

entities, such as curves, surfaces, and manifolds of higher dimensions. These geometric entities

are made of an uncountable in�nite number of points, which are “continuously connected” to

one another. Because representing this “continuous connectedness” cannot be done using graphs,

mathematicians use the concept of open sets instead.

More precisely, if X is a set (for instance, X = Rn), a topology on X is de�ned as a collection T
of subsets of X , satisfying the three following properties:

1. X and ∅ are elements of T .

2. Any �nite intersection of elements of T is also an element of T .

3. Any (possibly in�nite) union of elements of T is also an element of T .

An ordered pair (X, T) consisting of a setX together with a topology T onX is called a topolog-
ical space. Elements ofX are usually called points, and elements of T are called the open sets of

X . If the choice of T is clear from the context, we simply say that X is a topological space.

40

3.1. First Concepts of Topology

6∼=

∼=

Figure 3.5: Top: two homeomorphic point-sets of R2. Bottom: two non-homeomorphic point-sets of R2.

While this de�nition may seem very abstract to the reader unfamiliar with point-set topology, it

is in fact the building block behind all topological concepts such as neighborhood, boundary, and

continuous functions. For instance, a function is said to be continuous if and only if the pre-

image of any open set by this function is also an open set. Such de�nition is equivalent to the one

you may have learned in an analysis class for functions from Rn to Rm (using limits), but has the

advantage that it generalizes well to many other spaces, including non-metric spaces (where the

concept of “distance” does not exist). Readers interested to learn more on this fascinating topic

are encouraged to get their hands on any introductory book in general or algebraic topology (e.g.,

[Munkres 2000, Hatcher 2001, Lee 2011]). However, our aim in this section is not that the reader

fully understands these concepts, but only to give a sense of what topology and topological space

means in a continuous world. In one sentence, a topological space (X, T) is a set X of points

together with a collection T of subsets of X called open sets. It is quite di�erent from the concept

of a graph (V,E), which is a set V of nodes together with a set E of pairs of nodes called edges.

However, notice the similarity: in both cases, it is a set X or V of “objects”, together with the

information T or E of how they are connected to one another. In Section 3.3, we will see the same

similarity between PCS complexes and abstract PCS complexes.

We can now de�ne one of the most important concepts of this chapter: a homeomorphism be-

tween two topological spaces is a bijective function which is continuous, and whose inverse is also

continuous (continuity of the inverse is important, see Figure 3.4 for a classical counter-example).

Two spaces are said to be homeomorphic if and only if there exists a homeomorphism between

them (see Figure 3.5). Homeomorphisms are extremely important because, as a direct consequence

of their de�nition, they happen to preserve open sets (i.e., the image or the pre-image of an open set

by a homeomorphism is also an open set). Since topology is de�ned via open sets, this means that

all topological properties are preserved by homeomorphisms. For this reason, it is common to say

that two spaces “have the same topology” if and only if the two spaces are homeomorphic.

41

3.1. First Concepts of Topology

Figure 3.6: Many smooth surfaces made of an uncountable in�nite number of points can be �nitely repre-
sented using computers. Here, we illustrate how a smooth surface (i.e., a geometric object) can be de�ned as the
limit of Catmull-Clark subdivision steps, starting from a polygonal mesh (i.e., a combinatorial object).

3.1.3 Topology According to Computational Geometers

In the previous two sections, we have described topology as having either a combinatorial nature

(a graph, typically used in computer science), or a geometric nature (a topological space, typically

used in mathematics). However, there are many �elds of research at the boundary between these

two interpretations, such as computational geometry.

In fact, very fundamentally, the core idea of algebraic topology is to study the combinatorial prop-

erties of geometric objects, and an important part of graph theory focuses on embedding graphs in

geometric spaces. For instance, planar graphs are de�ned as the graphs that can be embedded in

R2
, that is, whose vertices can be embedded as distinct points, and whose edges can be embedded

as curves connecting these endpoints that are interior disjoint. Within algebraic topology, such

interpretations of combinatorial objects as topological spaces are usually called geometric real-
izations. For instance, every graph can be realized as a speci�c kind of topological space called a

(one-dimensional) simplicial complex. As you can guess by comparing Figure 3.3 with Figure 3.5,

the concept of homeomorphism between graphs is equivalent to the concept of homeomorphism

between topological spaces, once graphs are realized as topological spaces.

But let us go back to computational geometry, and more speci�cally to its sub�eld geometric mod-

eling, to which this thesis belongs. Within geometric modeling, a goal is to design computer rep-

resentations of various geometric objects, typically curves and surfaces. Given that computers

have a �nite memory, this means designing �nite representations of these geometric objects. For

instance, a 2D line segment between two points P and Q can be mathematically represented as:

{ (1− λ)P + λQ | λ ∈ [0, 1] } (3.1)

where P ∈ R2
andQ ∈ R2

. Even though this line segment is made of an in�nite number of points,

all we need to represent all of these points is to store P and Q, which only uses a �nite amount of

memory (as long as P and Q can themselves be represented with a �nite amount of memory, for

42

3.1. First Concepts of Topology

Figure 3.7: Google image search results for “head topology”. © 2016 Google Inc. Google and the Google logo
are registered trademarks of Google Inc., used with permission.

instance using �oating point arithmetic). In order to represent a piecewise linear curve, one can

use a list of points. In order to represent a smooth curve, one can use a list of points and tangent

vectors (e.g., a Hermite or Bézier curve), or simply a list of points (e.g., a Catmull-Rom or Chaikin

subdivision curve). In order to represent a piecewise linear surface, one can use a triangle mesh. In

order to represent a smooth surface, one can use a NURBS surface, or a Catmull-Clark subdivision

surface (see Figure 3.6).

Since all these combinatorial objects are in fact representing continuous point-sets, it is possible

to apply to them the mathematician’s de�nition of topology. For instance, to compute a mesh

parameterization, it is often said that the mesh must be cut until “it has the topology of a disk”. This

means that after the cuts, the represented surface must be homeomorphic to the point-set { |x| ≤
1 | x ∈ R2 }. Being able to apply the mathematician’s de�nition of topology to combinatorial

objects is essential to study many of their properties, and is the reason why we will introduce

the concept of PCS complexes in Section 3.3. PCS complexes provide a well-de�ned geometric

interpretation of vector graphics combinatorial objects, and in particular, they allow us to precisely

de�ne what homeomorphism means for these objects.

3.1.4 Topology According to 3D Modeling Artists

However, there are many contexts within geometric modeling, and especially among 3D modeling

artists, where the word “topology” does not refer to the mathematician’s geometric de�nition, and

where “having the same topology” does not mean “being homeomorphic”. For example, if you

ask a 3D modeling artist whether the two leftmost objects in Figure 3.6 have the same topology,

43

3.1. First Concepts of Topology

≡ ≡ ≡

6≡ 6≡6≡

∼= ∼= ∼=

∼= ∼= 6∼=

Figure 3.8: Top: Examples of isomorphic quad meshes. Bottom: Examples of non-isomorphic quad meshes.
Note that isomorphic (≡) implies homeomorphic (∼=), but the opposite is not true. All these quad meshes are
pairwise homeomorphic, apart from the bottom-right example which contains a hole.

their answer is likely to be: “no, for instance the �rst one has only 6 quads, while the second one

has 24 of them”. But if you ask a mathematician: “yes, they both have the topology of a sphere”.

When artists use the word “topology”, they usually refer to how many polygons are used, and how

they are arranged into coherent and esthetically pleasing loops, typically following muscle lines,

which produce the best smoothing and deformation results (see Figure 3.7). They would say that

the �rst two head models in the �rst row of Figure 3.7 have di�erent topologies because the �rst

model has a loop of quads enclosing both eyes (in orange), while the second model has no such

loop. Formally, what they mean is that two meshes have the same topology if and only if they are

isomorphic. A precise de�nition of isomorphism for polygonal meshes (or other combinatorial

structures, such as graphs, multigraphs, triangle meshes, simplicial complexes, etc.) depends on

how exactly the combinatorial structure is de�ned, but essentially it means that they have the same

number of vertices, edges, and faces, and that they are arranged in the same way. Equivalently,

one can say that isomorphism means that the meshes are equal up to vertex/edge/face renaming

and geometric deformation (see Figure 3.8). In section 3.3.2, we precisely de�ne what isomorphism

means for PCS complexes, and since most mesh data structures are a subset of PCS complexes, the

de�nition apply to these other data structures as well.

This meaning of topology, which emphasises more on isomorphism than homeomorphism, comes

from the fact that in most mesh data structures, it is possible to decorrelate the combinatorial infor-

mation from the geometric information of the represented surface. Therefore, the data structure

can be implemented as a combinatorial structure called the topology of the mesh, on top of which

can be added geometric attributes, called the geometry of the mesh (see Figure 3.9). As a conse-

quence, any edit to the combinatorial structure (e.g., an edge-collapse) is often called a topological
operator and said to “change the topology” of the mesh, even if the new mesh is still homeomor-

44

3.1. First Concepts of Topology

(a) Topology (b) Geometry

verts =

v5, v6, v7, v8 }
{ v1, v2, v3, v4,

quads =

(v3, v4, v6, v5),
{ (v1, v2, v4, v3),

(v5, v6, v8, v7) }

φ(v1)

φ(v2)

φ(v3)

φ(v4)

φ(v5)

φ(v6)

φ(v7) = φ(v8)

φ

Figure 3.9: Most mesh data structures, such as here a simple quad mesh structure, are usually implemented
as: (a) a combinatorial structure called “topology”; and (b) geometric attributes called “geometry”. Typically, a
3D position φ(vi) is assigned to each vertex vi, which de�nes an immersion of the topology into R3.

(b) geometric realization (X, T)(a) presentation P (c) immersion in R3

verts =

v5, v6, v7, v8 }
{ v1, v2, v3, v4,

quads =

(v3, v4, v6, v5),
{ (v1, v2, v4, v3),

(v5, v6, v8, v7) }

v1

v2

v3

v4

v3

v4

v5

v6

v5

v6

v7

v8

φ(v1)

φ(v2)

φ(v3)

φ(v4)

φ(v5)

φ(v6)

φ(v7) = φ(v8)

φ

Figure 3.10: (a) In algebraic topology, any combinatorial structure P describing topology is usually called
a presentation. (b) Each presentation P can be interpreted as a continuous topological space (X, T) called
its geometric realization. (c) Assigning a 3D position φ(vi) ∈ R3 to each vertex vi ∈ P can be interpreted
as de�ning a continuous function φ : X 7→ R3, generally non-injective. We have highlighted in red every
point x ∈ R3 whose pre-image by φ contains two or more points in the geometric realization. This formalism
rigorously captures the intuitive idea that there are several “overlapping points” at such 3D location x.

45

3.1. First Concepts of Topology

phic to the old one. This meaning of topology is the one we use when we say, for instance, “vector

graphics animation with time-varying topology”. We mean that there exist at least two frames in

the animation whose respective vector graphics complexes are not isomorphic. Whether they are

homeomorphic is irrelevant.

While this de�nition of topology is combinatorial in nature, it is essential to understand that it

actually represents a continuous geometric object, even before geometric attributes are speci�ed.

More precisely, this combinatorial structure called “topology” is usually called a presentation P
by algebraic topologists (see Figure 3.10a), which can be interpreted as a continuous topological

space (X, T) called its geometric realization (see Figure 3.10b). Generally, this geometric realiza-

tion is de�ned via the formalism of quotient spaces, which consists in abstractly gluing together

duplicated pieces of Rn (see Section A.6 for details). After this process, the topology T of the geo-

metric realization accurately represents the intended semantics of the combinatorial structure, i.e.

how the points of the underlying geometric object X are continuously connected to one another.

Once a presentation P is interpreted as a continuous topological space (X, T), then assigning a

3D position φ(vi) ∈ R3
to each vertex vi ∈ P can be interpreted as de�ning an immersion of

this topological space into R3
, i.e. a continuous function φ : X 7→ R3

, possibly not injective (see

Figure 3.10c). This means that two di�erent points of the geometric realization may be mapped to

the same point in R3
, creating what we call overlapping points: two or more points that share

the same spatial location, but have their own “topological identity”. In the next section, we will

see that understanding this concept is critical for understanding vector graphics topology, since

overlapping plays a very important role in vector graphics.

46

3.2. The Non-Planar Nature of Vector Graphics

(a) topological space (X, T) (b) immersion in R2

v1

v2

v3

v4

v3

v4

v5

v6
φ(v4)

φ
(c) vector graphics output

φ(v2)

φ(v1)

φ(v6)

φ(v5)

φ(v3)

Figure 3.11: A vector graphics illustration represented as: (a) a continuous topological space (X, T), such as
here a quotient space, decomposed into vertices, edges, and faces; and (b) a continuous function φ that immerses
the topological space into the canvas R2. We have highlighted in red every point x ∈ R2 whose pre-image by
φ contains two or more points in X . (c) The �nal vector graphics illustration.

3.2 The Non-Planar Nature of Vector Graphics

In this section, we show that assuming a few reasonable design decisions, any topological structure

that represents vector graphics combinatorial objects must support non-manifold topologies and

surfaces of arbitrary orientability and genus (the de�nitions of manifoldness, orientability, and

genus are recalled in Appendix A). In particular, this includes non-planar objects, such as non-

orientable surfaces (e.g., a Möbius strip), or orientable surfaces of non-zero genus (e.g., a torus).

We will also cover a few other topological properties, but we want to emphasize non-planarity

because it is the least studied by previous research, the one that brings most complications, and

also perhaps the least intuitive.

By topological structure, we mean a topological space (X, T) that is partitioned into subsets

called cells, such as vertices, edges, and faces. The continuous point-set X might be de�ned as

either a quotient space (see Figure 3.11a), or a subset of Rn in which the cells do not intersect

(this may require n ≥ 4, e.g. for a Klein bottle). It is then immersed into the canvas R2
via a

continuous function φ : X 7→ R2
, possibly non-injective, which de�nes the �nal vector graphics

illustration (see Figure 3.11b and 3.11c). We call overlapping any point of R2
whose pre-image by

the immersion φ contains two or more points of the topological space.

We can observe that this concept of topological structure immersed in R2
is more generic than the

concept of planar maps [Baudelaire and Gangnet 1989], which is directly a partition of R2
into

vertices, edges, and faces, i.e. a topological structure embedded in R2
.

47

3.2. The Non-Planar Nature of Vector Graphics

3.2.1 Design Decisions

Let us start with a short list of design decisions, or desiderata, that we believe should ideally be

supported by any vector graphics system, thus by our topological structure.

A. Basic Primitives At the very least, the following cells

must be supported: vertices (single points in space); open edges

(open curves starting and ending at a vertex); and triangles (sur-

faces homeomorphic to disks, bounded by three edges).

B. Basic Topological Operators Any two vertices can be

glued. Any two edges can be glued using any of the two possi-

ble directions. Any edge can be cut by inserting an additional

vertex. Any face can be cut by inserting an additional open edge

starting and ending at existing boundary vertices.

C. Operator Invertibility The inverse of any valid operator

is also a valid operator.

⇒

D. Operator Locality The validity of any topological oper-

ator (i.e., whether or not it is allowed to apply it) only depends

on local topological properties.

⇒

These design decisions adhere to two important user interface design principles: learnability

(which includes familiarity, predictability, and consistency) and �exibility. Basic Primitives (A)

are obvious for familiarity: vertices, open edges and triangles are already standard in all exist-

ing topological modeling tools. Among Basic Topological Operators (B), gluing two vertices and

cutting edges are also standard in most vector graphics tools, except that not “any” two vertices

can be glued. Our addition of the word “any” is key for predictably and consistency, and is what

allows to represent three or more edges sharing a common vertex. If instead, users are sometimes

allowed to glue two vertices or two edges, but sometimes not (for technical reasons not obvious to

them), then not only does it impede predictability and consistency, but it also decreases �exibility.

In other words, it limits their artistic freedom, which is likely to frustrate them. Unfortunately,

this is the case in most existing vector graphics tools.

Gluing two edges or cutting a face is not standard in existing vector graphics tools, since most

of them do not even support shared edges in the �rst place. However, not only these are two

operations extremely useful, but they are the direct counterpart of gluing two vertices or cutting

an edge. Therefore, they increase both �exibility and consistency, and it makes sense to include

them. Operator Invertibility (C) is very important for familiarity and predictability: if an operation

48

3.2. The Non-Planar Nature of Vector Graphics

and ⇒ and ⇒

(a) (b)

Figure 3.12: (a) Proof of non-planarity: vector graphics topologies are a superset of graphs, some of which
are not planar. (b) Proof of non-orientability: vector graphics topologies are a superset of triangle meshes, some
of which are non-orientable, such as here a Möbius strip. We note that (b)⇒ (a), but proving (a) independently
shows that even without faces, the topology can be non-planar.

can be done, surely it can be undone. This is a basic expectation that users have learned from all

other applications, and not just graphics applications. Operator Locality (D) is more subtle but

also very important for predictability, and is correlated with the usage of “any” in our design

decisions. The idea is that global topological properties, such as planarity or orientability, are

hard to understand and assess at a glance. Therefore, not allowing a topological operation due

to global topological constraints is likely to be an unexpected behavior for most users. However,

local topological properties are more intuitive and directly visible. Therefore, it is acceptable to

forbid users from doing some topological operations due to local topological constraints, since they

can intuitively understand why the operation is not possible. For instance, it should be obvious

to most users that “uncut” cannot be applied at a vertex with three incident edges, since such

topology could not have possibly been achieved via “cut”.

3.2.2 Non-Planarity and Overlapping

Let us now start to analyze the consequences of the design decisions above. The �rst and foremost

consequence is that non-planar topologies must be supported, as illustrated in Figure 3.12. Indeed,

allowing for the representation of open edges and allowing for any two vertices to be glued means

that the topological structure at hand is a superset of graphs. Since some graphs are non-planar,

such as K5 (see Figure 3.12a), then some vector graphics topologies are non-planar.

Since there exists no injective immersion in R2
of such non-planar topologies, this means that

edges and faces must be allowed to overlap. Of course, allowing edges and faces to overlap is an

extremely desirable feature in itself. Intuitively, it should be seen as a design decision, but since

it turns out to be a consequence of other design decisions, then we present it as a consequence,

in order to keep the list of design decisions minimal and non-redundant. It should be understood

that if it was not a consequence, then we would have added it as a design decision.

49

3.2. The Non-Planar Nature of Vector Graphics

and ⇒

(a) (b)

⇒and

(c)

⇒and

(d)

⇒andand

Figure 3.13: Examples of non-manifold topologies, together with the corresponding design decisions which
allow these topologies. In fact, gluing objects together, which is formalized via quotient spaces, is one of the
fundamental tool used in alebraic topology to represent non-manifold topological spaces.

3.2.3 Non-Orientability

Similarly, it is straightforward to prove that given the design decisions of Section 3.2.1, then some

vector graphics topologies are non-orientable (that is, they contain a non-orientable surface, see

Appendix A.4). Indeed, allowing for triangles to be represented and allowing to glue any two edges

in any of the two possible directions means that the topological structure at hand is a superset of tri-

angle meshes. Since some triangle meshes are non-orientable, such as a triangle mesh representing

a Möbius strip (see Figure 3.12b), then some vector graphics topologies are non-orientable.

3.2.4 Non-Manifoldness

Finally, as a superset of graphs and triangle meshes, an obvious but important consequence is

that some vector graphics topologies are non-manifold (see Figure 3.13). More precisely, vector

graphics topologies are a superset of two-dimensional simplicial complexes, which have been for

decades the long-established standard representation for non-manifold spaces. Nowadays, many

algebraic topologists tend to prefer CW complexes for their �exibility, but in the �eld of computa-

tional topology, simplicial complexes are still the de facto representation for non-manifold spaces.

The reason is that unfortunately, CW complexes do not admit a purely combinatorial representa-

tion, and therefore are not suitable for computation. In a sense, vector graphics topologies can be

seen as a balance between simplicial complexes and CW complexes: they are more generic than

simplicial complexes in order to be artist-friendly, but they are less generic than CW complexes in

order to be computer-friendly.

50

3.2. The Non-Planar Nature of Vector Graphics

and ⇒ · · ·

Figure 3.14: As a consequence of allowing triangles and allowing any edge to be cut, vector graphics topologies
must support n-sided faces.

glue vertices uncut at vertex

∼=

Figure 3.15: As a consequence of allowing open edges, of allowing any two vertices to be glued, of allowing
edges to be cut, of Operator Invertibility (C), and of Operator Locality (D), vector graphics topologies must
support closed edges.

3.2.5 N-Sided Faces

So far, we have only analyzed the consequences of using open edges, triangles, and the glue opera-

tors. More speci�cally, we have seen that they allow for non-manifold and non-planar topologies,

possibly non-orientable. From now on, let us focus on the consequences of the cut operators. The

most obvious consequence of allowing to cut edges is that the topological structure must support

n-sided faces (i.e., faces bounded by n edges, for arbitrary n). Indeed, when iteratively applying

a cut to the boundary of a triangle, then we obtain a quad, then a �ve-sided face, and so on, as

illustrated in Figure 3.14.

3.2.6 Closed Edges

However, the most signi�cant consequences of the cut operators happen when they are combined

with Operator Invertibility (C) and Operator Locality (D). Indeed, this turns the inverse of the cut

operators into powerful simpli�cation operators, extending signi�cantly what topologies can be ex-

pressed with a single cell. For instance, a closed edge can be created in two simple steps, illustrated

in Figure 3.15. First, one can create an edge that start and end with the same vertex, by gluing the

two end vertices of an open edge. At the remaining vertex, one can observe that the topologi-

cal structure is locally homeomorphic to an open edge that has been cut (see Figure 3.15, middle).

Therefore, as a consequence of Operator Invertibility (C) and Operator Locality (D), “uncutting”

at this vertex must be allowed, which results in a closed edge.

Such a closed edge can in fact be seen as a new type (= homeomorphism class) of cell! Indeed,

it is not homeomorphic to either a vertex, an open edge, or a face. This makes vector graphics

51

3.2. The Non-Planar Nature of Vector Graphics

glue edges uncut at edge

∼=

uncut at vertices

(optional)

Figure 3.16: As a consequence of allowing n-sided faces, of allowing any two edges to be glued, of allowing
faces to be cut, of Operator Invertibility (C), and of Operator Locality (D), vector graphics topologies must
support faces with inner holes. Note the similarity between this �gure and Figure 3.15.

glue edges uncut at edges

Figure 3.17: For any given n ∈ N, it is possible to create a disk with n inner holes from a 4n-sided disk, by
gluing every 4i-th edge with the (4i+ 2)-th edge, then uncutting all resulting edges.

topologies unique compared to most existing topological structures. For instance, neither simpli-

cial complexes or CW complexes allow closed edges! The reason is that in algebraic topology, cells

are designed to be “simple enough” to be a useful tool for mathematical proofs. Indeed, the simpler

the cells, the stronger their topological properties. For instance, in the case of CW complexes, all

cells are homeomorphic to the interior of Dn = { x ∈ Rn | ||x|| ≤ 1 }, which is a very useful

property that can be used in proofs. But in our case, we are not very concerned about its utility

as a proof mechanism, but rather we are concerned about user experience. We want a de�nition

of cells that provides the best possible user experience. In a sense, de�ning what quali�es as a

valid cell and what does not can be seen as a delicate balance between expressiveness and simplic-

ity, and because artists have very di�erent needs than mathematicians, our de�nition of cell leans

more towards expressiveness than simplicity. Unfortunately, this more complex de�nition results

in topological operators which are harder to implement, but this is a reasonable price to pay to

improve user experience. In other words, there is no such thing as a free lunch.

3.2.7 Faces with Inner Holes

Following the exact same reasoning, vector graphics topologies must also support faces with inner

holes. Indeed, a face with an inner hole can be easily created in two steps: �rst gluing the two

opposite edges of a quad, then uncutting the resulting edge (see Figure 3.16). More generally, given

any n ∈ N, it is possible to create a face with n inner holes from a 4n-sided face (see Figure 3.17).

Like with closed edges, this in fact creates new types of faces, since a face with i holes is never

homeomorphic with a face with j holes (for i 6= j). Like closed edges, none of these new types

of cells are valid in simplicial complexes and CW complexes, but it is clear that they must be

52

3.2. The Non-Planar Nature of Vector Graphics

glue uncut

glue uncut

Figure 3.18: Examples of non-planar faces. Top: A face homeomorphic to a torus with one hole. Bottom: A
face homeomorphic to a Möbius strip. Like a disk, the boundary of both these faces is made of a single curve.

supported by vector graphics topologies. Indeed, they are obviously useful for artists, and are in

fact already supported by both SVG and planar maps.

3.2.8 Non-Planar Faces

Using the same two steps (glue + uncut), it is also possible to create non-planar faces, i.e. cells

which are homeomorphic to non-planar surfaces (see Figure 3.18). Indeed, we had already seen

in Section 3.2.2 that due to the glue operators, non-planar topologies must be supported. But in

fact, by applying the inverse of the cut operators to these topologies, even a single cell could be

a non-planar point-set. For instance, a cell can be a point-set homeomorphic to a Möbius strip,

or homeomorphic to a torus with a hole, or more generally homeomorphic to any orientable or

non-orientable surface of any genus, with any number of holes. Like closed edges, such faces

are usually not allowed in topological structures in order to ensure that cells are as “simple” as

possible, which is very desirable for many use cases, such as mathematical proofs. But in our case,

we allow these non-planar faces as a consequence of our design decisions. They provide additional

�exibility, consistency, and expressiveness which have practical bene�ts for artists, and which we

believe is worth the extra complexity of supporting them.

With all these di�erent types of faces, the word “face” is becoming more and more ambiguous. Is

it orientable? What is its genus? Does it have holes? How many? The same way that we have a

di�erent name for closed edges and open edges, it would be nice to have a di�erent name for each

of these types of faces. Unfortunately, while there exist only two types of edges (open and closed),

there exist in�nitely many types of faces, which makes naming them inconvenient. However, it

turns out that the type of a face is fully determined by three attributes: its orientability ε ∈ {�, 6�}
(= orientable or not), its genus g ∈ N, and its number of holes k ∈ N. This is a consequence

53

3.2. The Non-Planar Nature of Vector Graphics

glue uncut

(a) two independent disks (b) two overlapping disks,

sharing their boundary

(c) one sphere

Figure 3.19: A sequence of topological operators may result in a face without boundary, such as here a sphere.
Since these topologies cannot be rendered via “winding rule �lling”, most implementations may want to detect
them and handle them as a special case.

of an important result of algebraic topology called the classi�cation of compact 2-manifolds (see

Section A.4). Therefore, we can refer to each type of face as ε-g-k-face. For instance, a face is

planar (i.e., can be embedded in R2
) if and only if it is an �-0-k-face, for some k > 0. In other

words, planar faces are those homeomorphic to a sphere with k > 0 holes. All other types of faces

are non-planar, including the case k = 0 which we discuss in the next section.

Note that in Section 3.2.7, we used the phrase “face with n inner holes” to mean “cell homeomor-

phic to a disk with n holes”. Indeed, it is the intuitive meaning of “hole” in vector graphics, where

a 2D shape “without hole” intuitively means a topological disk. However, this intuitive meaning

of “hole” is di�erent from the number k above, which includes not only inner holes but also the

outer boundary. The reason is that from a topological perspective, they are no ways to distinguish

the outer boundary from an inner hole: both are one connected component of the face’s boundary.

Topologically, a “disk with one hole” is nothing else than a (�nite) cylinder, which is nothing else

than a sphere with 2 holes. To summarize, what we called a “face with n inner holes” was in fact

an�-0-(n+ 1)-face: an orientable, genus-0 surface with k = n+ 1 holes. In this thesis, whenever

we use the term “hole”, we refer to the number k. If we need to refer to the more intuitive number

n = k − 1, we use the term “inner hole” instead.

3.2.9 Faces without Boundary

In the previous section, we have seen that each face is of type ε-g-k-face, for some ε, g, and k. In

particular, we have seen that the number k represents the number of holes of the face, which means

the number of connected components of the face’s boundary. The case k = 0 is very special and

represents surfaces without boundary (e.g., a sphere, a torus, or a Klein bottle), which are never

planar. Because vector graphics faces are typically rendered using a winding rule to “�ll” in R2

the immersion of their boundary, faces without boundary cannot be rendered and thus have very

limited use. However, we do allow them for various reasons, including the fact that they are the

54

3.2. The Non-Planar Nature of Vector Graphics

Glue closed edges

Cut (×4) Glue Uncut (×2)Glue

Uncut at vertex

∼=

⇒
(invertibility)

Cut closed edge

Figure 3.20: Top: Cutting a closed edge into an open edge can be de�ned as the inverse of uncutting an open
edge starting and ending at the same vertex. Bottom: Gluing together two closed edges can be de�ned as a
sequence of existing operators.

mathematically correct result of some topological operators which should be valid according to

our design decisions (see Figure 3.19). However, in practice, some implementations may want to

forbid them, warn the user when they occur, or make it a user preference. However, it is important

to keep in mind that even if they cannot be rendered, they can be extremely useful as temporary

objects, either in the middle of an algorithm or during the user’s editing process. In addition,

some advanced users, for instance math students studying topology, may �nd them useful as a

pedagogical tool or as an abstract representation not meant to be rendered. Also, it is possible to

imagine alternative rendering methods not based on winding numbers, which would make them

renderable (for instance, by immersing their geometry using a triangulation). Finally, we note that

they are necessary for uniqueness of a minimal cell decomposition (see Section E), which may be

useful to determine whether two vector graphics illustrations are homeomorphic.

3.2.10 Cut and Glue Closed Edges

Now that we have shown the existence of all these new types of cells (closed edges, faces with inner

holes, and non-planar faces), we can de�ne new topological operators involving these cells. They

can all be de�ned using the existing operators, Operator Invertibility (C), and Operator Locality

(D). For instance, we illustrate in Figure 3.20 (top) that cutting a closed edge into an open edge can

be de�ned as the inverse of uncutting an open edge into a closed edge. In Figure 3.20 (bottom),

we show that gluing two closed edges together can be de�ned as a sequence of cutting the closed

edges into open edges, then gluing the open edges together, and �nally uncutting back the open

edges into closed edges.

55

3.2. The Non-Planar Nature of Vector Graphics

Cut face along closed edge

Cut face at vertex (method 1)

Cut face along open edge starting

Cut face at vertex (method 2)

and ending at the same vertex

Figure 3.21: Using a sequence of existing operators, Operator Invertibility (C), and Operator Locality (D), it
is possible to de�ne cutting a face at a (Steiner) vertex, cutting a face along an open edge that starts and ending
at the same vertex, and cutting a face along a closed edge.

3.2.11 Cut Faces at Vertices and along Closed Edges

In the design decisions, we mentioned cutting faces along open edges. In Figure 3.21, we show

that it is also possible to cut them at vertices, and cut them along closed edges. In addition, we

show that they can be cut along open edges starting and ending at the same vertex, a special case

of cutting along an open edge, which was not explicitly mentioned in the design decisions. All of

these new cut operators can be de�ned as a sequence of operators already de�ned.

Cutting a face at a vertex results in what we call a Steiner vertex, also called “point-in-face” in some

contexts. It is a point in the interior of a face that has been taken out to become its own separate

cell. However, we note that a Steiner vertex is not a new type of vertex, and its surrounding face is

not a new type of face either. Indeed, a Steiner vertex is still homeomorphic to a “normal” vertex,

and the surrounding face is still homeomorphic to one of the types of face we have already seen:

each Steiner vertex counts as a hole (for instance a disk with a Steiner vertex is a �-0-2-face).

Therefore, the term “Steiner vertex” does not refer to a new type of vertex, but instead refers to

the speci�c way in which the topological space X is locally decomposed into existing types of

cells. More speci�cally, any vertex that has one or more incident face(s) but no incident edges is

called a Steiner vertex.

3.2.12 Cut Faces with Inner Holes

Cutting a planar face without inner holes along open or closed edges is easy and non-ambiguous:

it always disconnects the face into two faces (see Figure 3.22a,e). However, if the face has one or

56

3.2. The Non-Planar Nature of Vector Graphics

Cut planar facesCut planar faces

without inner holes with inner holes

(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Figure 3.22: Cutting a planar face along a closed edge always disconnects the face (not true for non-planar
faces). Cutting a planar face along an open edge starting and ending at the same hole always disconnects the
face (not true for non-planar faces). Cutting a planar face along an open edge starting and ending at di�erent
holes never disconnects the face (also true for non-planar faces).

more inner holes, things get more complicated. For instance, let us look at the case of a planar face

with k = 3 holes, which we cut along an open edge (Fig. 3.22f–i). If the cut edge starts and ends

at the same hole (Fig. 3.22f–h), we can observe that it also disconnects the face into two faces, like

when cutting a disk into two half-disks. However, depending on which side of the cut each hole

belongs to, di�erent topologies will be obtained. A similar situation occurs if we cut the face along

a closed edge (Fig. 3.22b–d): it disconnects the face, and the holes get distributed among the two

resulting faces, depending on which side of the cut they belong.

But if we cut the face along an open edge that starts and ends at di�erent holes (Fig. 3.22i), then

an entirely di�erent situation occurs: it does not disconnect the face. Instead, the two holes are

simply merged into one, and the cut is actually non-ambiguous, regardless of the path taken by

the cut edge. In fact, this property turns out to be also true for non-planar faces. In a sense, cutting

a face along an open edge that starts and ends at di�erent holes is the simplest way to cut a face

along an edge. It is never ambiguous and can always be computed purely combinatorially, whether

the face is planar or not.

57

3.2. The Non-Planar Nature of Vector Graphics

Cut non-planar faces

along open edges

Cut non-planar faces

along closed edges

f2

f1

f

f ′

(a) (d)

(b) (e)

(c) (f)

(g) (j)

(h) (k)

(i) (l)

Figure 3.23: Some of the many ways non-planar faces can be cut along open and closed edges. Most of these
cuts are not topologically equivalent: some disconnect the face into two faces, some do not. Some decrease the
genus of the face, some do not. Some transform a non-orientable face into an orientable face, some do not. It is
a good exercise to try to determine the values of ε, g, and k before and after the cut, in each of these examples.
For an exhaustive list of the 19 non-equivalent ways to cut faces along edges, see Figure 3.25.

3.2.13 Cut Non-Planar Faces

In the previous section, we have discussed cutting planar faces along any type of edge, and cutting

faces—planar or not—along open edges starting and ending at di�erent holes. In this section, we

�nally discuss the two most complicated categories of cuts: cutting non-planar faces along closed

edges, or along open edges starting and ending at the same hole.

Orientable Faces Let us take the example of a torus with one hole (i.e., an �-1-1 face), which

we cut along a closed edge (see Figure 3.23a–c). One possibility is to cut along a tiny closed edge

(Fig. 3.23a), which disconnects the face f into two faces f1 and f2. This is always possible since

by de�nition, every surface is locally homeomorphic to R2
, thus one can cut out a tiny disk f1

anywhere on the surface. The remaining face f2 has the same orientability and genus as the

original face f , but with an additional hole. In other words, the�-1-1 face is disconnected into an

58

3.2. The Non-Planar Nature of Vector Graphics

(a) (b)

Figure 3.24: (a) Cutting an orientable face along a closed edge always increases the total number of holes by
exactly 2. The two additional holes correspond to the two sides of the closed edge. We highlighted one of these
two sides using red stripes. (b) Cutting a non-orientable face along a closed edge increases the total number of
holes by either 1 or 2. As we illustrate in this �gure, the former case happens when the closed edge is globally
one-sided, despite being locally two-sided. If you were walking on the face along the hole, you would need to
walk twice the length of the closed edge before reaching your start position again.

�-0-1 face and an �-1-2 face. We can observe that the total number of faces increases by 1, the

total genus has not changed, and the total number of holes increases by 2.

However, since f has a non-zero genus, it is also possible to cut it in a way that does not disconnect

it (Fig. 3.23b). Indeed, the number of times a surface can be cut without disconnecting it is in fact

one possible de�nition of the genus of a surface. The resulting face f ′ is an�-0-3 face: a topological

sphere with three holes. One of the holes is the original boundary, and the two new holes are the

two sides of the cut edge, sides that just happen to belong to the same face. We can observe that

the total number of faces has not changed, the total genus decreased by 1, and the total number of

holes increased by 2.

Non-Orientable Faces Let us now take the example of a Möbius strip (i.e., a 6�-1-1 face), which

we also cut along a closed edge (Fig. 3.23d–f). Like for the torus, it is possible to cut out a tiny

disk out of the Möbius strip (Fig. 3.23d), which disconnect the 6�-1-1 face f into an �-0-1 face f1

and a 6�-1-2 face f2. However, it is also possible to cut f in a way that does not disconnect it, such

as cutting along its centerline
6

(Fig. 3.23e). The resulting face f ′ is an �-0-2 face: a topological

sphere with two holes, i.e., a topological cylinder. In addition to decreasing the genus (which was

expected), two remarkable things happened: not only the face became orientable, but its number

of holes increased by only 1, instead of increasing by 2 as expected. The reason is that despite

being locally two-sided, the cut edge is in fact globally one-sided, and then only generates one

additional hole, which circles along the closed edge two times (Fig. 3.24b).

Finally, we have yet to discuss cutting non-planar faces along open edges starting and ending at

the same hole (see Figure 3.23, right). However, it turns out that this case shares many similarities

with cutting non-planar faces along closed edges. Therefore, for conciseness, we do not discuss it

6

If you have never done it before, I highly recommend to take an actual strip of paper (about 2cm × 20cm), tape its

two ends after a half-twist to create a Möbius strip, then cut along its centerline with scissors to see what happens.

59

3.2. The Non-Planar Nature of Vector Graphics

here and refer to Appendix D for more details. As a quick way to get more insight, we encourage

the reader to try to answer the following four questions (answers given in this footnote
7
):

1. We cut an�-1-1 face along an open edge that does not disconnect it (Fig. 3.23h) . How many

holes does it have after the cut?

2. Do the two sides of the cut edge belong to the same hole?

3. Consider the same two questions as applied to a 6�-1-1 face (Fig. 3.23k).

4. Compare these results with the analogous case of cutting these same faces along a closed

edge.

3.2.14 The Face-Cut Classification

At this point, we hope to have successfully conveyed the idea that vector graphics topology is not

as trivial as it may seem. In particular, cutting non-planar faces, and especially non-orientable

faces, is far from obvious. And in fact, we even have omitted the most complicated cases for

conciseness. For instance, there are 6 non-equivalent ways to cut a 6�-3-1 face along a closed edge.

Half of these do not disconnect the face, and respectively transform it into an �-1-2 face, a 6�-2-2

face, and a 6�-1-3 face. This is very di�erent from the cases we had already seen, where there was

at most one way to cut each face along a closed edge without disconnecting it.

One may start to worry that by considering faces of even higher genus, for instance 6�-7-1 faces,

then there would be even more ways to cut them. Fortunately, this is not the case: there are only 3

ways to cut a 6�-7-1 face along a closed edge without disconnecting it, which are the same 3 ways

that apply to a 6�-3-1 face. In other words, cutting faces gets more complicated up to genus 3, at

which point all possible cuts have already been discovered. The exhaustive list of the 19 possible

cuts is illustrated in Figure 3.25, and we call this list the face-cut classi�cation. We prove this

classi�cation in Appendix D, using the formalism of PCS complexes which we de�ne in the next

section. Together with the de�nition of PCS complexes itself, the face-cut classi�cation is perhaps

the most signi�cant theoretical contribution of this thesis.

7

(1) 2. (2) No. (3) 1, Yes (4) When cutting with a closed edge, the answers were 3-No-2-Yes, i.e. the same answers

with a one-hole o�set.

60

3.2. The Non-Planar Nature of Vector Graphics

If ε =�
f ′

f1, f2

If ε = 6�

f ′

f1, f2

ε′ =�

ε′ = 6�
k′ = k + 2

k′ = k + 1

ε1 =�
ε2 = 6�

ε′ =� g′ = g − 1 k′ = k + 2
ε1 =�
ε2 =� g1 + g2 = g k1 + k2 = k + 2

ε′ =� g′ = g−1
2 k′ = k + 1

ε′ =� g′ = g−2
2 k′ = k + 2

ε′ = 6� g′ = g − 1 k′ = k + 1
ε′ = 6� g′ = g − 2 k′ = k + 2

ε1 =�
ε2 = 6� 2g1 + g2 = g k1 + k2 = k + 2

ε1 = 6�
ε2 =� g1 + 2g2 = g k1 + k2 = k + 2

ε1 = 6�
ε2 = 6� g1 + g2 = g k1 + k2 = k + 2

If g is odd:

If g is even:

ε1 = 6�
ε2 =�

ε1 = 6�
ε2 = 6�

If ε =�
f ′

f1, f2

If ε = 6�

f ′

f1, f2

ε′ =�

ε′ = 6�
k′ = k + 2

k′ = k + 1

ε1 =�
ε2 = 6�

ε′ =� g′ = g − 1 k′ = k + 1
ε1 =�
ε2 =� g1 + g2 = g k1 + k2 = k + 1

ε′ =� g′ = g−1
2 k′ = k

ε′ =� g′ = g−2
2 k′ = k + 1

ε′ = 6� g′ = g − 1 k′ = k

ε′ = 6� g′ = g − 2 k′ = k + 1

ε1 =�
ε2 = 6� 2g1 + g2 = g k1 + k2 = k + 1

ε1 = 6�
ε2 =� g1 + 2g2 = g k1 + k2 = k + 1

ε1 = 6�
ε2 = 6� g1 + g2 = g k1 + k2 = k + 1

If g is odd:

If g is even:

ε1 = 6�
ε2 =�

ε1 = 6�
ε2 = 6�

ecut is a

closed edge

CutFaceAtEdge()

ecut is an

open edge starting

and ending at

the same hole

ecut is an

open edge starting

and ending at

di�erent holes ε′ = ε g′ = g k′ = k − 1

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

(m)

(n)

(o)

(p)

(q)

(r)

(s)

Figure 3.25: Exhaustive classi�cation of the 19 di�erent ways a face can be cut along an edge. The branching
“if”s represent known information about the face to be cut (e.g., is it orientable or not?). The branching arrows
represent di�erent cuts that can be done, each leading to di�erent topological properties (e.g., either disconnects
the face, or not). We illustrate all these 19 types of cuts in Figure D.5 and Figure D.6. Note that planar maps
only support (b), (k), and (s), and which of the three to apply can be fully determined combinatorially, unlike
in the general case.

61

3.3. PCS Complexes

(b) Manifolds Mc(a) Abstract PCS complex (C, T) (c) PCS complex (X, C, T)

C = { v1, v2, v3, e1, e2, e3, f }

isClosed: e1, e2, e3 7→ ⊥

dim:

v1, v2, v3 7→ 0
e1, e2, e3 7→ 1
f 7→ 2

ε : f 7→�
g : f 7→ 0
k : f 7→ 1

∂̂:

v1, v2, v3 7→ ∅
e1 7→ (v1, v2)
e2 7→ (v2, v3)
e3 7→ (v2, v3)
f 7→ [[(e2,>), (e3,⊥)]]

Mv1 =

Me1 =

Mv2 =

Mf =

Mv3 =

0

1

Me2 =

0

1

10

Me3 =

0

1

∼=

Figure 3.26: (a) Example of abstract PCS complex P = (C, T), where T = (dim, isClosed, ε, g, k, ∂̂),
consisting of 7 abstract cells c ∈ C . (b) The characteristic manifold Mc associated with each abstract cell, as
speci�ed by the functions dim, isClosed, ε, g, and k. (c) The geometric realization |P| = (X, C, T) of P ,
de�ned by gluing the boundary of each manifoldMc to manifolds of lower dimension, as speci�ed by ∂̂.

3.3 PCS Complexes

In Section 3.2, starting from a short list of design decisions, we informally deduced various topolog-

ical objects and operators that vector graphics tools should support, such as non-planar topologies,

and even non-planar individual cells. In this section, we introduce the concept of PCS complex,

which is a topological structure satisfying these requirements. This particular section is more

technical in nature and provides insights into the key theoretical contributions of this thesis. It

is optional reading for the reader with more applied interests, who will already have developed a

useful intuition of the problems at hand from the �rst two sections of this chapter.

Very brie�y, a PCS complex (= Point-Curve-Surface complex) is a topological space—in other

words, a continuous point-set—which is partitioned into cells that have to satisfy some constraints

(see Figure 3.26c). It is similar to the concept of CW complex, but has di�erent de�nitions of cells

and constraints, in order to make it suitable for vector graphics. Importantly, unlike CW com-

plexes, PCS complexes can be de�ned in terms of a combinatorial structure which we call abstract
PCS complex (see Figure 3.26a).

This section is organized as follows. In Section 3.3.1, we de�ne the concept of abstract PCS complex.

It is a combinatorial structure consisting of symbols c ∈ C and some topological information T

about them. Then, in Section 3.3.2, we de�ne the concept of PCS complex, as geometric realizations

62

3.3. PCS Complexes

of abstract PCS complexes. In order to clarify these formal de�nitions, we discuss them and provide

examples in Section 3.3.3. Finally, in Section 3.3.4, we show how the de�nition of vector graphics

complexes is derived from the de�nition of abstract PCS complexes.

3.3.1 Abstract PCS complexes

An abstract PCS complex is an ordered pair P = (C, T), such that:

• C is a �nite set of symbols called abstract cells

• T = (dim, isClosed, ε, g, k, ∂̂) is a tuple of functions together called abstract topology.

They assign topological information to abstract cells, as we detail below.

• dim : C → {0, 1, 2} is a function that assigns a dimension to each abstract cell. This

de�nes a partition of C into three sets V , E, and F of elements respectively called abstract
vertices, abstract edges, and abstract faces. For conciseness, we now omit the adjective

abstract when it is clear that we are referring to combinatorial objects.

• isClosed : E → {>,⊥} is a function that assigns a closedness to each edge. This de�nes

a partition of E into two sets E◦ and E| of elements respectively called closed edges and

open edges.

• ε : F → {�, 6�} is a function that assigns an orientability to each face.

• g : F → N is a function that assigns a genus to each face. This genus must be non-zero for

non-orientable faces.

• k : F → N is a function that assigns a number of holes to each face.

• ∂̂ is a function that assigns an ordered boundary to each cell. This ordered boundary, which

we detail below, is what de�nes the incidence relationship between cells.

• For each v ∈ V , we have ∂̂v = ∅.

• For each e ∈ E◦, we have ∂̂e = ∅.

• For each e ∈ E|, we have ∂̂e ∈ V × V . We denote by vstart(e) and vend(e) the �rst and

second element of the ordered pair.

• For each f ∈ F , we have ∂̂f ∈ Γk(f)
. In other words, it is an ordered sequence of k(f)

cycles γi ∈ Γ, where Γ is the set of all possible cycles on P , which we de�ne below.

• A halfedge h = (e, β) is a pair of an edge e ∈ E and a direction β ∈ {>,⊥}. If e is a closed

edge, then h is called a closed halfedge, otherwise it is called an open halfedge. For each

63

3.3. PCS Complexes

open halfedge h, we denote by vstart(h) and vend(h) the following vertices:

vstart(h) =

vstart(e), if β = >

vend(e), if β = ⊥
and vend(h) =

vend(e), if β = >

vstart(e), if β = ⊥
(3.2)

• A cycle γ ∈ Γ is either:

1. a vertex v ∈ V , or

2. a pair (h,N) consisting of a closed halfedge h and an integer N > 0, or

3. a non-empty, ordered sequence (hj)j∈[1..N] of open halfedges such that:

∀j ∈ [1..N], vend(hj) = vstart(h(j+1) mod N) (3.3)

In the �rst case, the cycle is called a Steiner cycle; in the second case, it is called a simple
cycle; and in the third and last case, it is called a non-simple cycle.

3.3.2 PCS complexes

In this section, for each abstract PCS complex P = (C, T), we de�ne a structure called the geo-
metric realization of P . It is a triplet |P| = (X, C, T) consisting of a point-set X , a partition C
of X , and a topology T on X . The elements of C are called the (non-abstract) cells of |P|.

A PCS complex is then de�ned as any tripletK = (X, C, T) such that there exists an abstract PCS

complex P whose geometric realization |P| = (X ′, C′, T ′) is isomorphic to K. By isomorphic,

we mean that there exists a homeomorphism φ : X → X ′, continuous with respect to T and T ′,
such that each cell c ∈ C is mapped by φ to a cell c′ ∈ C′.

Let P = (C, T) be an abstract PCS complex. We de�ne |P| = (X, C, T) as follows, where the

topology T of each topological space is assumed to be the usual topology on compact manifolds

and quotient spaces.

Characteristic Manifolds For each abstract cell c ∈ C , we de�ne a compact manifold Mc,

called the characteristic manifold of c, as follows:

• The characteristic manifold of each vertex v ∈ V is the single point {0}.

• The characteristic manifold of each closed edge e ∈ E◦ is the unit circle S1
.

• The characteristic manifold of each open edge e ∈ E| is the segment [0, 1].

64

3.3. PCS Complexes

• The characteristic manifold of each face f ∈ F is the unit
8

compact surface of orientability

ε(f), genus g(f), with k(f) holes.

Disjoint Union We de�ne Y as the disjoint union Y =
∐
c∈C Mc. This simply means that Y

is a topological space composed of all Mc together, preventing intersections by attaching a unique

ID to each Mc. A formal de�nition can be found in [Lee 2011, p64].

Quotient Space We de�neX as the quotient space obtained from Y by gluing
9

the boundary

∂Mc of each characteristic manifold to lower-dimensional manifolds, as follows:

• For vertices and closed edges, there is nothing to glue since ∂Mc = ∅.

• For each open edge e ∈ E|, we respectively glue the start and end point of Me = [0, 1] to

the point Mvstart(e) and the point Mvend(e).

• For each face f ∈ F , we glue the points of ∂Mf as follows.

First, we recall that Mf is a compact surface with k(f) holes. This means that ∂Mf consists

of k(f) connected components Bi, each homeomorphic to a circle. For clarity, we assume

that all manifoldsM homeomorphic to a circle are consistently parameterized
10

by θ ∈ [0, 1),

and we use the notation M[θ] to refer to the point of M corresponding to the parameter θ.

If θ lies outside the range [0, 1), we implicitly use its fractional part θ − bθc instead.

Back to the de�nition. For each cycle γi of ∂̂f , we glue the following points:

1. If γi is a vertex v, we glue the whole circle Bi to the point Mv .

2. If γi is a pair (h,N) consisting of a closed halfedge h = (e, β) and an integer N > 0,

then we glue each point Bi[θ] to the point Me[θ′], where:

θ′ =

Nθ, if β = >

−Nθ, if β = ⊥
(3.4)

3. If γi is a sequence (hj)j∈[1..N] of open halfedges hj = (ej , βj), then we �rst partition

the hole Bi intoN sub-arcs Bi,j , each de�ned by θ ∈ [j−1
N , jN). Then, for convenience,

we reparameterize these sub-arcs by u ∈ [0, 1). Finally, for each sub-arc Bi,j , we glue

8

Here, the term unit refers to any surface of reference which we assume has been arbitrarily �xed beforehand, in

order to uniquely de�ne |P|. The choice of this unit surface in�uences the de�nition of |P|, but only within the same

isomorphism class. Thus, it does not in�uence the de�nition of PCS complexes, which are de�ned via isomorphisms.

9

See Appendix A.6 for the precise meaning of quotient space and gluing.

10

We detail what this means in Section 3.3.3, paragraph Constistent Parameterization. This disambiguates which

direction is “clockwise”, and which direction is “counter-clockwise”.

65

3.3. PCS Complexes

e1

f

v
e1

e2

f

e1

f

∂̂f = [γ1, γ2]

where:

γ1 = ((e1,>), 1)
γ2 = v

k(f) = 2
g(f) = 0
ε(f) =�

where:

∂̂f = [γ1]

γ1 = ((e1,>), 1)

k(f) = 1
g(f) = 1
ε(f) = 6�

∂̂f = [γ1, γ2]

where:

γ1 = ((e1,>), 1)
γ2 = ((e2,⊥), 2)

k(f) = 2
g(f) = 0
ε(f) =�

isClosed(e2) = >
isClosed(e1) = > isClosed(e1) = > isClosed(e1) = >

(a) (b) (c)

∂̂f = [γ1, γ2]

where:

γ1 = ((e1,>), 1)
γ2 = ((e2,⊥), 1)

k(f) = 2
g(f) = 0
ε(f) =�

isClosed(e2) = >
isClosed(e1) = >

f

e2
e1

(d)

Figure 3.27: Four examples of PCS complexes K, together with their combinatorial representation P . For
conciseness, we did not mention the set C or the function dim, which can be easily inferred from the �gure.
Also, we did not mention the value of ∂̂ for vertices and closed edges, which is always equal to the empty set.

each point Bi,j [u] to the point Mej [u′], where:

u′ =

u, if βj = >

1− u, if βj = ⊥
(3.5)

Cell Decomposition Finally, for each abstract cell c ∈ C , we de�ne its geometric realization
|c| as the subset ofX that corresponds to the interior of Mc. Since the boundary of each character-

istic manifold Mc is glued to characteristic manifolds of lower dimension, and since their interior

is left untouched, we can deduce that the subsets |c| de�ne a partition ofX . We de�ne C to be this

partition, which completes the de�nition of |P| = (X, C, T).

3.3.3 Examples and Discussions

In Figure 3.26, we give a simple but detailed example of abstract PCS complexP = (C, T), together

with its geometric realization |P| = (X, C, T), and an illustration of how |P| is de�ned by stitching

together the characteristic manifolds Mc. We recommend to spend some time to analyze this

example while reading the de�nitions, which by itself should already provide a good understanding

of the structure. In this section, we clarify the most important or least obvious points.

66

3.3. PCS Complexes

Cell Types An abstract PCS complex is a combinatorial structure made of di�erent types of

cells: vertices, closed edges, open edges, and faces of various orientability, genus, and number of

holes. The list of cells is given by the set C , and their topological type is given by the functions

dim, isClosed, ε, g, and k. This choice of types is not arbitrary but a direct consequence of the

classi�cation of compact n-manifolds for n ≤ 2 (for more details, see Section A.4).

Hole Types The incidence relationship between cells is given by the function ∂̂, which speci�es

the start and end vertex of open edges, and the bounding vertices and edges of faces. Since the

former is quite straightforward, let us only clarify the latter. As we have seen in Section 3.2, the

boundary of every face is composed of a given number of holes (this includes both the outer bound-

ary and inner holes, if any). Each of these holes is composed of vertices and/or edges, organized

in a speci�c order, and with a speci�c direction. We represent this organization via the concept of

cycle. We can identify three categories of holes, which leads to three categories of cycles:

1. There are holes that are composed of a single vertex and no edges, i.e. a point-in-face, or

Steiner vertex. These holes are very easy to represent combinatorially: one must just refer

to this vertex (see Figure 3.27a, γ2).

2. There are holes that are composed of a single closed edge, no vertices, no open edges (see

Figure 3.27b–d). One may think that these can also be easily represented combinatorially,

by simply referring to the closed edge. This is almost true, but with two subtleties:

• First, one must choose a direction for the closed edge. Indeed, if you glue together the

two holes of a cylinder, you can either get a torus or a Klein bottle, depending on which

direction is chosen. Therefore, instead of simply specifying the closed edge e, we need

to specify a pair h = (e, β) of the closed edge with a direction.

• Second, the hole may “circle around” the closed edge several times. This is for instance

what happens when you cut a Möbius strip in its centerline (see Figure 3.24b). The

non-orientable face becomes orientable, and it gains one new hole which is composed

of a closed edge “used two times”. This latter information is critical: without it, there

would be no way to distinguish this “cut-Möbius” face (Fig. 3.27d) from a disk with one

inner hole (Fig. 3.27b). There would be no way to know that it is possible to uncut at

this closed edge, and that such uncut makes the face non-orientable. Therefore, instead

of specifying a closed halfedge h, we need in fact to specify a pair (h,N), whereN > 0
speci�es the number of times the hole circles around the closed edge. Typically,N = 1,

but in the case of the cut-Möbius, N = 2, and in fact any value of N > 0 is possible.

3. Finally, there are holes that are composed of vertices and open edges (see Figure 3.28). This

is the most typical case, the most intuitive, but the most complex from a combinatorial

67

3.3. PCS Complexes

e1

e2

v2

v1

f

(a)

f
e2

e1

v2

v1

e3

∂̂e1 = (v1, v1)

where:

γ1 = [(e1,>),

k(f) = 1
g(f) = 0
ε(f) =�

∂̂f = [γ1]

∂̂e2 = (v1, v2)

isClosed(e2) = ⊥
isClosed(e1) = ⊥

(e2,>),
(e2,⊥)]

∂̂e1 = (v1, v1)

where:

γ1 = [(e1,>),

k(f) = 1
g(f) = 0
ε(f) =�

∂̂f = [γ1]

∂̂e2 = (v2, v2)

isClosed(e2) = ⊥
isClosed(e1) = ⊥

(e3,>),

isClosed(e3) = ⊥

∂̂e3 = (v1, v2)

(e2,⊥),
(e3,⊥)]

∂̂e1 = (v1, v1)

where:

γ1 = [(e1,>),

k(f) = 1
g(f) = 0
ε(f) =�

∂̂f = [γ1]

∂̂e2 = (v2, v2)

isClosed(e2) = ⊥
isClosed(e1) = ⊥

(e4,>),

isClosed(e4) = ⊥

∂̂e3 = (v1, v2)

(e2,>),

isClosed(e3) = ⊥

∂̂e4 = (v1, v2)

(e4,⊥),
(e3,>),
(e4,⊥)]

e1
f

e3

v1

v2
e2

∂̂e1 = (v1, v2)

where:

γ1 = [(e1,>),

k(f) = 1
g(f) = 0
ε(f) =�

∂̂f = [γ1]

∂̂e2 = (v2, v1)

isClosed(e2) = ⊥
isClosed(e1) = ⊥

(e3,⊥),

isClosed(e3) = ⊥

∂̂e3 = (v1, v2)

(e2,⊥),
(e3,⊥)]

e3
e1 e2

e4

f

v2v1

(b) (c) (d)

Figure 3.28: More examples of PCS complexes K, together with their combinatorial representation P .

standpoint. They are combinatorially represented by a cycle: a path of consecutive directed

open edges, which starts and ends at the same vertex. Intuitively, this cycle is obtained by

starting at any arbitrary vertex of the hole, then walking on the surface, alongside the hole,

until we are back at the same position on the surface. Note that being back at the start vertex

is not enough, since it can appear multiple times in the cycle. Also, edges can appear any

number of times in the cycle, with any direction. In Figure 3.28, we give many examples

where an edge is used two times by the same cycle. In Figure 3.28d, there is even an edge

used three times by the same cycle. Note that if an edge is used three or more times (by the

same cycle or not), then the overall topology is both non-manifold and non-planar.

Analogy with Graphs The set of abstract cells C plays the same role as the set of nodes V in

a graph G = (V,E) (which is to provide an “identity” to every object in the structure), and the

68

3.3. PCS Complexes

(a) (b)

∼=

Figure 3.29: (a) In order to unambiguously de�ne the geometric realization of an abstract PCS complex, all
holes must be oriented “consistently”. For instance, here, walking along any hole leaves the surface “to the left”.
(b) This means that if a face is embedded in R2, then the outer boundary must have the opposite clockwiseness
than the inner holes. Indeed, when stretching this outer boundary oriented like so, we see that it turns into a
hole of a sphere, with an orientation consistent with the other holes.

tuple of functions T plays the same role asE (which is to represent how these objects are connected

to one another). However, in the case of graphs all nodes have the same “type”, while in the case

of abstract PCS complexes there exist di�erent types of cells. Assigning this type is another role

of T , which can be seen as coloring the nodes of a graph. Besides the usual graphs G = (V,E)
where edges are unordered pairs of vertices without identity, it is perhaps more interesting to

make an analogy with directed multigraphs, de�ned as G = (V,E, r), where V and E are two

sets of symbols (i.e., edges also have an identity), and r : E → V × V assigns a source vertex and

a target vertex to every edge. Such structure could be equivalently de�ned as G = (C, T), with

T = (dim, r), clearly classifying information as being either “identity” or “topology”, like in our

formalism but without closed edges and faces, and where r plays the role of ∂̂. This shows that PCS

complexes are in fact a superset of directed multigraphs, and among them stroke graphs.

Geometric Realization In Section 3.3.2, we de�ned the geometric realization |P| of each ab-

stract PCS complex P , by de�ning a characteristic manifold Mc to each abstract cell, then gluing

these manifolds together in a way speci�ed by ∂̂. Then, we de�ned a PCS complex as any topo-

logical space, together with a cell decomposition, which is isomorphic to the geometric realization

of an abstract PCS complex. However, it is also possible to de�ne PCS complexes independently

from abstract PCS complexes, similarly to how CW complexes are usually de�ned. We provide

such a de�nition in Appendix B.

Consistent Parameterization In the de�nition of the geometric realization |P| of an abstract

PCS complex P , we mentioned that the holes of the characteristic manifold Mf of a given face f

are assumed to be consistently parameterized by θ ∈ [0, 1). For conciseness, we did not de�ne the

exact meaning of “consistently”, but it is actually a critical part of the de�nition, and we clarify it

69

3.3. PCS Complexes

6∼=
6≡

∼=
6≡

∼=
≡

Figure 3.30: Examples of PCS complexes which are either homeomorphic, or isomorphic, or both, or neither.
Note that if two PCS complexes are isomorphic, then they are also homeomorphic.

here. It means that for any given Mf , the chosen orientations for all its holes are consistent with

one another. More precisely, this means that if we walk along any hole with the chosen orientation,

the surface is always on the same side of the hole, e.g., “to the left” (see Figure 3.29a). As a conse-

quence, this means that for planar faces—which are the most typical in vector graphics—the “outer

boundary” is oriented with the opposite clockwiseness than the inner holes (see Figure 3.29b). Be-

sides, we note that any orientable surface has two sides A and B. When we say “walk along any

hole”, we mean more precisely “walk on side A of the surface, alongside any hole”. If you were

walking on side B, then the surface would be “to the right” instead of “to the left”. For any given

face, which side or which orientation is chosen does not matter, as long as the choice is consistent

across all holes. Finally, we note that this whole concept of consistency only applies to orientable

faces. Non-orientable faces only have one side, like in a Möbius strip, and the orientations of their

holes are irrelevant. They can be chosen arbitrarily and independently; in each case it will de�ne

the same geometric realization |P| up to isomorphism.

Homeomorphism and Isomorphism We recall that a PCS complex K is a topological space

together with a (valid) cell decomposition. Therefore, we de�ne a homeomorphism between two

PCS complexesK andK′ to be a homeomorphism between their topological spaces (ignoring their

cell decompositions). However, in Section 3.3.2, we also de�ned in the stronger concept of iso-
morphism, which is a homeomorphism between two PCS complexes such that every cell of K is

mapped into a cell ofK′. In other words, ifK andK′ are isomorphic, not only they are homeomor-

phic, but they also have the “same” cell decomposition. In the algebraic topology literature, this

concept is sometimes called cellular homeomorphism, or cellular equivalence. We use the notation

K ∼= K′ to denote homeomorphic PCS complexes, and the notation K ≡ K′ to denote isomorphic

PCS complexes (see Figure 3.30 for examples). These de�nitions can be extended for abstract PCS

complexes: two abstract PCS complexes P and P ′ are said homeomorphic (resp. isomorphic) if

and only if their geometric realizations |P| and |P ′| are homeomorphic (resp. isomorphic). Ab-

stract PCS complex homeomorphism is very similar to graph homeomorphism. However, abstract

PCS complex isomorphism is a bit more subtle than graph isomorphism. Indeed, within an iso-

morphism class, not only can cells be renamed (as in graph isomorphism), but in addition, cycles

can be re-ordered, rotated (= di�erent start vertex), sometimes reversed (e.g., in the case of non-

orientable faces), and edge directions can sometimes be �ipped. This captures the intuitive concept

70

3.3. PCS Complexes

that for any (non-trivial) PCS complex, there are many abstract PCS complexes that can represent

it, which are technically di�erent, but should really be considered the same. Deciding whether two

abstract PCS complexes are isomorphic is a NP-hard problem
11

, since it is at least as hard as graph

isomorphism, which is NP-complete.

Boundary and Incidence Graph From the de�nition of ordered boundary ∂̂, we can de�ne

the concept of boundary ∂ for abstract PCS complexes. For each abstract cell c, its boundary

∂c is de�ned as the set of cells “involved” in ∂̂c. More precisely, it is de�ned as follows: ∂c =
∅ for vertices and closed edges; ∂̂e = {vstart(e), vend(e)} for open edges; and for faces, ∂f is

composed of its Steiner vertices, bounding closed edges, bounding open edges, and their start and

end vertices. Equivalently, it can also be de�ned as the set of abstracts cells c′ whose geometric

realization |c′| is contained in the point-set de�ned by ∂Mc. In any case, this allows us to de�ne

the incidence graph of any abstract PCS complex, as the directed graph G = (C,E) where C is

the set of abstract cells, and (c, c′) ∈ E if and only if c′ ∈ ∂c. One may think that this incidence

graph, or perhaps simply replacing ∂̂ by ∂ in the de�nition of P , is enough to uniquely de�ne an

abstract PCS complex. Unfortunately, this is not true: there exist many abstract PCS complexes

which are not isomorphic, but that have the same incidence graph. In order words, the concept of

ordered boundary is critical. This order speci�es direction of edges, which can make the di�erence

between a planar or a non-planar topology. This order speci�es which edges are used several times

by the same face, which can make the di�erence between a manifold or non-manifold topology.

In practice, all of this has an in�uence on the behavior of topological operators.

Multiplicative Notation for Cycles For convenience, it is useful to denote cycles via a multi-

plicative notation, which is a very common practice in algebraic topology (see Figure 3.31). In fact,

one may argue that it is what makes algebraic topology, well, algebraic. Using this notation, the

sequence of open halfedges [(e1,>), (e2,⊥), (e3,>)] can simply be written as e1e
−1
2 e3. A cycle

consisting of a Steiner vertex v is obviously written “v”, and a cycle consisting of a pair ((e, β), N)
of a closed halfedge and integer is written as eN , or e−N (or simply e if N = 1 and β = >). If β

is an unknown variable, intuitive notations such as eβ , e−β , or eβN can of course be used.

Topological Operators Given an abstract PCS complex P , it is possible to transform it to a

di�erent abstract PCS complex P ′, by using a topological operator. Each topological operator is

a combinatorial algorithm that implements a behavior described in terms of point-sets, such as glue

and cut (see Section 3.2). In fact, being able to do so is one of the most important reason why we

developed the formalism of PCS complexes in the �rst place. It allows us to have a one-to-one

11

More precisely, it is very likely a NP-complete problem, but proving that it is actually in NP is not obvious. We

believe that it can be done by realizing the spaces as triangulations, and using some trick with the genuses to keep the

size of the triangulation polynomial in the size of P , but we leave a formal proof for future work.

71

3.3. PCS Complexes

e1

f
e3

v1

v2
e2

∂̂e2 = (v2, v1)

e1

f2

e3

v1

v2
e2

f1

e1

f

v1

v2
e2

∂̂f = [e1e2]

∂̂e1 = (v1, v2)
∂̂e2 = (v2, v1)
∂̂e1 = (v1, v2)

∂̂e3 = (v2, v1)

∂̂f = [e1e3e
−1
2 e3]

∂̂e2 = (v2, v1)
∂̂e1 = (v1, v2)

∂̂e3 = (v2, v1)

∂̂f1 = [e1e3]
∂̂f2 = [e2e

−1
3]

(a) (b) (c)

Figure 3.31: Two examples of cut operators on a Möbius strip. We use here a multiplicative notation for
cycles, where emeans the halfedge (e,>), and e−1 means the halfedge (e,⊥). Note that for both cut operators,
the cut edge e3 is an open edge starting at v2 and ending at v1, but still the cuts are non-equivalent.

mapping (up to isomorphism) between combinatorial structures P and point-set decompositions

K, supporting closed edges and non-planar faces. To the best of our knowledge, this is the �rst

time it has ever been achieved, at the very least applied for vector graphics. This makes possible

to rigorously infer any topological operator algorithm from a behavior speci�ed in terms of point-

sets, instead of arbitrarily picking an algorithm that seems to implement the desired behavior. For

instance, cutting a face f along an open edge can be de�ned as extracting from its geometric

realization |f | any open curve starting and ending at a vertex, then decomposing the remaining

point-set into connected components. With this de�nition, we have been able to methodically

discover and classify all non-equivalent cuts, where non-equivalent means that the resulting

PCS complexes are not isomorphic. In Figure 3.31, we illustrate two of such non-equivalent cuts,

and in Appendix D, we detail all topological operators and their corresponding algorithms.

3.3.4 Vector Graphics Complexes

A vector graphics complex (VGC) is de�ned as an abstract PCS complex with “unknown” ori-

entability and genus. In other words, a VGC is a pairP = (C, T) where T = (dim, isClosed, k, ∂̂),

and where C , dim, isClosed, k, and ∂̂ have the same de�nition as for abstract PCS complexes

(see Section 3.3.1). Of course, there are many other ways to de�ne this structure, such as P =
(V,E, F, ∂̂), especially since isClosed and k can in fact be deduced from ∂̂. All of these are equiv-

alent and simply a matter of taste. In Chapter 4, we discuss vector graphics complexes at length,

focusing mostly on practical considerations such as how to immerse them in R2
, how to specify

a depth ordering for overlapping cells, and how to build an intuitive user interface around this

concept. In this section, we only discuss how vector graphics complexes relate to PCS complexes,

72

3.3. PCS Complexes

glue uncut

unglue cut

∂̂f = [e1e2e3e4] ∂̂f = [e1e5e3e5] ∂̂f = [e1e
−1
3]

e1

f
e5

e3 e1

f

e3e1

f

e2

e3

e4

(a) (b) (c)

Figure 3.32: Examples of topological operators applied to a VGC. Top: Expected behavior. Bottom: Algebraic
operations to perform on the face’s cycle in order to implement this behavior.

and in particular, we discuss why the concept of PCS complex is useful to understand and de�ne

vector graphics complexes.

Consider the sequence of VGC operations illustrated in Figure 3.32. The initial shape on the left

(Fig. 3.32a) can be represented as a single face f , since edges of vector graphics complexes are

allowed to overlap. The face is rendered using the even-odd winding rule, which is the most

standard rendering method used in vector graphics systems. Then, a user may decide to glue e2

with e4, and �nally to uncut at e5, resulting in the shapes depicted in Figure. 3.32b and 3.32c. While

this behavior is arguably a design decision, it is fair to assume that it captures what most users

would intuitively expect. For this speci�c example, based on this expected behavior, it is possible

to infer an implementation of glue, uncut, and their inverse operations, such as cut. Importantly,

notice that this cut does not disconnect the face! Also, it even reverses the direction of e3. This

makes it signi�cantly di�erent from a “usual” cut, which should have disconnected the face into

two faces (e.g., cutting a disk gives two half-disks). If we assume that f represents some kind of

surface, with any reasonable de�nition of surface, then such cut only makes sense if we interpret

this surface to be a Möbius strip. In fact, the cycle γ = e1e5e3e5 from Figure 3.32b strongly

supports this interpretation: it is the textbook example of an algebraic Möbius strip. It may not

exactly look like a Möbius strip (due to how vector graphics shapes are rendered), and users may

not think of it as a Möbius strip, but nonetheless it behaves like a Möbius strip, and it has the same

algebraic representation as a Möbius strip. Therefore, it is in our best interest to interpret f as a

Möbius strip immersed in R2
, rather than a non-manifold surface embedded in R2

.

The concept of PCS complex allows us to formalize this interpretation (see Figure 3.33). Indeed,

by assigning an orientability and genus to every face, any VGC can be interpreted as an abstract

PCS complex P = (C, T), from which can be de�ned a PCS complex K = |P| = (X, C, T),

which we recall is a (possibly non-planar) point-set X , such as a Möbius strip, decomposed into

non-intersecting subsets c ∈ C called cells. Rendering the VGC, for instance using the even-odd

winding rule, can then be interpreted as de�ning an immersion φ : X → R2
from this point-

73

3.3. PCS Complexes

∂̂f = [e1e
−1
3]

Abstract PCS Complex

(combinatorial structure)

geometric

realization

Vector Graphics Complex

(combinatorial structure)

PCS Complex

(non-intersecting union of point-sets,

Visualization / Rendering

(union of point-sets of R2
,

immersion

discarding ε and g

assigning ε and g

winding rule

(or else)

presentation

scheme

possibly non-planar) possibly intersecting)

ε(f) = 6� g(f) = 1
∂̂f = [e1e

−1
3]

e1e3 e1e3

Figure 3.33: Diagram comparing the related concepts of vector graphics complexes and PCS complexes. In
particular, notice the two-way mapping between PCS complexes and abstract PCS complexes, which allows to
de�ne topological operators in terms of point-sets. By contrast, rendering a VGC in R2 using a winding rule (or
any other method), is only a one-way mapping.

set X into the canvas R2
, possibly creating intersections between cells (= “overlapping points”).

The strength of this formalism is that while topological operators on VGCs may be seen as design

decisions, topological operators on PCS complexes are perfectly well-de�ned. Indeed, we have seen

that they can be non-ambiguously de�ned in terms on point-sets, from which we can infer their

algebraic counterparts, which is possible due to the one-to-one mapping between PCS complexes

and abstract PCS complexes (Fig. 3.33, left). By contrast, due to the existence of overlapping points,

rendering a VGC into subsets of R2
can only be a one-way mapping no matter which rendering

method is used (Fig. 3.33, right), therefore the same approach cannot be used. However, we can

now simply de�ne VGC operators in terms of abstract PCS complex operators, since they share

the same underlying algebraic structure.

Of course, there is a catch: assigning orientability and genus to VGC faces is ambiguous in the

general case, and can only be achieved via imperfect perceptual heuristics, or by asking the user.

Therefore, it is still ambiguous which PCS topological operator should be applied on any given

VGC. But at the very least, studying PCS complexes allowed us to rigorously identify an exhaustive

list of topologically meaningful operators to choose from. Also, in practice, the large majority of

faces should simply be interpreted as orientable and of genus 0. Among the rare cases which

74

3.3. PCS Complexes

v1

v2

e1

e2

f

v1

v2

e1

e2

f1 f2ecut

Cut (k)

Edit geometry

v1

v2

e1 e2

f

Cut (k)

v1

v2

e1 e2

f1 f2

ecut

v1

v2

e1

e2

f1 f2e

v′1

v′2

e′

Global

Unglue

v1

v2

e1 e2

f1 f2

v′1

v′2

e e′
Global

Unglue

Cut (l)

Global

Unglue

v1

v2

e1 e2

f ecut

v1

v2

e1 e2

f

v′1

v′2

e e′

v1
v2

e1

e2

f
Cut (k)

Cut (j)

Edit geometry

Global

Unglue

Global

Unglue

(a)

(b)

(c)

(d)

(e)

f1

f2

f
f

f1

f2

v1

e1

e2

v2

ecut

v1

e1

e2

v2

ecut

v1

e1

e2

v2 e
v′1v′2 e′

v1v2 e
v′1v′2 e′

e1

e2

Figure 3.34: Left column: Three di�erent immersions of the same VGC. Middle column: the result of applying
a given cut algorithm to the VGC (the letters (k), (l) and (j) refer to Figure 3.25). Right column: the result
of applying unglue to all cells and modifying slightly the geometry, for better visualization of the cut. This
illustrates that unlike planar maps, cutting a VGC is an ambiguous operation. While there is only one way a
planar map face can be cut (i.e., applying Cut (k), cf. row (a)), there are many non-equivalent ways a VGC face
can be cut. Choosing the "planar map way" may lead to unexpected results (cf. rows (b) and (d)), in which case
choosing an alternative cut algorithm may better capture the user’s intent (cf. rows (c) and (e)).

75

3.4. Conclusion

should be interpreted as something else, such as a Möbius strip, there is also almost always an

obvious choice. Besides, PCS complexes provide us with an important theoretical understanding

of the underlying topological spaces that vector graphics complexes represent, or more precisely,

of the family of topological spaces that they may represent. In other words, it formally clari�es

what we mean by “a VGC can represent any arbitrary non-manifold topology as an immersion in

the plane, unlike planar maps which can only represent embeddings”.

An important di�erence between planar immersions (= vector graphics complexes) and planar

embeddings (= planar maps) is that the latter, by de�nition, can only represent faces that are planar,

that is, orientable and of genus 0. This largely simpli�es the cut operator. For instance, there is

only one way to cut a genus-0 orientable face along an open edge starting and ending at the same

hole. This cut is labeled (k) in the face-cut classi�cation provided in Figure 3.25, and is illustrated

in Figure 3.34a. However, mistakenly applying this “planar cut” (k) to a face that “looks like” a

Möbius strip (Fig. 3.34b), or “looks like” a genus-1 orientable face (Fig. 3.34d) leads to unexpected

behaviors. Instead, one should in these cases apply the “non-planar cut” labeled (l) (Fig. 3.34c), or

the “non-planar cut” labeled (j) (Fig. 3.34e). Deciding which cut to apply on any given situation is

still an open problem, but the formalism of PCS complexes allowed us to discover the exhaustive

list of possible cuts to choose from. Note how the three input examples in Figure 3.34 (left column)

all have the same topology as vector graphics complexes, but should be interpreted as di�erent

PCS complexes (that is, assigning di�erent genus and/or orientability).

3.4 Conclusion

In this chapter, we have introduced important topological concepts to help us understand the math-

ematical nature of vector graphics objects, which is not as trivial as it may seem. Importantly, as a

consequence of allowing vector graphics shapes to overlap and to share edges (two very desirable

features), vector graphics topologies are possibly non-planar, or even non-orientable. In fact, even

shapes represented as a single vector graphics face may be non planar and/or non-orientable, by

allowing users to uncut shapes in predictable ways, where predictable means that the behavior

only depends on local topological properties. This theoretical knowledge was critical to design

and implement the concept of vector graphics complexes, which we detail in the next chapter. It

is a combinatorial structure that can be interpreted as a (possibly non-planar) topological space

called a PCS complex K, in which cells are disjoint point-sets. Rendering a VGC, using for in-

stance winding rules, can then be interpreted as de�ning an immersion of this underlying space

K into R2
. This interpretation of VGCs as a non-planar point-set immersed in R2

allowed us to

rigorously de�ne and classify all topological operators that can be applied to VGCs, instead of

arbitrarily designing such operators based on intuition.

76

Chapter 4

Vector Graphics Complexes:
The Topology of Vector Illustrations

Figure 4.1: Vector graphics illustrations and their underlying topology.

Basic topological modeling, such as the ability to have several faces share a common edge, has

been largely absent from vector graphics. We introduce the vector graphics complex (VGC) as a

simple data structure to support fundamental topological modeling operations for vector graphics

illustrations. The VGC can represent any arbitrary non-manifold topology as an immersion in the

plane, unlike planar maps which can only represent embeddings. This allows for the direct repre-

sentation of incidence relationships between objects and can therefore more faithfully capture the

intended semantics of many illustrations, while at the same time keeping the geometric �exibility

of stacking-based systems. We describe and implement a set of topological editing operations for

the VGC, including glue, unglue, cut, and uncut. Our system maintains a global stacking order for

all faces, edges, and vertices without requiring that components of an object reside together on a

single layer. This allows for the coordinated editing of shared vertices and edges even for objects

that have components distributed across multiple layers. We introduce VGC-speci�c methods that

are tailored towards quickly achieving desired stacking orders for faces, edges, and vertices.

4.1 Introduction

Vector illustrations are widely used to produce high quality 2D drawings and �gures. They are

commonly based on objects that are assigned to layers, thereby allowing objects on higher layers

to obscure others drawn on lower layers. Objects are typically constructed from collections of open

and closed paths which are assigned to a single common layer when they are grouped together.

Closed paths can be optionally �lled by an opaque or semitransparent color in order to represent

77

4.2. Motivation and Overview

faces. A rich set of features and editing operations can then be integrated into this framework to

yield powerful systems for 2D illustration.

Our work begins with the observation that basic topological modeling is largely absent in vector

graphics systems. While 3D modeling systems readily support the creation of geometry having

a desired topology, in many vector graphics systems it remains di�cult to design objects having

edges shared by adjacent faces or vertices shared by sets of incident edges. Our solution is to

develop a novel representation which allows users to directly model the desired topology of the

elements in a vector graphics illustration.

Another important observation is that vector graphics illustrations often consist of 2D depictions

of 3D objects [Durand 2002, Eisemann et al. 2009], with the important consequence that a repre-

sentation of vector graphics objects as strictly two-dimensional entities, such as planar maps, may

be counter-productive. In this context, users may also need to represent aspects of the topologi-

cal structure of the 3D objects being depicted when creating and editing the visual representation.

The topology of the visual objects may therefore not be in correspondence with their 2D geometry,

but rather be in correspondence with the 3D geometry of the depicted objects, which are mental

entities, constructed by perception [Ho�man 2000]. Such mental visual objects can be represented

in an abstract pictorial space [Koenderink and Doorn 2008] which is di�erent from both the 2D

image space and the 3D world space.

Finally, a third observation is that artists use a variety of techniques that frequently result in non-

manifold representations. For example, a �ower or tree can be drawn with a combination of strokes

and surfaces. As a result, non-manifold, mixed-dimensional objects are the rule in vector graphics,

not the exception.

Based on the above observations, we have developed the vector graphics complex (VGC), a novel

cell complex that satis�es the following requirements: (a) be a superset of multi-layer vector graph-

ics and planar maps; (b) allow edges to share common vertices and faces to share common edges;

(c) allow faces and edges to overlap, including when they share common edges or vertices (d)

make it possible to draw projections of 3D objects and their topology without knowing their 3D

geometry; (e) represent non-orientable and non-manifold surfaces; (f) allow arbitrary deformation

of the geometry without invalidating the topology; (g) o�er reversible operators for editing the

topology of vector graphics objects; and (h) have the simplicity that would encourage wide-spread

adoption.

78

4.2. Motivation and Overview

Figure 4.2: The “SVG” representation, as used in Illustrator (except for the LivePaint tool) and Inkscape. Left:
Open and closed paths, �lled or not. Right: Overlapping and self-overlapping paths.

≡

(a) Shared edge in SVG (b) Shared edge + overlapping

Figure 4.3: The limitations of existing representations. SVG cannot represent two faces sharing a common
edge as in (a), therefore must duplicate the shared edge. Planar maps can represent shared edges, but cannot
represent overlapping faces, thus neither SVG nor planar maps can represent the illustration in (b).

4.2 Motivation and Overview

In this section, we motivate the vector graphics complex (VGC) and provide an intuition about its

structure. This overview provides many of the insights needed to understand and implement the

VGC. It also lays the foundation for understanding a more formal de�nition that we provide in the

following section.

Let us �rst recall the traditional vector graphics representation, that we will refer to as “SVG”

because of the XML Scalable Vector Graphics �le speci�cation of the same name. With SVG, a

drawing is represented using building blocks called paths. A path is typically a list of Bézier control

points, that can be either closed or open. It has drawing attributes that indicate how it must be

rendered, such as stroke width, stroke color, and �ll color, as illustrated Figure 4.2. Paths are

de�ned independently of each other, which means that if one path is dragged and dropped by the

artist on top of another one, they freely overlap and do not interact as shown in Figure 4.2.

This basic overlapping capability is a very desirable feature, since it allows the artist to freely edit

the geometry of the paths and move the objects without any constraints. Nonetheless, there are

cases where it would be desirable to model interaction between paths. A canonical example, also

described in [Baudelaire and Gangnet 1989], occurs when the illustration represents two shapes

that share a common partial contour or edge. In SVG, this must be represented as two indepen-

dent closed paths, where the common section has exactly the same geometry, as illustrated in

Figure 4.3a.

79

4.2. Motivation and Overview

e1
v1

start

endv2
e1

v1

start

end

e1

e2

v1

start

v4

v3

end

e1

e6end

v2

v5

start

end

start
end

e3

e4
e5

start

start

end

start

end

(a) (b) (c) (d)

Figure 4.4: (a) Example of open edge e1, with its two end vertices v1 and v2. (b) Special case of open edge
where its two end vertices are equal. (c) Example of closed edge, i.e., an edge with no end vertices at all. (d) A
VGC composed of vertices and edges only, similarly to a stroke graph. v1, v2 and v4 are each shared by three
edges.

While common tools such as Adobe Illustrator [Adobe Systems Inc. 2013] or Inkscape [Inkscape

2013] provide convenient tools to build such shapes (such as basic duplication or alignment fea-

tures, or the shape builder tool in Illustrator), the topological information between the two shapes

is still not explicitly encoded: the semantics of the intended illustration is not correctly repre-

sented. In practice, this means that the information about the common portion of the paths is

duplicated, and editing its geometry is often tedious. Typically, adding Bézier control points or

editing tangents must be performed twice (this limitation is demonstrated in the video accompa-

nying [Dalstein et al. 2014b]). Planar maps and their extension, dynamic planar maps (LivePaint

in Illustrator), have been introduced as a solution to this problem. This, however, introduces other

compromises, such as the inability to have overlapping faces. While planar maps can faithfully

represent the semantics shown in Figure 4.3a, they cannot faithfully represent the semantics of the

illustration shown in Figure 4.3b. This second �gure shares the same topology and can therefore

be obtained from Figure 4.3a via simple editing of the geometry. This limitation seriously impairs

artistic freedom and expressiveness.

The vector graphics complex that we present is an alternative solution, much closer to the spirit of

SVG. Notably, it retains the ability to represent overlapping objects, and hence it is able to faithfully

capture the semantics of the illustration shown in Figure 4.3b without duplicating any geometric

information for the common section.

Whereas in SVG the building block is the path, the VGC has building blocks called cells, of which

there are four types: vertices, open edges, closed edges, and faces. A vertex is simply a 2D point

on the canvas, typically located where strokes meet or end. It can have drawing attributes such

as a color and a radius size, but most often you would prefer not to display it at all (just use it as

a building block for edges and faces). An open edge is similar to an SVG open path: it de�nes a

2D directed open curve on the canvas, for instance using Bézier control points. The signi�cant

di�erence between an open edge and a SVG open path is that an open edge starts at a start vertex,

80

4.2. Motivation and Overview

e2

e1

e6

e3

e4

e5
f1 f2

Figure 4.5: Two faces f1 and f2 each de�ned by one cycle. The cycle de�ning f1 is γ1 =
[(e1,>); (e2,⊥); (e3,⊥); (e4,>)], while the cycle de�ning f2 is γ2 = [(e2,>); (e6,>)]. For convenience,
we also use the multiplicative notation γ1 = e1e

−1
2 e−1

3 e4 and γ2 = e2e6.

and ends at an end vertex, and these vertices can be shared with other edges. On the contrary, all

the control points of a given SVG path, including the �rst and last control points, belong to the path

and cannot be shared with other paths. In practice, the end vertices of open edges are stored as

pointers (see Figure 4.4a). As illustrated in Figure 4.4d, two or more open edges can be connected

to each others by sharing a common vertex, and manipulating this vertex would a�ect all incident

edges. So far, our de�nition is identical to stroke graphs [Whited et al. 2010], except that we do not

order the incident edges counter-clockwise around a vertex. In addition to the concept of open

edge, we de�ne the concept of closed edge, which is a 2D directed closed curve no end vertices at

all, as illustrated in Figure 4.4c. We note that it is allowed for an open edge to have its start vertex

be equal to its end vertex (see Figure 4.4b). On the contrary to some existing representations, we

consider this to be a special case of open edge, i.e., we do not call this a closed edge.

Another di�erence with SVG paths is that VGC edges do not have a color �lling attribute: �lling

is done via the creation of faces, an entity not supported by stroke graphs. A face is de�ned by

its boundary via what we call cycle. Typically, one of the cycle of the face represents its outer

boundary, while the other cycles represent inner holes. Like in SVG, we do not explicitly store in

our data structure whether a cycle represents an outer boundary or an inner hole, since users can

freely edit their geometry, which could change these perceptual roles, or make them ill-de�ned.

Typically, a cycle is de�ned as a sequence of (e, β) pairs that we call halfedges, where e is an

open edge and β is a boolean indicating whether the edge should be considered with its intrinsic

direction (from start to end, β = > = True), or with the opposite direction (from end to start,

β = ⊥ = False), as illustrated in Figure 4.5. However, a cycle can also be de�ned as a unique

directed closed edge. Finally, a cycle can also be de�ned as a unique vertex, and we call these

cycles Steiner cycles. A Steiner cycle makes possible to connect the end vertex of an edge to the

interior of a face.

An artist creates edges and vertices by drawing strokes. He can choose whether intersections of

strokes with existing edges must generate a new vertex and split the incident edges; or must simply

81

4.3. Vector Graphics Complex

v1

f1

v2 v3

v4e1

e2

e3

e4

f3

e8

v5

v6

e6f2

e7

e5

Figure 4.6: Two incident squares and a disk represented as a single VGC with 17 cells: six vertices v1 to v6,
seven open edges e1 to e7, one closed edge e8, and three faces f1 to f3.

ignore the intersection and create overlapping edges, not topologically connected. To create faces,

the artist uses a paint bucket tool, which automatically compute cycles de�ning closed regions of

the canvas bounded by edges. Then, the artist can freely sculpt the geometry of edges, or drag

and drop cells. Also, he can use topological operators, for instance to glue two vertices or edges

together, or cut a face into two faces by inserting a new edge. We refer the reader to the video

accompanying [Dalstein et al. 2014b] for a demonstration of this drawing paradigm. The cells are

globally depth-ordered in a doubly-linked list, and we provide intuitive tools to alter this ordering,

for instance to decide which face is behind the other in Figure 4.3b.

4.3 Vector Graphics Complex

In this section, we provide a formal de�nition of the concept of vector graphics complex. This

de�nition is inspired from concepts of algebraic topology (see Chapter 3), but the formalism itself

is more typical of graph theory. In fact, we show in Section 4.3.3 how the de�nition can be inter-

preted as a colored graph. Readers who prefer a more practical de�nition can also jump directly

to Section 4.3.4 where we give a C++ implementation with invariants.

4.3.1 Topology

First, let us provide a purely combinatorial de�nition. In Section 4.3.2, we subsequently assign

geometric attributes to each cell, in order to immerse this combinatorial structure in R2
.

A vector graphics complex is an ordered pair P = (C, dim, isClosed, k, ∂̂), such that:

• C is a �nite set of symbols called cells. We illustrate in Figure 4.6 what cells represent.

• dim : C → {0, 1, 2} is a function that assigns a dimension to each cell. This de�nes a

partition of C into three sets V , E, and F of elements respectively called vertices, edges,
and faces.

82

4.3. Vector Graphics Complex

• isClosed : E → {>,⊥} is a function that assigns a closedness to each edge (> and ⊥ are

the two symbols we use to denote the booleans “True” and “False”). This de�nes a partition

of E into two sets E◦ and E| of elements respectively called closed edges and open edges.

• k : F → N is a function that assigns a number of cycles to each face.

• ∂̂ is a function that assigns an ordered boundary to each cell. This ordered boundary, which

we detail below, is what de�nes the incidence relationship between cells.

• For each v ∈ V , we have ∂̂v = ∅.

• For each e ∈ E◦, we have ∂̂e = ∅.

• For each e ∈ E|, we have ∂̂e ∈ V × V . We de�ne vstart(e) and vend(e) to be the �rst and

second element of the ordered pair.

• For each f ∈ F , we have ∂̂f ∈ Γk(f)
. In other words, ∂̂f is an ordered sequence of k(f)

cycles γi ∈ Γ, where Γ is the set of all possible cycles on P , which we de�ne below, after

�rst de�ning the concepts of open and closed halfedges.

• A closed halfedge h = (e, β) is de�ned as a pair of a closed edge e ∈ E◦ and a direction

β ∈ {>,⊥}.

• An open halfedge h = (e, β) is de�ned as a pair of an open edge e ∈ E| and a direction

β ∈ {>,⊥}. For each open halfedge h, we de�ne vstart(h) and vend(h) as follows:

vstart(h) =

vstart(e), if β = >

vend(e), if β = ⊥
and vend(h) =

vend(e), if β = >

vstart(e), if β = ⊥
(4.1)

• Finally, a cycle γ ∈ Γ is de�ned as either:

1. a vertex v ∈ V , or

2. a pair (h,N) consisting of a closed halfedge h and an integer N > 0, or

3. a non-empty, ordered sequence (hj)j∈[1..N] of open halfedges such that:

∀j ∈ [1..N], vend(hj) = vstart(h(j+1) mod N) (4.2)

These three types of cycles are respectively called Steiner cycles, simple cycles, and non-
simple cycles.

We illustrate this de�nition with a simple example in Figure 4.7. Since the concept of vertices and

edges should be fairly self-explanatory, let us simply give more clari�cations on the concept of

83

4.3. Vector Graphics Complex

C = { v1, v2, v3, v4, e1, e2, e3, e4, f }

isClosed: e1, e2, e3, e4 7→ ⊥

dim:

v1, v2, v3, v4 7→ 0
e1, e2, e3, e4 7→ 1
f 7→ 2

k : f 7→ 1

∂̂:

e2 7→ (v1, v3)
e3 7→ (v3, v4)
e4 7→ (v2, v4)
f 7→ [[(e1,⊥), (e2,>), (e3,>), (e4,⊥)]]

e1 7→ (v1, v2)
v1, v2, v3, v4 7→ ∅e1v1 v2

e2

e3

e4

v3 v4

f

Figure 4.7: Combinatorial representation of a square as a VGC with 4 vertices, 4 open edges, and 1 face.

faces and cycles. As one can notice, the number of cycles k(f) of any given face f can be any inte-

ger in N. In particular, the de�nition allows k(f) = 0, which corresponds to a face without cycles.

Such faces are not particularly useful in vector graphics (they cannot be rendered in any meaning-

ful way), but they have theoretical relevance (see Chapter 3 for details), and it is sometimes useful

to allow their representation as a transient state occurring in the middle of an operation.

Also, note that cycles are allowed to repeat any edge any number of times, including three times

or more. Not only such cycles have theoretical relevance, but they are actually useful in practice

(see Figure 4.19, middle and right). This corresponds to the typical “fan edge” non-manifold con-

�guration, but with the less typical �avor that all the “fans” actually belong to the same face and

the same cycle. Perhaps more surprisingly, we also allow simple cycles (i.e., cycles de�ned via a

closed edge) to repeat their closed edge any number of times (though, the chosen direction must be

�xed). This number of repetitions is given by the integerN > 0 in the de�nition. Similarly to faces

without cycles, simple cycles with repeated closed edge correspond to con�gurations which are

theoretically meaningful (and may be the results of valid topological operators), but are not very

useful in practice. Though, one notable example is a Möbius strip whose centerline is represented

as a closed edge. Both sides of the centerline belong to the same face and the same cycle, which is

a simple cycle repeating the closed edge two times. Another interesting example is to take three

long strips of paper, and glue them all together along one of their long edge (this gives a long open

edge shared by three faces). Then, if you glue the two star-shaped ends of this construction after

applying a third-twist, the three faces become one, and the center open edge becomes closed. One

of the cycle of the unique face is a simple cycle repeating this closed edge three times.

Finally, cycles are not necessarily disjoint, whether they are from the same face or di�erent faces.

In other words, they can freely share common vertices or edges, with no limitations, as we illustrate

in Figure 4.8. In other words, the validity of a cycle does not depend on any other cycle. In fact,

two di�erent faces may even have equal cycles. This represents two faces with exactly the same

shape, stacked on top of one another, with their boundary glued.

84

4.3. Vector Graphics Complex

face f cycle 1 cycles 2 to 7 ∂f

Figure 4.8: A valid face, with seven cycles. Cycle 1 represents its external boundary (including a “crack”), and
the six other cycles represent holes (one of them being a single missing point in the face, de�ned by the Steiner
cycle).

4.3.2 Geometry

Now that we have de�ned the combinatorial structure of a VGC, let us de�ne how we can immerse

each cell c ∈ C as a pointset |c| ⊆ R2
, by assigning them geometric attributes.

Vertex Each vertex v is assigned a point p(v) ∈ R2
. We de�ne |v| = {p(v)}, that is, the subset

of R2
reduced to the point p(v).

Open Edge Each open edge e is assigned a continuous curve Γ(e) : [0, 1] → R2
, satisfying

Γ(e)(0) = p(vstart(e)) and Γ(e)(1) = p(vend(e)). We de�ne |e| = Γ(e)((0, 1)), that is, the image

of the open interval (0, 1) by Γ(e).

Closed Edge Each closed edge e is assigned a continuous closed curve Γ(e) : S1 → R2
, where

S1
is the unit circle. We de�ne |e| = Γ(e)(S1).

Face Each face f is assigned a winding rule R(f) ⊆ Z. This winding rule allows us to de�ne

the pointset |f | ⊆ R2
as follows. First, for each simple or non-simple cycle γ, we de�ne the closed

curve Γ(γ) : S1 → R2
by concatenating together the curves Γ(e) for all the edges e involved in the

cycle, and we de�ne |γ| = Γ(γ)(S1). If γ is a Steiner cycle γ = v, we simply de�ne |γ| = |v|. This

allows us to de�ne |∂̂f | =
⋃
γ∈∂̂f |γ|, which is the immersion in R2

of the boundary of the face.

85

4.3. Vector Graphics Complex

Next, for each cycle γ, and for each point p ∈ R2\|γ|, we denote by N(γ)(p) ∈ N the winding

number of Γ(γ) at p (cf. [Edelsbrunner and Harer 2010, p12]). Now that we have de�ned per-cycle

winding numbers N(γ)(p), we can de�ne per-face winding numbers N(f)(p) by summing the

N(γ)(p) for all cycles γ of the given face f , that is:

∀f ∈ F, ∀p ∈ R2\|∂̂f |, N(f)(p) =
∑
γ∈∂̂f

N(γ)(p). (4.3)

With all these prerequisites, |f | can �nally be de�ned as:

∀f ∈ F, |f | = { p ∈ R2\|∂̂f | s.t. N(f)(p) ∈ R(f) }. (4.4)

Currently, our implementation uses the OpenGL GLU polygon tesselator [Shreiner et al. 2004] to

compute and render |f |, using the even-odd winding rule, that is, R(f) = 2Z + 1 for all faces.

Other rules could be considered as well, and users could choose di�erent rules for di�erent faces,

as is already common in many vector graphics applications (e.g., Inkscape).

4.3.3 Vector Graphics Complexes as Colored Incidence Graphs

In this section, we show how the concept of vector graphics complex, which we have just de�ned,

can be interpreted as a colored graph. More speci�cally, it can be interpreted as a coloration of the

incidence graph of the cell complex.

Incidence Graph

Many readers may already be familiar with the concept of incidence graph. However, let us take

the time to formally de�ne it in the case of vector graphics complexes. The incidence graph of

a given vector graphics complex P = (C, dim, isClosed, k, ∂̂) is the directed graph G = (C,A)
where the nodes are the cells c ∈ C , and where there is a directed arc

12 a ∈ A from c to c′ if and

only if c′ is in the boundary of c.

Though, we have yet to de�ne what “c′ is in the boundary of c” actually means. Indeed, all we have

formally de�ned so far is the concept of ordered boundary ∂̂c, which isn’t a subset of C but some

more complex ordered structure (e.g., an ordered pair of vertices for open edges, or an ordered

sequence of cycles for faces). Now, we de�ne ∂c as the subset of C consisting of “all cells involved

in ∂̂c”, that is, we forget the order. More precisely, we de�ne ∂v = ∂e = ∅ for vertices and closed

edges, we de�ne ∂e = {vstart(e), vend(e)} for open edges (reduced to a unique element when

12

We use the terminology “arc” instead of the more usual “edge” to avoid confusion with VGC edges, which are

actually nodes of the graph.

86

4.3. Vector Graphics Complex

e1 e2 e3 e4 e5 e6 e7 e8

v1 v2 v3 v4 v5 v6

f1 f2 f3

Figure 4.9: The incidence graph of the VGC illustrated in Figure 4.6. For clarity, we do not show in this �gure
the arcs from faces to vertices, since they can be inferred by transitivity.

vstart(e) = vend(e)), and in the case of a face f , we de�ne ∂f to be the union of all its Steiner

vertices, all the closed edges of its simple cycles, and all the open edges and their end vertices of

its non-simple cycles. With this de�nition, we can now safely de�ne “c′ is in the boundary of c”

as meaning c′ ∈ ∂c.

It can be easily shown that the relation “c′ ∈ ∂c” is transitive and irre�exive, thus de�nes a strict

partial order, which in turns means that G is a transitive directed acyclic graph. By assigning the

dimension of each cell c as a color of each node of the graph, we obtain a graph such as illustrated

in Figure 4.9.

Non-Sufficiency of the Incidence Graph

One may wonder whether this incidence graph alone encodes all the topological information of the

vector graphics complex. The answer is no. Fundamentally, the incidence graph only encodes ∂c,

and the conversion from ∂̂c to ∂c causes information loss (i.e., it is not invertible). In more practical

terms, the edges in the boundary of a face need to be organized into cycles if we want to render

the face using winding numbers, but the automatic computation of cycles from a set of edges is

in general ambiguous. We illustrate this ambiguity in Figure 4.10 and 4.11 with the example of

a Möbius strip. In this example, the (non-ordered) boundary of the face f is ∂f = { e1, e2, e3 },
and it is impossible to organize these three edges in one cycle without repeating at least one of its

edges. For instance, starting at v1, one can go along e1, then e2, then e3, then e2 again back to v1.

Alternatively, still starting at v1, one can go along e1, then e3, then e2, then e3 again back to v1.

These two di�erent cycles result in di�erent winding numbers, thus in di�erent �nal renders. The

explicit cycle ordering provided in ∂̂c allows disambiguation (potentially authored by artists), and

ensures consistent rendering across implementations.

87

4.3. Vector Graphics Complex

e1 e2 e3

v1 v2

f

e3e2

e1

f =?

v1

v2

Figure 4.10: The incidence graph of a Möbius strip. From this incidence graph alone, it is unclear how the
face f should be rendered.

γ = e1e
−1
2 e3e

−1
2

γ = e1e
−1
3 e2e

−1
3

Visualization of

cycle

12

3

Visualization of

winding numbers

Final render

0

1-1

Figure 4.11: Illustration of two possible choices of cycles for the incidence graph of Figure 4.10. We assume
that v1 is the start vertex of all three edges, and that v2 is their end vertex. These two cycles repeat a di�erent
edge, which results in di�erent winding numbers, and therefore di�erent �nal renders. We use here the even-odd
winding rule, but using the non-zero winding rule would also result in di�erent renders.

Coloring the Incidence Graph with Topological Order

In the previous paragraph, we have seen that the incidence graph of a given vector graphics com-

plex does not encode all its topological information. We have also seen that the additional infor-

mation not encoded in the incidence graph corresponds to an “ordering” of the boundary of faces

into cycles of edges.

One can imagine encoding this ordering into the incidence graph by “coloring” (=annotating) its

88

4.3. Vector Graphics Complex

ev1

v2

e

v1 v2

start end

Figure 4.12: The ordered boundary ∂̂e = (vstart, vend) of an open edge e can be encoded in the incidence
graph by coloring the arcs of the graph, thus de�ning a topological direction for the edge.

e2

e3

v1

v2

f

e1 starte
n
d

st
art

end

1st edge of cycle, from start to end

2nd and 4th edge of cycle, from end to start

3rd edge of cycle, from start to end

s
t
a
r
t

end

∅

∅

e2

e3

v1

v2

f

e1 starte
n
d

st
art

end

s
t
a
r
t

end

∂̂f = [e1e
−1
3 e2e

−1
3]

Figure 4.13: Illustration of how the ordered boundary ∂̂f of each face f can be encoded in the arcs of the
incidence graph. This example corresponds to coloring the incidence graph from Figure 4.10.

arcs with additional information. For instance, the arcs between an open edge and its end vertices

might by annotated “start” or “end” (or “both”), in order to indicate which vertex is the start vertex

of the edge, and which is the end vertex (see Figure 4.12). The same idea can be applied to annotate

the boundary of faces. It is a bit less practical, but with some care, it is possible to de�ne a bijective

function to map the information contained in ∂̂f into annotation of the outgoing arcs of f in

the incidence graph (see Figure 4.13). Therefore, one can see that the concept of vector graphics

complex can be interpreted as an incidence graph augmented with order information, and that this

order is required to disambiguate winding numbers.

More fundamentally, we see in Chapter 3 that the order is critical to determine the homeomor-

phism class of the underlying topological space, which is required to know which topological

operators can be applied to the complex.

89

4.3. Vector Graphics Complex

4.3.4 Implementation

Below, we give one possible C++ implementation of the VGC data structure:

1 class Cell
2 {
3 std ::set <Cell*> star;
4 };
5

6 class Vertex : public Cell
7 {
8 Point p;
9 };

10

11 class Edge: public Cell
12 {
13 Vertex * start;
14 Vertex * end;
15 Curve curve;
16 };
17

18 class Halfedge
19 {
20 Edge * edge;
21 bool b;
22 };
23

24 class Cycle
25 {
26 Vertex * steiner ;
27 std :: vector <Halfedge > halfedges ;
28 };
29

30 class Face: public Cell
31 {
32 std :: vector <Cycle > cycles ;
33 };

Of course, the above code is only an implementation of how to store the data, and most of the hard

work is implementing how to edit this data via topological operators (see Section 4.4). However,

the code illustrates that the structure itself is quite straightforward and intuitive. Though, let us

provide some details and clari�cations in the next few paragraphs.

As detailed in Section 4.3.1 and 4.3.2, a vertex is simply a 2D position, an edge is a 2D directed

curve pointing to its start and end vertex (if any), and a face is a 2D region of the plane delimited

by cycles (where a cycle is either a sequence of consecutive halfedges, or a single vertex).

90

4.3. Vector Graphics Complex

Checking whether an edge e is closed or open is simply done by checking whether e->start is

NULL or not. Indeed, closed edges do not have end vertices, and therefore e->start and e->end

are both NULL for closed edges. Conversely, open edges always have a valid start vertex and end

vertex, and therefore e->start and e->end are both non-NULL for open edges.

Similarly, checking whether a cycle cycle is a Steiner cycle or not is done by checking whether

cycle->steiner is NULL or not. Equivalently, one may check whether cycle->halfedges is

empty or not, since cycle->halfedges is non-empty if and only if cycle->steiner is NULL.

Note how in this implementation, the classes Vertex, Edge, and Face all inherit the class Cell,

while Halfedge and Cycle do not. This is because halfedges and cycles are only helper classes to

de�ne faces, but are not cells themselves. More speci�cally, halfedges and cycles are just conve-

nient container classes (you can see them as ad-hoc std::pair and std::vector) to store the

incidence relationships between cells. In particular, note how the classes Cell, Vertex, Edge, and

Face are used with pointer semantics, while the classes Halfedge and Cycle are used with value

semantics. This is because cells have an identity: it is important for a cell to be able to refer to

other cells (e.g.: “Who is my start vertex?”). On the other hand, halfedges and cycles do not need

to have an identity (though, for various reasons, a particular implementation may choose to give

them an identity, similarly to the concept of uses in the radial-edge data structure).

The star of a cell c is de�ned as star(c) = { c′ | c ∈ ∂c′ }, that is, as the set of cells c′ whose

boundary contains c. Strictly speaking, this is redundant topological information (reason why it

is not in the theoretical de�nition of the VGC), but in practice, we need to store the star of each

cell for obvious performance reasons. Indeed, not doing so would make most adjacency queries

or topological operators have a linear-time complexity instead of constant-time. Storing the star

of the cells is the equivalent of storing back-pointers to parent nodes in a tree data structure. Note

that we do not store this star in any particular order, which we emphasized by using a std::set (in

practice, it may be more e�cient to use a std::vector). If we ever need to have more information

about the incident relationship between a cell c and one of its star cell c′ (e.g., is the vertex a Steiner

vertex?), one can simply traverse the boundary of c′ and inspect how c is used by c′ (e.g., as a Steiner

cycle, or as the end vertex of an open edge of a non-simple cycle?).

We did not describe the Curve class since it is up to each application to decide on a curve rep-

resentation adapted to its speci�c context. For instance, an existing vector graphics system with

extensive support of Bézier curves may use Bézier curves. For our prototype, we opted for a sim-

pler dense polyline representation. On top of this core structure, more drawing attributes can be

added for �ne control on rendering. For instance, in our implementation we added vertex radius,

variable edge width, cell color (possibly transparent), and edge junctions style (miter join or bevel

join).

91

4.4. Topological Operators

To ensure that the data structure is topologically valid, we ensure that all public methods (e.g.,

topological operators, see Section 4.4) preserve the following invariants:

• Vertex: no topological invariants.

• Edge: the start and end vertices are either both non-NULL valid pointers (open edge), or

both NULL (closed edge).

• Halfedge: edge is a non-NULL valid pointer.

• Cycle: one of the following is true:

– steiner is a valid non-NULL pointer and halfedges is empty.

– steiner is NULL, halfedges has a size n > 0, and one of the following is true:

∗ halfedges[0] is a valid closed halfedge, and for all i ∈ {1, . . . , n− 1},

halfedges[i] == halfedges[0]

∗ halfedges only contains valid open halfedges, and for all i ∈ {0, . . . , n− 1},

halfedges[i].end() == halfedges[(i+1) % n].start()

(where Halfedge::start() returns (b ? edge->start : edge->end), and

Halfedge::end() returns (b ? edge->end : edge->start))

• Face: Every cycle in cycles is valid.

In addition, since our implementation includes the backpointers star, every cell c must sat-

isfy:

• ∀c′ ∈ ∂c, c ∈ c′.star

• ∀c′ ∈ c.star, c ∈ ∂c′

A key feature of these invariants is that they can be veri�ed e�ciently and robustly without geo-

metric computations.

4.4 Topological Operators

Since topology lies at the heart of the vector graphics complex, and that we aim at porting topologi-

cal modeling into the the realm of 2D vector graphics, it is highly desirable to be able to manipulate

in an intuitive fashion this topology, using topological operators. Traditionally, such operators

are described as Euler operators, since as a safety check one ensures that they are compatible with

an Euler formula, linking the number of cells of each type, and topological quantities such as the

92

4.4. Topological Operators

number of connected components and the number of holes. Designing an Euler formula in the case

of our non-manifold, non-orientable, mixed-dimensional objects is likely possible and de�nitely

interesting, but it is far from trivial and rather irrelevant as a safety check. Instead, one just has to

ensure that the invariants which we detailed in the previous section are preserved. In this section,

we informally present the reversible operators create/delete, glue/unglue and cut/uncut, which all

preserve these invariants and are analyzed in more details in [Dalstein et al. 2014a].

These topological operators can be intuitively combined together by the artist to achieve the in-

tended topology. In fact, gluing and cutting are not only useful operations, but have theoretical

roots in algebraic topology. For instance, the proof of the classi�cation of closed two-manifolds

involves “cutting” the given manifold until the manifold is represented as a fundamental polygon.

By gluing together the edges of this polygon, we re-obtain the original manifold. The VGC is

a superset of fundamental polygons and is furthermore closed under gluing, which proves that

the VGC can represent any closed two-manifold, including non-orientable surfaces such as the

Klein bottle in Figure 4.1. In fact, we show in Chapter 3 that the VGC can represent any regular

non-manifold two-dimensional topological space.

4.4.1 Creation and Deletion Operators

Creating a vertex or a closed edge does not require special care. Creating an open edge requires

referring to existing start and end vertices. These topological operators are automatically invoked

when the user draws a stroke, as detailed in Section 4.6. Creating a face requires as input its

list of valid cycles, and robustly obtaining these valid cycles from intuitive user input is still an

open problem. Currently, the user can either manually select a set of edges which is automatically

converted to cycles, or use a “paint bucket” tool which tries to �nd appropriate cycles from sur-

rounding edges. Unfortunately, both of these techniques are in general ambiguous due to potential

overlapping between edges. To achieve faces such as a Möbius strip, one option for the user is to

explicitly draw the repeated edge twice (as in Figure 4.11, left), use the paint bucket, then glue

together the two repeated edges.

To delete a cell, we �rst recursively delete its star, otherwise the VGC would become invalid. We

refer to this topological operation as a “hard delete”. However, by default our delete command

enacts a “smart delete”, whose semantics is designed to better re�ect a user’s intentions. If we

consider the case of a vertex, v, with two incident edges, e1 and e2, and a user that chooses to

“delete” v, the intended outcome is more likely to be a single longer edge e3 that is the geometric

union of v, e1 and e2, as opposed to an alternative scenario that deletes each of v, e1, and e2.

The intended outcome is given by the topological operation “uncut at v”, as will be detailed later.

However, it may not always be possible to uncut at a given vertex v, such as is the case when there

93

4.4. Topological Operators

UnGlue

UnGlue

UnGlue

UnGlue

UnGlue

Glue

Glue

Glue

Glue

Glue

algorithm

algorithm

Figure 4.14: Examples of glue and unglue operations on vertices, edges, and a set of cells (bottom-right).

are three or more incident edges. The semantics of our “smart delete” are thus de�ned by “uncut

if possible; otherwise, hard delete”.

4.4.2 Glue and Unglue Operators

The glue operator on vertices and edges, as well as the unglue operator on vertex, edge, or set of

vertices and edges are illustrated in Figure 4.14. Gluing two vertices is the equivalent of the oper-

ation join in existing vector graphics software, where two paths are appended by gluing together

two selected path end-nodes. However, with such a classical join operation, the selected end-nodes

are transformed into a middle Bézier control point that cannot be joined again to create three-way

junctions. In contrast, the VGC is closed under the glue operation: any two vertices, or two open

edges, or two closed edges can always be glued. More speci�cally, there are always two ways

to glue two given edges: one has to specify their relative relative direction. Our implementation

uses a simple heuristic to predict the most relevant direction for the selected edges and then calls

the unambiguous glue halfedges topological operation. This �rst glues their respective start and

end vertices together, and only then glues the edges together. The unglue operation is the reverse

operation, where a vertex or an edge is duplicated as many times as necessary. Ungluing a vertex

involves �rst ungluing its incident edges.

94

4.4. Topological Operators

Cut

Cut

Cut

Cut

Cut

Cut

UnCut

UnCut

UnCut

UnCut

UnCut

UnCut

(failure)

(Steiner)

Figure 4.15: Examples of cut and uncut operations on vertices and edges. The third operation on the right
column illustrates uncutting a Steiner vertex from a face. It is topology equivalent to the �fth operation on the
same column. The �fth example on left column is a failure case, when the cut algorithm transfers the “hole
cycle” to the wrong face (shown in red). This happens because the cut operator is actually ambiguous and
disambiguation require geometric heuristics to capture the user’s intent.

4.4.3 Cut and Uncut Operators

The results of the cut and uncut operators are illustrated in Figure 4.15. Cutting an edge e is the

equivalent of inserting a new control point in a SVG path: given a 2D position p on the geometry

of an edge e, it creates a new vertex v at position p, and cuts e into two edges e1 and e2 separated

by v. If e was a closed edge, then it becomes an open edge with its start and end vertices equal to

v. Cutting a face f is similar: given a curve Γ starting and ending on ∂f , it cuts the face into two

faces f1 and f2, separated by a new edge e whose geometry is Γ. This may involve cutting �rst

∂f to create the end vertices of e if they do not already exist. Alternatively, if Γ starts and ends

at two di�erent cycles of f (cf. Figure 4.15, bottom-left), then instead of cutting f into f1 and f2,

it simply merges the two cycles into one by concatenating them with the halfedges (e, true) and

(e, false). Finally, a face can also be cut by a closed curve contained in its interior, or by a point

p (via a Steiner cycle). In the general case, cutting a face is ambiguous and is therefore less trivial

than one might think, as we detail in Chapter 3. A simple example is given in Figure 4.15 (failure

case): if f contains holes, then one may decide to transfer these holes either to f1 or f2, which

requires geometric heuristics. Designing a set of infallible heuristics is unfortunately not possible

95

4.5. Depth Ordering

Figure 4.16: The e�ect of a global “uncut”. Left: Original VGC. Right: VGC resulting from applying “select
all” and then “uncut”.

because the boundary of a hole is allowed to overlap the boundary of f , or can even be completely

outside f .

Uncutting is the reverse operation: the user chooses a cell c (a vertex or an edge) where to uncut,

and the operator merges this cell with its star to obtain a larger cell. Therefore, it can be seen as

a “smart delete” or a “local simpli�cation” operation. In Appendix E, we refer to this operation

as atomic simpli�cation and study it in more details. While it is always possible to cut any given

cell, i.e., a face or an edge, it is not always possible to uncut at a given cell c. Speci�cally, this is

only possible if c “could have been obtained via a cut”. Equivalently, it is only possible if the union

of c with its direct star (concept that we de�ne in Appendix E) is a manifold space. For instance,

if a vertex v has three incident edges, then the union of v with its direct star (in this case the

incident edges) is non-manifold, and hence uncutting at v is not possible. Surprisingly, uncutting

is theoretically simpler than cutting: it is a bit tedious to implement to handle all possible cases,

but it is never ambiguous and does not rely on any geometric computation.

Once the uncut operator is implemented both for a single vertex and a single edge, it can be triv-

ially extended to a set of cells: simply uncut all selected edges, then uncut all selected vertices.

This is a powerful topological simpli�cation operator, as illustrated in Figure 4.16: performing this

operation on the whole VGC is equivalent to the simpli�cation operation described in [Rossignac

and O’Connor 1989]. We conjecture in Appendix E that it results in a unique minimal decomposi-

tion.

4.5 Depth Ordering

An important consideration in vector graphics is the ability to order cells from back to front and

paint them appropriately. In this section, we describe how this operation is supported with the

VGC. Each cell in a VGC (e.g., vertices, edges, and faces) is assigned a unique depth order. The

96

4.5. Depth Ordering

top
bottom

C+

∂c

c c′

∂c′

cnext

Figure 4.17: Raising a cell.

Figure 4.18: An example of the �exible occlusion interactions enabled by the VGC.

order is maintained via a doubly-linked list containing all the cells, where the ‘top’ cell of the list

will be drawn last and will therefore occlude other parts of the drawing. When a new cell c is

created, it is by default inserted just below the lowest cell in its boundary ∂c.

Further alterations of the depth ordering are supported by allowing the user to raise a selected

cell, c. A trivial implementation of raise would be to simply swap the depth order of c and the cell

immediately above it in the depth order, cnext
, as depicted in Figure 4.17. However, this typically

fails to capture the user’s intention: there may be no visible change as a results of the raise, and, if

a face or edge is selected, the commonly-desired semantics is to have vertices remain on top of the

edges and faces that they help de�ne, and edges to remain on top of the faces that they help de�ne.

These semantics are implemented by the algorithm Raise below, and illustrated in Figure 4.17.

The lower operation is the counterpart to raise and is implemented in a largely symmetric fashion,

where the directions are reversed and ∂c is replaced by star(c).

97

4.6. User Interface

Raise (selected cell c)

1 search from bottom to �nd c

2 compute C+ = subset of (c ∪ ∂c) that is above c

3 search up from c for the �rst cell c′ satisfying:

c′ 6∈ ∂c AND geometry of c′ intersects with c

4 move C+
above the highest element of (c′ ∪ ∂c′)

The ability to manipulate depth orderings for components within objects and between objects

allows for partial orderings such as that shown in Figure 4.18. One arm of the glasses is stacked so

as to be behind the face while the other remains in front, along with the rest of the frame. More

examples involving depth manipulations are shown in Figure 4.1 and in the video accompanying

[Dalstein et al. 2014b].

4.6 User Interface

Many aspects of the user interface can be readily understood from the video accompanying [Dal-

stein et al. 2014b]. In what follows we provide a summary of the fundamental concepts and oper-

ations.

Edge design Hand-drawn strokes are the primary method for creating edges. An open stroke

drawn on the canvas creates an edge with start and end vertices. Edges can be drawn in a standard

�xed-width mode, or their width can vary as a function of stylus pressure. Edges are represented as

a densely sampled polyline and can be reshaped using a sculpting tool, either by locally dragging

points, smoothing, or editing the width of the curve. If new intersections occur when sculpting

an edge, they are ignored and never lead to the creation of a new vertex. The user can always

manually insert a vertex at any given intersection.

Intersections and snapping behavior If desired, edges can be drawn in a mode analogous

to working with planar maps. This automatically cuts intersected edges and faces, and cuts the

drawn edge at self-intersections. This mode can be enabled or disabled in the GUI by toggling an

always-visible icon. A snapping behavior can also be toggled: if enabled, end points of strokes snap

to existing vertices if within a distance ε. Self-intersection junctions can also snap to each other,

thereby allowing multiple approximately collocated self-intersections to automatically coalesce

into a single junction.

98

4.7. User Feedback

Figure 4.19: Examples of non-manifold topologies where an edge has three “face uses”. These uses may be by
the same face (middle and right), and part of a hole (right)

Creating faces and holes Faces and holes can be created in multiple ways, as demonstrated in

the video. The simplest way is to use a “paint bucket” tool that attempts to infer cycles of edges

enclosing the current mouse position. Alternatively, users can create faces by manually selecting

the edges that will serve as a boundary, which is sometimes useful to resolve ambiguities that

may arise due to overlapping edges. Multiple holes can be added to a face, with the resulting �ll

determined by their winding number, as shown in Figure 4.19.

Steiner cycles Steiner cycles are created by selecting the face and the vertex to add as Steiner

cycle. Its primary use is to connect the end vertex of an edge to the interior of a face. Dragging

the face would also drag this end vertex, since it translates the whole face boundary. If desired,

Steiner cycles can also be used to topologically connect two faces that do not share a common

edge. By sharing a common Steiner cycle, they can still be dragged independently, but form a

single connected component.

Performance The performance of our implementation is currently limited by the naive dynamic

tessellation that we perform for each render. Edges are rendered according to their width attribute

through generation of quadrilaterals that are centered around the polyline that represents the

edge path, and these are not cached between renders. Similarly, all faces are retessellated for each

render.

4.7 User Feedback

Our prototype has been informally tested by �ve users ranging from novice to professional artists.

Using this feedback, we provide an initial assessment of the usability of the VGC by non-technical

users.

99

4.7. User Feedback

Figure 4.20: A user experimenting with the possibilities o�ered by invisibe cuts and depth ordering.

Figure 4.21: The VGC can be used for abstract art or stylized �gurative art. Examples drawn by Etienne
Colas.

Users consistently report that using the VGC is signi�cantly di�erent from current SVG tools,

and that it opens exciting new creative work�ows. Due to this novelty, the �rst impressions are

generally quite enthusiastic. The topological operations such as glue, unglue, uncut (directly via

a tool “simplify”, or indirectly when “deleting” a cell) are appreciated and readily adopted. In-

terestingly, one of the most appreciated features is the ability to sculpt the interior of edges via

local dragging or smoothing. Our free-form width editing is reported to be especially useful (see

Figure 4.22).

Concerns have also been raised. Not surprisingly, one of the most disliked aspects of the prototype

was the necessity to select all the boundary edges to create a face (at the time, our prototype did

not yet have the “paint bucket” feature). Sometimes, due to an unclean topology and tiny edges,

this is hard to achieve. Also, rendering artefacts at junctions (see Section 4.8) and the di�culty to

sculpt incident edges across a vertex, speci�cally to get a smooth transition, have been mentioned.

100

4.7. User Feedback

Figure 4.22: Three more vector illustrations designed using the VGC. The ellipse surrounding the top illustra-
tion is a single edge whose width was sculpted. Examples drawn by Estelle Charleroy.

101

4.8. Limitations and Future Work

Finally, users currently tend to stay in the (default) “planar map” mode, and hence fail to see

the advantage that overlapping faces o�er. One user experimented with invisible cuts and depth

ordering (Figure 4.20), but reported di�culties to master the feature. However, we believe that

further interface revisions and video tutorials would ease the learning experience.

4.8 Limitations and Future Work

The decorrelation of geometry and topology is a powerful means of representing the topology

of visual objects as they appear in the mind’s eye. As a result, it is left to the user to maintain

any desired consistency between geometry and topology of VGCs. This can be a limitation in

some cases. While the input we provide to the tessellator is the same as used for SVG and is

therefore known to be well supported, the VGC o�ers little support for geometric operations such

as boolean operations. The parameterization of VGC faces is left as a separate problem; our current

system does not support texture-mapped faces. While a parameterization could be established

via triangulation based on a particular geometric con�guration, future geometric edits may then

become problematic.

Another concern is that even though using VGCs appears reasonably intuitive, they are still a

more complex structure than SVG, which may cause confusion and frustration for artists used to

the classical representation. For example, a user cannot “uncut” a vertex shared by more than

three edges or an edge shared by three or more faces. A vertex that is a Steiner cycle of a face

can be moved outside of the face, which can be unintuitive. Constraints could be added to resolve

this, but this then removes the independence of the topology and the geometry. Representing an

opaque disc involves only one path with SVG (a path with a �ll color), while it involves two cells

with the VGC (a closed edge and a face whose boundary is this edge). However, the application

could easily be adapted to provide further abstractions and tools making the VGC more artist-

friendly. For instance, the �ll-color property can be simulated by automatically creating a face

(and a closing edge for open edges) for every edge in the complex. We believe that the bene�ts of

the VGC largely outweigh the added complexity.

Some desired topological operations must currently be performed using multiple steps, such as

the “partial unglue” shown in Figure 4.23. We expect that it is possible to create macros for many

such operations.

One advantage of the VGC over traditional vector graphics is that, as with planar maps, it enables

the representation of multiway joins (three or more edges sharing a common vertex). As shown

in Figure 4.24, being aware of multiway joins (as opposed to emulating them via duplicated edges)

makes it possible to inform the rendering for better results. However, we note that this is a double-

102

4.9. Conclusion

?

UnGlue
UnGlue

UnGlue

Figure 4.23: A user cannot achieve the “partial unglue” operation (shown in the top left) in one step. It can
be accomplished indirectly via a sequence of unglues and reglues.

No join Bevel join Bevel join

(Illustrator) (VGC)

Miter join Miter join

(Illustrator) (VGC)

Figure 4.24: Illustrator (except when using LivePaint) cannot represent multiway joins, thus fails to render
them correctly: incident faces are rendered independently. With the VGC, we are aware of multiway joins and
hence can improve the rendering, as illustrated here with the two common styles “bevel” and “miter”.

edged sword: in the most general case, the correct rendering of multiway joins is a rather di�cult

and open problem, especially when the incident edges have di�erent and possibly non-uniform

widths and colors. This leads to various visible artefacts in our prototype. In Figure 4.25, we

illustrate a typical artefact that occurs due to the overlapping ability of VGC cells and the presence

of zero-width or transparent edges.

4.9 Conclusion

We have introduced the concept of vector graphics complex, a novel and powerful data structure

for topology-aware design of 2D illustrations. It is a superset of multi-layer vector graphics, planar

maps and stroke graphs, which signi�cantly extends the range of objects that can be drawn with

vector graphics, including 2D projections of 3D objects with imprecise or incomplete geometry,

non-manifold surfaces of arbitrary genus, non-orientable surfaces, and overlapping faces. Vector

103

4.9. Conclusion

Figure 4.25: Left: To obtain a self-overlapping object, one “invisible edge” is necessary, to de�ne two faces
with di�erent depth orders. Right: This ordering implies that the red edge is below the yellow face. Depending
on the geometry of the invisible edge, this situation often leads to artefacts in our implementation.

graphics complexes neatly separate the geometry of vector graphics objects from their topology,

making it easy to deform objects geometrically in interesting and intuitive ways; and to edit their

topology with reversible and provably-correct operators. Components of objects can exist on dif-

ferent layers, which allows for occlusion behaviors to be de�ned for individual object components

rather than objects as a whole. Finally, the explicit representation of multiway joins can be lever-

aged to improve rendering.

104

Chapter 5

Vector Animation Complexes:
The Topology of Vector Animations

Space-time visualization Time-slices visualization

tim
e space-time

visualization

time-slices
visualization

11number

key
vertex

key
closed edge

key
open edge

key
face

inbetween
vertex

inbetween
closed edge

inbetween
open edge

inbetween
face

3 10 2 10 3 9 1

Legend

Figure 5.1: A space-time continuous 2D animation depicting a rotating torus, created without 3D tools. First,
the animator draws key cells (in blue) using 2D vector graphics tools. Then, he speci�es how to interpolate them
using inbetween cells (in green). Our contribution is a novel data structure, called Vector Animation Complex
(VAC), which enables such interaction paradigm.

In this chapter, we introduce the Vector Animation Complex (VAC), a novel data structure for vec-

tor graphics animation, designed to support the modeling of time-continuous topological events.

This allows features of a connected drawing to merge, split, appear, or disappear at desired times

via keyframes that introduce the desired topological change. Because the resulting space-time

complex directly captures the time-varying topological structure, features are readily edited in

both space and time in a way that re�ects the intent of the drawing. A formal description of

the data structure is provided, along with topological and geometric invariants. We illustrate our

modeling paradigm with experimental results on various examples.

5.1 Introduction

A fundamental di�erence between raster graphics and vector graphics is that the former is a dis-

crete representation, while the latter is a continuous representation. Instead of storing individual

pixels that our eyes readily interpret as curves, vector graphics stores curves that can be ren-

105

5.2. Space-Time Topology

dered at any resolution. As display devices spanning a wide range of resolutions proliferate, such

resolution-independent representations are increasing in importance.

Similarly, a fundamental di�erence between traditional hand-drawn 2D animation and 3D anima-

tion is that the former is discrete in time, while the latter is continuous in time. Instead of storing

individual frames that our eyes interpret as motion, the use of animation curves allows a scene to

be rendered at any frame rate.

Space-time continuous representations, i.e., representations that are resolution-independent both

in the spatial domain and the temporal domain, are ubiquitous within computer graphics for their

many advantages. They are typically based on the “model-then-animate” paradigm: a parameter-

ized model is �rst developed and then animated over time using animation curves that interpolate

key values of the parameters at key times. A limitation of this paradigm is the underlying assump-

tion that the model can be parameterized by a �xed set of parameters that captures the desired

intent. This is indeed possible for 3D animation and simple 2D animation, but it quickly becomes

impractical in any 2D animation scenario where the number of strokes or how they intersect

change over time. In other words, the “model-then-animate” paradigm fails when the topology

of the model is time-dependent, which makes it challenging to represent space-time continuous

animated vector graphics illustrations with time-varying topology.

In this chapter, we address this problem by introducing the Vector Animation Complex (VAC). It

is a cell complex immersed in space-time, speci�cally tailored to meet the requirements of vec-

tor graphics animation with non-�xed topology. Any time-slice of the complex is a valid Vector

Graphics Complex (VGC) which make its rendering consistent with non-animated VGCs.

5.2 Space-Time Topology

In this section, we provide an initial intuition behind the vector animation complex, which we

formally de�ne in Section 5.3.1.

5.2.1 Animating Vertices

Suppose an animator wants to create a time-continuous animation of a single vertex v. This means

that he needs to de�ne its position p(t) for every time t in the life-span of the vertex. The existing

approach (Fig. 5.2, Left) is to de�ne a sequence of keys [(t1, p1); (t2, p2); . . .] which are interpolated

in time. To animate three vertices, the animator would de�ne three sequences of keys. Let us call

this paradigm sequential keyframing, since the representation is a set of sequences of keys: one

sequence per animated vertex, or more generally, one per animated degree of freedom.

106

5.2. Space-Time Topology

Sequential keyframing Topological keyframing

value

time

value

time

[(t1, p1); (t2, p2); (t3, p3); (t4, p4)]

[(t′1, p′1); (t′2, p′2)]

[(t′′1 , p′′1); (t′′2 , p′′2); (t′′3 , p′′3)]

{v1 = (t1, p1), . . . , v7 = (t7, p7)}

{v1 = (v1, v3), . . . ,v6 = (v2, v6)}

v1

v2

v3

v4

v5

v6

v7

Figure 5.2: Left: The existing keyframing paradigm, de�ning an animation as ordered sequences of key
values. Right: Our more general approach, where key values are unordered but labeled, and inbetween values
specify which one to interpolate.

But what if the animator wants the number of vertices—or degrees of freedom—to change over

time, by splitting or merging? We can observe (Fig. 5.2, Right) that the space-time topology of such

animation is not anymore disconnected sequences, but a more general graph. Therefore, sequential

keyframing fails to represent such animation with time-varying topology, and we need a more

general approach to keyframing that we call topological keyframing. The animator �rst de�nes

a set of key vertices vi = (ti, pi), as in sequential keyframing except that they are not ordered in

sequences. Then, he de�nes a set of inbetween vertex vj = (vbefore, vafter) that reference to two

key vertices to interpolate.

In theory, such paradigm can easily be applied to animate any kind of values, say, quaternions.

However, in this chapter, we use it to animate the topology of vector graphics illustrations. This

poses additional challenges due to the fact that such topology is already a graph-like structure in

the space dimension. Therefore, we have to represent incidence relationships both in the temporal

domain and the spatial domain, resulting in a space-time complex.

5.2.2 Animating Stroke Graphs

Suppose now that we want to animate a stroke graph [Whited et al. 2010], i.e. not only vertices but

also (open) edges, which are 2D curves starting at a start vertex and ending at an end vertex. An

easy way to achieve this is to de�ne �rst a stroke graph, then use sequential keyframing to animate

independently its degrees of freedom (e.g., position of the vertices and Bézier control points of the

edges). Unfortunately, with this approach, it is impossible to represent animated stroke graphs

107

5.2. Space-Time Topology

time

space

edge

growing

from

vertex

keyframe edge

being

cut

partial

keyframes

edge

disappearing

edge

being

duplicated

Figure 5.3: Stroke graph animation with time-varying topology. Red dots are key vertices; (non-vertical) red
curves are inbetween vertices; (vertical) blue curves are key edges; and light blue areas are inbetween edges.
Each annotation describes either a topological event introduced by key cells, or speci�es that key cells are used
as conventional “keyframes” (trajectory control, no change in topology). Note: key edges are represented as
straight lines (because space is represented as 1D), but are in fact general 2D curves.

with time-varying topology.

Our solution (Fig. 5.3) is to represent such animation as a space-time complex made of key vertices

and inbetween vertices (as de�ned previously), but also key edges and inbetween edges. A key
(open) edge ei is de�ned by a time ti and a 2D curve φi(s), starting at a key vertex vstart =
(ti, p1) and ending at a key vertex vend = (ti, p2). An inbetween (open) edge ej is de�ned by

its temporal boundary and its spatial boundary (detailed in the next paragraph), from which

can be computed a time-parameterized 2D curve Φ(s, t) (i.e., a surface in space-time) interpolating

this boundary.

vstart

vend

e b
ef

or
e

e a
ft

er

Naively (Fig. opposite), one might de�ne the temporal boundary as a pair

(ebefore, eafter) that references to two key edges to interpolate, and the spatial

boundary as a pair (vstart,vend) that references to two inbetween vertices where

the time-parameterized curve Φ(s, t) should start and end (for t �xed). Unfortu-

nately, this naive de�nition would only enable to represent a very small subset of all possible topo-

logical events that can happen to a stroke graph, and therefore we need a more general de�nition

(Fig. 5.4, Left). Indeed, to represent an edge being cut in half by an appearing vertex (Fig. 5.3), or cut

in more pieces by several vertices appearing simultaneously, we need the temporal boundary not

to be two key edges, but two “sequences of connected key edges”, structure that we call path. To

represent an edge growing from a vertex, we need to allow paths to be reduced to a key vertex. Fi-

nally, to allow partial keyframing (e.g., adding a key to an inbetween edge without adding a key

to every incident edge, and recursively to every connected edge), we need the spatial boundary not

to be two inbetween vertices, but two “sequences of connected inbetween vertices”, structure that

108

5.2. Space-Time Topology

before

start animated vertex

end animated vertex

Inbetween open edge Inbetween closed edge

path

after

path

before

cycle

after

cycle

Figure 5.4: Topology of inbetween edges. Note: a path or cycle can also consist of a single key vertex (but an
animated vertex cannot). A cycle can also consist of a single closed edge, possibly repeated.

we call animated vertex (it is a chain key—inbetween—key—· · ·—key—inbetween—key, which

can be interpreted as a vertex animated using conventional keyframing).

5.2.3 Animating Vector Graphics Complexes

We extend these ideas further to represent an animated vector graphics complex (see Chapter 4)

with time-varying topology. The same way that the VGC extends stroke graphs with closed edges

and faces, the VAC extends the representation introduced in the previous section with key closed

edges, inbetween closed edges, key faces, and inbetween faces.

A key closed edge ei is de�ned by a time ti and a 2D closed curve φi(s) (note that is does not have

bounding vertices). An inbetween closed edge ej is de�ned by its temporal boundary, made of

two cycles (Fig. 5.4, Right), from which can be computed a time-parameterized 2D closed curve

Φ(s, t) interpolating this boundary. Note that unlike inbetween open edges, inbetween closed

edges have an empty spatial boundary, since closed edges do not have bounding vertices. To allow

all sorts of topological events, cycles can either be reduced to a single key vertex, or made of a

single (possibly repeated) key closed edge, or made of connected key open edges (equivalently to

the concept of cycle introduced in Chapter 4).

A key face fi is de�ned by a time ti and a sequence of cycles, all sharing the same time ti. Given a

winding rule (e.g., even-odd or non-zero), these cycles de�ne a 2D region of the time-plane t = ti.

An inbetween face fj is de�ned by its temporal boundary and its spatial boundary. Its temporal

boundary is de�ned by two sequences of faces, the before faces and the after faces. Its spatial

boundary is de�ned by a sequence of animated cycles, structure that we introduce informally in

the next three paragraphs.

109

5.2. Space-Time Topology

e1, β1

next

previous

after before

e2, β2

e3, β3 e4, β4

e1 e2

e3 e4

t
i
m

e
t

curve parameter s

cell geometry and animated cycle

•
γ

incidence relationship

e1, β1 e2, β2

e3, β3 e4, β4

(naive data structure)

animated cycle

•
γ

(actual data structure)

Figure 5.5: Top: Intuitively, an animated cycle
•
γ is a two-dimensional doubly linked list where every node

holds a reference to an inbetween edge e and a direction β. The structure is circular in the space dimension, and
non-circular in the time dimension. Unfortunately, this naive structure is not expressive enough to capture all
possible scenarios. Bottom: The actual data structure includes additional nodes to explicitly hold a reference to
shared vertices, key edges, and inbetween vertices.

110

5.2. Space-Time Topology

Animated cycle We have seen that an animated vertex is a combinatorial structure that stores

references to existing inbetween vertices, which de�ne a time-parameterized position p(t). Sim-

ilarly, our goal is now to de�ne a time-parameterized closed curve Φ(s, t), via a combinatorial

structure storing references to existing cells (a “cylinder in space-time”, cf. Fig. 5.5, Top-left).

A simple option would be to de�ne this boundary as a set {c1, . . . , cn} of references to cells.

However, for the same reasons that this approach is not su�cient to de�ne the boundary of key

faces (see paragraph Non-Su�ciency of the Incidence Graph from Section 4.3.3), it is not su�cient

either to de�ne the boundary of inbetween faces. More speci�cally, because overlapping of cells

is allowed (i.e., the complex is only immersed in space-time, as opposed to embedded), then the set

of boundary cells does not contain enough information to unambiguously de�ne the geometry of

the face. Instead, it is necessary to organize this set using an ordered structure, possibly referring

to the same cell multiple times. This additional information explicitly de�nes a parameterization

of the boundary. For key faces, this is achieved via the structure called cycle. For inbetween faces,

this is achieved via the structure called animated cycle.

Intuitively (Fig. 5.5, Top-right), a naive structure to de�ne such parameterization would be a two-

dimensional doubly linked list of directed inbetween edges, where the �rst dimension corresponds

to the curve parameter s, and the second dimension correspond to the time t. This structure

is circular in the s-dimension, but non-circular in the t-dimension. Like a doubly linked list, it

is composed of nodes which store: 1) per-node data; and 2) references to adjacent nodes. But

unlike a doubly linked list, each node stores four references instead of two: previous and next to

navigate in the s-dimension; and before and a�er to navigate in the t-dimension. The node data

itself is a reference to an inbetween edge e, and a boolean β that orients e with respect to curve

parameterization.

Unfortunately, this naive structure cannot handle inbetween edges bounded by more than two

key edges, more than two inbetween vertices, or that shrink to a key vertex, and thus cannot

represent general time-parameterized cycles (e.g., Fig. 5.6, Left). Our solution is to include all the

lower dimensional cells shared between inbetween edges as explicit nodes of the structure (Fig. 5.5,

Bottom; Fig. 5.6, Right). It introduces a little redundancy to the structure, but makes it signi�cantly

more expressive.

111

5.3. Formal De�nition

5.3 Formal Definition

5.3.1 Vector Animation Complex

A vector animation complex K is de�ned as a tuple

K = (C, dimT ,dimS , . . .) (5.1)

where C is a �nite set of abstract symbols called cells (think of them as identi�ers, or addresses),

and dimT ,dimS , . . . are functions de�ned on C or a subset of C , assigning to relevant cells some

a�ributes, that have to satisfy some invariants. These numerous attributes and invariants are

detailed in the remainder of this section. In our C++ implementation, an element c ∈ C is a

pointer to an object inheriting the class Cell, and an attribute α(c) is typically a data member

c->m_alpha.

Cell attributes can be classi�ed in two types: topological a�ributes, which are combinatorial ob-

jects de�ning incidence relationship between cells; and geometrical a�ributes, which are con-

tinuous objects immersing the cells in space-time. The two most important attributes of any cell

c ∈ C are topological:

• its temporal dimension dimT (c) ∈ {0, 1}

• its spatial dimension dimS(c) ∈ {0, 1, 2}

Cells of temporal dimension 0 are called key cells, and cells of temporal dimension 1 are called

inbetween cells. Orthogonally, cells of spatial dimension 0 are called vertices, cells of spatial di-

mension 1 are called edges, and cells of spatial dimension 2 are called faces. In addition, each edge

e is assigned the topological attribute isClosed(e) ∈ {>,⊥}, where > means true and ⊥ means

false. Therefore, all cells can be partitionned into eight �nite sets which de�ne their type:

dimT dimS isClosed Type Notation

0 0 n/a key vertex v ∈ V
0 1 true key closed edge e ∈ E◦
0 1 false key open edge e ∈ E|
0 2 n/a key face f ∈ F

1 0 n/a inbetween vertex v ∈ V
1 1 true inbetween closed edge e ∈ E◦
1 1 false inbetween open edge e ∈ E|
1 2 n/a inbetween face f ∈ F

112

5.3. Formal De�nition

For convenience, we de�ne E = E| ∪ E◦ and E = E| ∪ E◦. From Section 5.3.2 to Section 5.3.9,

we de�ne all the remaining attributes and invariants for each type of cells. For clarity, some of

these attributes are expressed using auxiliary/helper structures (halfedges, paths, cycles, animated

vertices, and animated cycles), which are de�ned from Section 5.3.10 to Section 5.3.14.

5.3.2 Key Vertex

A key vertex v ∈ V represents a single point in space-time:

topological attributes: ∅

geometrical attributes: position p(v) ∈ R2

time t(v) ∈ R

invariants: ∅

5.3.3 Key Closed Edge

A key closed edge e ∈ E◦ represents a closed curve contained in a time-plane:

topological attributes: ∅

geometrical attributes: curve φ(e) : s ∈ [0, 1]→ R2

time t(e) ∈ R

invariants: φ(e) continuous

φ(e)(0) = φ(e)(1)

5.3.4 Key Open Edge

A key open edge e ∈ E| represents an open curve contained in a time-plane, starting and ending

at two key vertices (possibly equal):

topological attributes: start vertex vstart(e) ∈ V
end vertex vend(e) ∈ V

geometrical attributes: curve φ(e) : s ∈ [0, 1]→ R2

time t(e) ∈ R

invariants: φ(e) continuous

φ(e)(0) = p(vstart(e))
φ(e)(1) = p(vend(e))

t(vstart(e)) = t(e) = t(vend(e))

113

5.3. Formal De�nition

5.3.5 Key Face

A key face f ∈ E represents a region of a time-plane delimited by closed curves (possibly self-

intersecting, including going back and forth the same path or being reduced to a single point):

topological attributes: cycles ∀i ∈ [1..k(f)], γi(f) ∈ Γ

where k(f) ≥ 0
geometrical attributes: winding rule R(f) ⊆ N

time t(f) ∈ R

invariants: ∀i ∈ [1..k(f)], t(f) = t(γi(f))

5.3.6 Inbetween Vertex

An inbetween vertex v ∈ V represents an interpolation in time between two key vertices:

topological attributes: before vertex vbefore(v) ∈ V
a�er vertex vafter(v) ∈ V

geometrical attributes: animated position p(v) : t ∈ [t1, t2]→ R2

where t1 = t(vbefore(v))
t2 = t(vafter(v))

invariants: t1 < t2

p(v) continuous

p(v)(t1) = p(vbefore(v))
p(v)(t2) = p(vafter(v))

5.3.7 Inbetween Closed Edge

An inbetween closed edge e ∈ E◦ represents an interpolation in time between two cycles:

topological attributes: before cycle γbefore(e) ∈ Γ
a�er cycle γafter(e) ∈ Γ

geometrical attributes: animated curve Φ(e) : (s, t) ∈ [0, 1]× [t1, t2]→ R2

where t1 = t(γbefore(e))
t2 = t(γafter(e))

114

5.3. Formal De�nition

invariants: t1 < t2

Φ(e) continuous

∀t ∈ [t1, t2],Φ(e)(0, t) = Φ(e)(1, t)

∀s ∈ [0, 1],Φ(e)(s, t1) = φ(γbefore(e))(s)
∀s ∈ [0, 1],Φ(e)(s, t2) = φ(γafter(e))(s)

5.3.8 Inbetween Open Edge

An inbetween open edge e ∈ E| represents an interpolation in time between two paths, spatially

bounded by two animated vertices:

topological attributes: before path πbefore(e) ∈ Π
a�er path πafter(e) ∈ Π

start animated vertex •vstart(e) ∈
•
V

end animated vertex •vend(e) ∈
•
V

geometrical attributes: animated curve Φ(e) : (s, t) ∈ [0, 1]× [t1, t2]→ R2

where t1 = t(πbefore(e))
t2 = t(πafter(e))

invariants: vstart(πbefore(e)) = vbefore(
•vstart(e))

vend(πbefore(e)) = vbefore(
•vend(e))

vstart(πafter(e)) = vafter(
•vstart(e))

vend(πafter(e)) = vafter(
•vend(e))

t1 < t2

Φ(e) continuous

∀t ∈ [t1, t2],Φ(e)(0, t) = p(•vstart(e))(t)
∀t ∈ [t1, t2],Φ(e)(1, t) = p(•vend(e))(t)

∀s ∈ [0, 1],Φ(e)(s, t1) = φ(πbefore(e))(s)
∀s ∈ [0, 1],Φ(e)(s, t2) = φ(πafter(e))(s)

5.3.9 Inbetween Face

An inbetween face f ∈ F represents an interpolation in time between key faces, spatially bounded

by animated cycles:

115

5.3. Formal De�nition

topological attributes: before time tbefore(f) ∈ R
before faces ∀i ∈ [1..kb(f)], fbefore,i(f) ∈ F

where kb(f) ≥ 0
a�er time tafter(f) ∈ R
a�er faces ∀i ∈ [1..ka(f)], fafter,i(f) ∈ F

where ka(f) ≥ 0

animated cycles ∀i ∈ [1..k(f)], •γi(f) ∈
•
Γ

where k(f) ≥ 0

geometrical attributes: winding rule R(f) ⊆ N

invariants: ∀i ∈ [1..kb(f)], tbefore(f) = t(fbefore,i(f))
∀i ∈ [1..ka(f)], tafter(f) = t(fafter,i(f))
∀i ∈ [1..k(f)], tbefore(f) = tbefore(

•
γi(f))

∀i ∈ [1..k(f)], tafter(f) = tafter(
•
γi(f))

5.3.10 Halfedge

A halfedge is a pair h = (e, β) ∈ E × {>,⊥}. If e is closed then it is a closed halfedge denoted

h ∈ H◦, otherwise it is an open halfedge denoted h ∈ H|. If β = >, we de�ne φ(h)(s) = φ(e)(s),

otherwise we de�ne φ(h)(s) = φ(e)(1− s). If h is open then we de�ne vstart(h) = vstart(e) and

vend(h) = vend(e) (when β = >), or vstart(h) = vend(e) and vend(h) = vstart(e) (when β = ⊥).

Finally, we de�ne t(h) = t(e).

5.3.11 Path

A path π is either:

1. a key vertex v ∈ V , or

2. a list of N > 0 open halfedges h1, .., hN ∈ H| satisfying:

∀j ∈ [1..N − 1], vend(hj) = vstart(hj+1) (5.2)

In the �rst case, we de�ne vstart(π) = vend(π) = v, otherwise we de�ne vstart(π) = vstart(h1)
and vend(π) = vend(hN). Also, we de�ne the curve φ(π) : s ∈ [0, 1] → R2

by concatenating

and uniformly reparameterizing the φ(hj). In the special case π = v, then φ(π) is the constant

116

5.3. Formal De�nition

function Φ(π)(s) = p(v). Finally, we de�ne t(π) = t(v) (Case 1.), or t(π) = t(h1) (Case 2.). We

denote by Π the set of all possible paths on K.

5.3.12 Cycle

A cycle γ is either:

1. a key vertex v ∈ V , or

2. a closed halfedge h ∈ H◦ repeated N > 0 times, or

3. a circular list of N > 0 open halfedges hj ∈ H| satisfying:

∀j ∈ [1..N], vend(hj) = vstart(hj+1) (5.3)

In addition, a cycle stores a starting point s0 ∈ R. We de�ne the closed curve φ(γ) : s ∈
[0, 1] → R2

by concatenating and uniformly reparameterizing the φ(hj), then o�setting by s0.

In the special case γ = v, then φ(γ) is the constant function Φ(γ)(s) = p(v). Finally, we de�ne

t(γ) = t(v) (Case 1.), or t(γ) = t(h) (Case 2.), or t(γ) = t(h1) (Case 3.). We denote by Γ the set

of all possible cycles on K.

5.3.13 Animated Vertex

An animated vertex •v is a list of N > 0 inbetween vertices v1, ..,vN ∈ V satisfying:

∀j ∈ [1..N − 1], vafter(vj) = vbefore(vj+1) (5.4)

We de�ne vbefore(
•v) = vbefore(v1) and vafter(

•v) = vafter(vN). Also, we de�ne the time-parameterized

position p(•v) : t ∈ [t(vbefore(
•v)), t(vafter(

•v))] → R2
by concatenating the p(vj). We denote by

•
V the set of all possible animated vertices on K.

5.3.14 Animated Cycle

An animated cycle (cf. Fig. 5.6) is a tuple

•
γ = (N, c, β, nprevious, nnext, nbefore, nafter) (5.5)

where N is a non-empty set of symbols called nodes, and:

117

5.3. Formal De�nition

t
i
m

e

v1 v2

v3

v4 v5
v6

v7 v8

v9

v10

v11 v12

e1 e2

e3
e4

e5 e6

e7

e8
e9

v1

v2

v3

v4 v5 v6

v7

v8 v9

e1

e2

e3 e4

e5

e6

e7 e8

v2

v3

v3

v5

v5

v8

e5,β5

e7, β7

v9

v7

v10

v8

v1

v4

v4

v7

e1,β1

v6e3,β3 e4,β4

e2,β2

v6e3, β3 e4, β4

e5, β5 e6, β6

e6,β6

v9e7,β7 e8,β8

Figure 5.6: A general example of an animated cycle
•
γ. Left: Geometry and topology of the cells c ∈ C(K)

involved in
•
γ. It is a sub-complex of the whole VAC. Right: The nodes n ∈ N(•γ) de�ning

•
γ. Each node n

references to a cell c, speci�es a direction β (ignored if c is a vertex), and points to a previous, next, before, and
after node. The shape/color of the node indicates the type of the referenced cell:

key
vertex

key
closed edge

key
open edge

inbetween
vertex

inbetween
closed edge

inbetween
open edge

This example illustrates a variety of topological transformations over time for the cycle, including local keyfram-
ing using a key vertex (v3), local keyframing using key edges (e3, e4), keyframing using a closed edge (e7),
contraction of an open edge to a vertex (e3 → v8), contraction of a closed edge to a vertex (e7 → v9), cutting
an open edge into two open edges (e2 → e3, e4), among others.

118

5.3. Formal De�nition

c : N → V ∪V ∪ E ∪E assigns a cell to every node

β : N → {>,⊥} assigns a direction (ignored if c(n) ∈ V ∪V)

nprevious : N → N assigns a previous node

nnext : N → N assigns a next node

nbefore : N → N ∪ {null} assigns an optional before node

nafter : N → N ∪ {null} assigns an optional a�er node

In addition, an animated cycle stores a starting node n0 ∈ N . We de�ne the timespan of a

node n as being the trivial interval T (n) = {t(c(n))} if c(n) is a key cell, or the open interval

T (n) = (tbefore(c(n)), tafter(c(n))) if c(n) is an inbetween cell. Despite having a single next

pointer, one can notice (Fig. 5.6) that when c(n) is an inbetween open edge, then n may have

several nodes “next to it”, which are stacked in time. The next (resp. previous) pointer points to the

“�rst” of these, and the others can be accessed by iterating after (resp. before). To easily traverse

the data-structure at t �xed, we de�ne the two functions nnext(n, t) and nprevious(n, t) that return

the two nodes “spatially adjacent to n at time t”.

nprevious (n ∈ N , t ∈ R)

Require: t ∈ T (n)
1 n′ ← nprevious(n)
2 while t 6∈ T (n′) do
3 n′ ← nbefore(n′)

4 return n′

nnext (n ∈ N , t ∈ R)

Require: t ∈ T (n)
1 n′ ← nnext(n)
2 while t 6∈ T (n′) do
3 n′ ← nafter(n′)

4 return n′

We de�ne the time-parameterized closed curve Φ(•γ)(s, t) by �nding a node n such that t ∈ T (n)
(iterating before/after from n0), then concatenating the φ(c(n)) while iterating nnext(n, t) (fol-

lowed by a normalization into [0, 1]). We denote by

•
Γ the set of all valid animated cycle on K,

which are the ones whose attributes satisfy the following invariants.

Connectedness Any node n2 can be reached from any node n1 with a �nite sequence of next,

previous, after, or before.

Node-cell consistency Informally: “adjacency between nodes must be consistent with inci-

dence relationship between assigned cells”. For instance, if c(n) is an open key edge and β(n) = >,

then we must have:

c(nprevious(n)) = vstart(c(n)) and c(nnext(n)) = vend(c(n)) (5.6)

119

5.3. Formal De�nition

v

vbefore(v)

vafter(v)

v v v

h = (e, β)

•v
end (h)

πafter(e)

πbefore(e)

•v
start (h)

e, β e, β

e

πbefore(e)
reduced to a single vertex

e
e

πafter(e)
reduced to a single vertex

e e

k ≥ 1 nodes ni with c(ni) = c(nj) and β(ni) = β(nj)

γafter(e) γafter(e)

e, β e, β

e, β e, β

γbefore(e) γbefore(e)
starting point of cycle is inside an open key edge

e, β e, β

e, β e, β

e, β e, β

e, β e, β

cycle is a repeated closed key edge

starting point of cycle is a key vertex

e, β e, β

e, β e, β

e, β e, β

e, β e, β

cycle is a unique vertex

e, β

Figure 5.7: Node-cell consistency invariants expressed as a set of allowed con�gurations.

120

5.3. Formal De�nition

(a) (b)

Figure 5.8: Two examples of doubly linked lists which violate the invariantnnext(nprevious(n)) = n, therefore
are invalid.

The exhaustive list of all constraints would be very hard to read if expressed algebraically, as

above, despite being intuitive to understand visually. Therefore, for clarity, we express them all in

Figure 5.7 as a set of allowed con�gurations, using diagrams. For instance, the above two constraints

can be expressed as
13

:

h

vstart(h) vend(h)

In these diagrams, space is represented horizontally and time vertically. Every colored shape rep-

resents a node n ∈ N , and its shape and color represents the type of c(n), cf. legend of Figure 5.6.

Annotations near or inside the shape indicate the value of c(n) and β(n), sometimes using a

“halfedge notation” for conciseness. Left (resp. right, up, and down) arrows indicate the value of

nprevious(n) (resp. nnext(n), nbefore(n), and nafter(n)). An unspeci�ed annotation/arrow in a dia-

gram indicates that its value is not constrained by this diagram, but the value must still be allowed

by at least one of the other diagrams.

Back-pointers consistency For all nodes n ∈ N , there exist k1, k2, k3, k4 ∈ N such that:
nk1

after(nnext(nprevious(n))) = n

nk2
before(nprevious(nnext(n))) = n

nk3
next(nafter(nbefore(n))) = n

nk4
previous(nbefore(nafter(n))) = n

(5.7)

where exponents represent the k-th iterate of the function. In addition, for all nodes n ∈ N , and

for all t ∈ T (n): {
nprevious(nnext(n, t), t) = n

nnext(nprevious(n, t), t) = n
(5.8)

13

However, we note that this speci�c diagram does not appear in Figure 5.7 because it is redundant with other

diagrams.

121

5.4. Interpolation Scheme

t
i
m

e

Figure 5.9: Example of an invalid animated cycle: it doesn’t satisfy the cycle uniqueness invariant.

These invariants play the same role as the simpler invariant nnext(nprevious(n)) = n that must be

satis�ed by conventional doubly linked lists. It ensures that back pointers serve there purpose (i.e.

point back to the original node), and prevents invalid con�gurations such as those illustrated in

Figure 5.8.

Cycle uniqueness For all pairs of nodes n1, n2 ∈ N , if there exists a time t such that t ∈ T (n1)
and t ∈ T (n2), then there exists k ∈ N such that:

nknext(n1, t) = n2 (5.9)

This invariant makes sure that a scenario such as in Figure 5.9 is not allowed, i.e. that any time-slice

of the animated cycle is one and only one cycle.

Temporal boundary structure There exist a unique time t1 and a unique time t2, such that for

each node n ∈ N : {
nbefore(n) = null ⇒ tbefore(c(n)) = t1

nafter(n) = null ⇒ tafter(c(n)) = t2
(5.10)

We denote these two times tbefore(
•
γ) and tafter(

•
γ).

5.4 Interpolation Scheme

The geometry of inbetween cells may be provided explicitly (or in non-photorealistic rendering ap-

plications, computed from an animated 3D model), but in our case, it is computed by interpolating

the geometry of key cells, as expected from a keyframing system.

First, for each key vertex vi, we de�ne a tangent q(vi) as the average of the slopes
p(vj)−p(vi)
t(vj)−t(vi) , for

all key vertices vj connected to vi by an inbetween vertex (Fig. 5.10b). Then, we de�ne the geom-

122

5.5. User Interface

(a) (b) (d) (e)(c)

Figure 5.10: Interpolation scheme (time = horizontal axis). (a) Input: geometry of key cells and space-time
topology. (b) Compute tangents at key vertices. (c) Compute geometry of inbetween vertices, satisfying tangents.
(d) For each inbetween edge, compute linear interpolation of bounding paths/cycles. (e) Output: warp to satisfy
spatial boundary conditions.

etry of each inbetween vertex as the unique cubic curve interpolating the positions p(vbefore) and

p(vafter) with the desired tangents q(vbefore) and q(vafter) (Fig. 5.10c). All that is left to do is de-

�ne the geometry of every inbetween open (resp. closed) edge, by interpolating its two bounding

paths (resp. cycles). We recall from Section 5.3.1 that paths/cycles have an explicit parameter-

ization [0, 1] → R2
, obtained by concatenating and uniformly reparameterizing the key edges’

parameterizations (the starting point of cycles is a user-controllable variable). First, we compute a

linear interpolation between these two explicit parameterizations (Fig. 5.10d). Finally, in the case

of inbetween open edges, for all t ∈ (t1, t2), we linearly warp this interpolation Φ(s, t) such that

Φ(0, t) and Φ(1, t) coincidate with the start and end animated vertices at t (Fig. 5.10e). There is no

need to de�ne an interpolation scheme for inbetween faces, since their geometry is entirely spec-

i�ed by the geometry of their boundary. Indeed, for all t ∈ (t1, t2), a closed parameterized curve

[0, 1] → R2
can be extracted from each animated cycle, which, together with the user-speci�ed

winding rule (e.g., even-odd), de�ne an area of the 2D plane.

This interpolation scheme is robust and general but limited as it only guarantees C0
continuity.

More aesthetically pleasing interpolation can be achieved using logarithmic spirals [Whited et al.

2010] or Coons patches. This is left for future work.

5.5 User Interface

To create and manipulate VACs, we implemented various visualizations and topological operators,

which we present in this section. We refer to the video accompanying [Dalstein et al. 2015] for a

demonstration of these tools.

2D view We provide a 2D view to render a speci�c frame of the animation (i.e., a time-slice of

the VAC), which can be selected using a timeline similar to any animation system. The 2D view

can be split into multiple 2D views to visualize simultaneously di�erent frames of the animation.

The user can also toggle “onion skinning” to overlay several frames within a single 2D view, or

123

5.5. User Interface

render the animation as an animation strip (Fig.5.1, bottom). The frames can be rendered either in

“normal” mode (showing the actual result), or in “topology” mode (using a color code to inform

whether a cell is a key cell, or a time-slice of an inbetween cell).

3D view We also provide a 3D view to visualize the VAC in space-time. However, we mostly

use this view as a debugging tool, as it becomes quickly impractical when the number of cells

grow. All interaction happens in the 2D views, and all examples presented in this chapter have

been created without using the 3D view at all. At this stage, it is unclear whether it is relevant to

expose such visualization to end users.

Creating key cells Key cells are created in the 2D view using standard VGC tools. They are

assigned the time ti selected in the timeline.

Motion-pasting The easiest way to create inbetween cells is to select key cells at time t1, trigger

the copy action, then move to time t2 and trigger the motion-paste action. It creates a copy of

the key cells, assigns them the time t2, and creates inbetween cells that connect in time the old

key cells to the new ones. In other words, it corresponds to sweeping key cells in time. Once

motion-pasted, the new cells can be edited to create the desired motion. Standard VGC topological

operators (extended to support incident inbetween cells) can also be used on the new key cells,

which introduce topological events as a result.

Inbetweening Another way to create inbetween cells is to select existing key cells at two dif-

ferent times t1 and t2 (e.g., using side-by-side 2D views), then trigger the inbetweening action. It

creates inbetween cells that connect in time the selected key cells. Currently, it works to create

an inbetween vertex out of two key vertices; an inbetween edge out of two key edges; an inbe-

tween edge out of more than two key edges that can be organized into two paths or two cycles;

or an inbetween edge that grows or shrinks to a vertex. This tool does not yet support the cre-

ation of inbetween faces (we can still create them using motion-pasting or manually specifying

their boundary), neither the simultaneous creation of multiple inbetween edges, which are both

interesting challenges left as future work.

Inserting keys A fundamental topological operator on VACs is to cut an inbetween cell in half,

in the time dimension, by inserting a new key cell. It is the equivalent of inserting a keyframe in

conventional keyframing animation. Similarly to the “auto-key” feature of most animation sys-

tems, we automatically call this operator whenever the user performs an action on (the rendered

time-slice of) an inbetween cell. For instance, attempting to move an inbetween vertex automati-

cally inserts a key vertex at the time ti selected in the timeline, and the new key vertex is the cell

actually moved. Note that this insert key tool is local in space (in addition to be obviously local in

124

5.6. Results

time): it cuts the selected inbetween cell and its spatial boundary, but does not propagate to any

other cell. This allows for local trajectory or topology re�nement possible, without keyframing

the whole drawing.

Drag-and-drop Selected key cells can be drag-and-dropped in space (using the 2D view), but

also in time (using the timeline), within a time interval determined by its incident inbetween cells.

This allows to easily re�ne the timing of a motion.

Depth-ordering We store a global ordering for all the cells in a complex using a doubly-linked

list, and render the cells back-to-front using this ordering. As with VGCs, we provide tools to

conveniently alter this ordering.

5.6 Results

We create several illustrative examples of vector graphics animations that involve topological

changes over time. We brie�y summarize them below, although they are best seen in the video

accompanying [Dalstein et al. 2015].

Torus The torus (Fig. 5.1) is an example use of the VAC to create a clean conceptual animated

vector graphics illustration. It is de�ned using a total of �ve keyframes (frames that contain at least

one key cell). As always required, the clip begins and ends with full keyframes (frames containing

key cells only), which specify the shape of all the drawing elements that exist at those key times.

The second keyframe captures the motion of the interior silhouette, marks the initial appearance

of the hole with a single vertex, and also keyframes the shape of the outside silhouette. The

third keyframe properly introduces the now-visible hole, while the fourth keyframe then ends

the growth of the hole by merging the end vertices of the two lines. As seen in this example,

keyframes are used either to introduce a change in shape, to introduce a change in topology,

or both. Keyframes are typically local, i.e., key cells are only inserted where needed, without

keyframing the entire drawing.

Double torus Once we have the VAC for the single torus, the animation of a double torus

(Fig. 5.11) is easy to create. Indeed, all that is needed is: 1) deforming the outside silhouette, 2)

copy-pasting to a di�erent space-time location the sub-complex representing the animation of the

hole, and 3) gluing the �rst key edge of this sub-complex to the deformed silhouette. We believe

that this type of template-based construction provides a practical way of simplifying the creation

of VACs. Figure 5.11 shows a vector graphics animation of a simple torus which is morphed to

a double torus, with the two halves rotating asynchronously. Creating such animation would be

125

5.6. Results

Figure 5.11: Double Torus.

A B C D C D C D E F G H G H G H I J

Figure 5.12: Animated ribbon decomposed into 6 key faces (A,B,E,F,I,J) and 4 inbetween faces (C,D,G,H), in
order to depict local depth-ordering both in space and time.

hard using conventional vector graphics tools, but would be equally hard in 3D, since the genus

of the depicted surface changes, requiring a topological event in 3D as well.

Animated ribbon In a given VAC, any cell is either completely in front, or completely behind,

any other cell. However, any cell can be easily split spatially (cutting) or temporally (keyframing)

into di�erent cells, and the cells of this new cell-decomposition are assigned their own indepen-

dent depth orders. This makes possible to depict local depth-ordering, both in space and time, as

illustrated in Figure 5.12. Using motion-pasting and basic editing, the space-time topology and

geometry of this animation can be created within a few seconds. Then, the user alters the depth-

ordering to ensure A < B, C < D, G > H , and I > J , using the “raise” and “lower” actions, as

with standard VGCs. Note that this example does not contain topological events: keyframes are

only used to introduce a change in geometry, as well as a change in depth-ordering.

Flapping bird We demonstrate Figure 5.13 the use of animated faces with depth layering in

creating an example of a bird with a �apping wing, as inspired by a hand-drawn animation [Blair

1994, p. 122]. This example is created using 7 keyframes, all of which are local except the ones at

the start and end. A looping animation is easily created by copy-and-pasting a second copy of the

126

5.6. Results

Figure 5.13: Bird animation. Space-time view (top); output animation (middle); VGC �lm strip (bottom).

127

5.7. Discussion

Figure 5.14: Turning head animation. Output animation (top); VGC �lm strip (bottom).

full VAC so that it sits immediately after the �rst copy. The ending elements of the �rst animation

are then topologically glued to the starting elements of the second animation.

Head turning We use a drawn animation sequence by James Lopez (used with permission) as

inspiration for a more complex example, shown in Figure 5.14. This involves many drawn elements

and a signi�cant number of topological changes, particularly involving the ear, goggles, eye, and

mouth. Many topological changes need not be modeled in great detail. The eye is a good example:

the features of the eye are simply spawned from an initial vertex that is introduced on the silhouette

of the face. For this example, the 3D space-time view is largely unusable because of its complexity,

and thus it proved to be a good test case for the capabilities of our user interface.

5.7 Discussion

Creation Many aspects of working with the VAC are no di�erent than that of creating a con-

ventional keyframe animation. Animation work�ows are often classi�ed as being straight ahead

or pose-to-pose, and these working styles can each be reproduced using the VAC. A straight ahead

work�ow is readily reproduced using motion-pasting to create a new keyframe, followed by edit-

ing as necessary. A pose-to-pose work�ow can be modeled by creating independent keyframes,

followed by the creation of inbetween cells interpolating the key cells. For other potential appli-

cations, such as the vectorization of existing animations or video clips, we expect that the creation

of the VAC may be automated.

128

5.7. Discussion

Editing Creating the space-time topology of a complex animation may take more time than via

traditional animation but once created, the VAC o�ers signi�cant bene�ts as it provides a compact

representation that is continuous in space and time. The VAC can be easily edited in ways that are

not possible with traditional 2D or 3D animation pipelines. The VAC also provides a compact and

convenient representation for algorithms to operate on. For example, we envision algorithms that

can produce rich variations of an existing animated drawing by adding stochastic perturbations

in space and time to some of the key elements.

Local keyframing Conventional keyframing animation allows for independent keyframing of

the animation variables, i.e., the keyframe times for an animated knee-joint motion can be di�er-

ent from the keyframe times for the animated ankle motion within the same animation. Similarly,

the VAC allows for the asynchronous speci�cation of keyframes for portions of the vector graph-

ics complex. Local keyframes provide better support for the semantics of many vector graph-

ics drawings by allowing di�erent portions of a drawing to be governed by di�erent keyframes.

It also allows for many topological changes to be conveniently modeled using instantiated tem-

plates.

Repurposing of existing 3D complexes It is tempting to believe that modeling an animated

2D complex could be achieved using existing approaches for 3D topological modeling, where the

z-coordinate simply plays the role of time. Unfortunately, this does not re�ect the unique seman-

tics of the time axis, and this manifests itself in several ways. An “out of plane” rotation of a vector

graphics animation does not usually produce a valid animation because the space is not Euclidean.

For similar reasons, others have proposed representing image spaces as a non-Euclidean, Cayley-

Klein geometry with one isotropic dimension [Koenderink and Doorn 2002]. Without a special des-

ignation for time, speci�c strategies would be needed to model the changing depth-orderings that

can be desired during the course of a vector graphics animation, and which, by contrast, are easily

modeled using the VAC. More importantly, cells would not always admit a time-parameterization.

By contrast, all cells in our complex have an explicit time-parameterization, by design. This makes

extracting time-slices trivial and also guarantees that all topological events are constrained to oc-

cur at key cells. This would not be the case if our cells were allowed to do “switch-backs” in time.

In addition, despite being both 1D in space-time, the distinction we make between key edges and

inbetween vertices is critical since their intersection with a time-plane is an object of di�erent

dimension. They must thus be rendered di�erently and store di�erent attributes. The same is

true for key faces and inbetween edges. Also, we allow zero-length edges but not zero-duration

inbetween cells, i.e., we enforce t1 < t2. Similarly, paths are allowed to be reduced to a single key

vertex, while animated vertices are not.

Using a simplicial complex representation for vector graphics animation [Southern 2008] would

129

5.7. Discussion

necessitate the use of many cells, which could then be problematic for creation, editing, and visu-

alization, as well as being further removed from the standard keyframing paradigm for animation.

Given a simplicial complex that completely re�ects the geometry of an VAC, the VAC can be seen

as inducing a partition of the simplicial complex, resulting in an output semantics similar to [Buch-

holz et al. 2011]. In general, geometric complexes allow for models and operations that we wish

to forbid in order to re�ect the unique nature of the time dimension. Implementing the desired

constraints necessitates additional complexity while the VAC implements the desired constraints

by design, i.e., as part of its desiderata. Also, we note that the intersection of a 3D simplicial com-

plex with a time-plane is not necessarily a 2D simplicial complex (as the intersection between a

tetrahedron and a plane can be a four-sided polygon). By contrast, the intersection of a VAC with

a time-plane is guaranteed by design to be a VGC, which is trivial to compute due to the explicit

time-parameterization.

Limitations While there are many bene�ts to a structure that provides a sound, continuous-

time model of the topological events in vector graphics animations, it also comes with additional

complexity. In particular, the modeling and editing of animated cycles, as required in order to ani-

mate faces in the vector graphics complex, embodies much of the complexity of the data structure

and its implementation. The space-time topology is also likely to introduce a steep learning curve

for artists coming from the world of SVG models where changes in topology are approximated by

other means. We currently leave the development of an improved user interface as future work,

and as such we have not conducted a formal user study with regard to how end users can best work

with the VAC. We believe that the use of topological-event templates may signi�cantly simplify

the work�ow for modeling and editing. Finally, our system shares the same fundamental limita-

tion of any 2D animation system: the loss of information between the depicted 3D world and the

2D depiction [Catmull 1978]. In other words, the semantics of a rotating 3D object will always be

better captured by 3D representations. We believe that the automatic computation of a VAC from

an animated 3D model would alleviate this issue.

Future work The VAC opens up a number of exciting avenues for future work. Computing aes-

thetically pleasing interpolation between key cells is a rich and interesting problem. In conven-

tional animation systems, animation curves are de�ned for any animation variable by keyframes

that always have well-de�ned before and after keyframes. This allows for well-de�ned tangent

vectors to be speci�ed or inferred at keyframes (e.g., Catmull-Rom). However, the topological

events allowed by the VAC means that a key cell can have multiple before and after key cells, e.g.,

two or more vertices that join or split at a given time t, or an entire edge or face that merges or

spawns from a given vertex. Developing sound and practical methods for position interpolation

or user-based tangency speci�cation is signi�cantly more complex as a result.

130

5.8. Conclusion

Future work is needed to provide high-level manipulation of the VAC. For instance, a space-time

paint bucket tool would be useful for creating inbetween faces. The automatic computation of

inbetween cells from a general selection of key cells (i.e., automatic inbetweening) is a largely

open problem, and extending [Whited et al. 2010] to the VAC is an exciting direction to explore.

Also, we have developed a number of visualization tools in support of end user understanding, but

much more is possible.

The topological structures could be further extended to allow the creation of motion graphs (equiv-

alently, “move trees”), as is commonly done within game engines for character animation. This

would require the ability to follow a given time-indexed “branch” of the VAC, and to rejoin existing

branches. The ability to do this with local parts of a VGC would provide even further �exibility,

although the resulting complexity might be di�cult to develop and debug. One could also imagine

creating additional continuous dimensions, such as that created by an aspect graph, i.e., creating

a model that is parameterized with respect to the viewing direction as well as time.

An interesting direction is to develop VACs directly from video or rendering of a 3D model. VACs

could be used to achieve continuous space-time tracking, as a logical extension of keyframe track-

ing for rotoscoping applications [Agarwala et al. 2004]. Interesting initial steps towards the vec-

torization of video have recently been explored [Patterson et al. 2012]. The data structure also

has potential applications in non-photorealistic rendering, where there is a need for sound time-

coherent models of the regions and strokes in an image sequence [Bénard et al. 2014]. Given the

separation of topological and geometrical information in the VGC and the VAC, it should also

be possible to develop a limited class of 3D animation using the VAC. Both of the above prob-

lems point to the need to develop good models for developing or otherwise modeling consistent

parameterizations for edges and faces.

Some features supported by traditional vector graphics animation tools are not yet implemented,

such as grouping, path-following, clipping, and masking. It is not yet clear how orthogonal this

feature set is to the topological modeling aspects that we have focused on. Finally, there are inter-

esting future directions to improve rendering and performance across the wide range of platforms

that are a driving force behind increasing popularity of vector graphics.

5.8 Conclusion

We have presented a new data structure for representing vector graphics animation: the vector an-

imation complex (VAC). It provides a compact, continuous-time continuous-space representation

for vector graphics that is designed to support topological events. We expect that such continuous

representations will become increasingly important as content needs to be developed for an ever-

131

5.8. Conclusion

wider range of display resolutions and frame rates. Compared to conventional representations for

vector graphics animation, the VAC captures more faithfully the semantics of many animations,

therefore provides better support for manual editing or algorithm processing. Local keyframing is

supported, i.e., keyframes need only provide information about the topological or shape changes

for the subset of parts that require a given change. Topological changes can be modeled where

they are desired and can be avoided where they are more simply modeled using other means, such

as depth layering.

We envision that the VAC may be used in a wide range of applications, including the traditional

domains for vector graphics animations; traditional drawing-based 2D animation, and the image-

processing pipelines that are part of video processing and non-photorealistic rendering applica-

tions.

132

Chapter 6

Conclusion

Figure 6.1: Left: Example of �gure that was challenging to author with current tools. Right: Exploded view
of the �gure revealing the 9 independent Bézier curves that had to be created in order to achieve the desired
outcome. Not only determining how to achieve the desired depth-ordering was a puzzle on its own, but even once
solved, any edit of the �gure was made painfully complicated due to all pieces having to be edited independently,
and carefully aligned to prevent any visible seam.

In this thesis, �rst and foremost, we identi�ed important shortcomings of current vector graphics

representations. Indeed, despite vector graphics being a mature �eld with a 50-year-old history,

none of the leading vector graphics �le standards and applications fully support the representa-

tion of faces sharing a common edge, or edges sharing a common vertex, as surprising as it may

seem. Artists frequently have to resort to tedious tricks to achieve their desired outcomes, and the

resulting illustrations are hard to edit, and even harder to animate. As a matter of fact, the author

of this dissertation experienced a lot of this frustration himself when creating many of the �gures

it contains, such as the one illustrated in Figure 6.1.

After looking back at the history of vector graphics and topological modeling, which we summa-

rized in Chapter 2, it appeared to us that a possible cause of these shortcomings was a lack of

theoretical foundations of vector graphics topology, which could have helped the vector graphics

community to design representations supporting topological modeling. In order to alleviate this

issue, we developed such theoretical foundations in Chapter 3, the take-home message being that

it is critical to consider vector graphics illustrations as topological spaces immersed in R2
(instead

of simply embedded in R2
), which has direct consequences on what data structures can be used

to represent them. In Chapter 4, we introduced such possible data structure which we called the

vector graphics complex. We expect that the de�nition of this data structure will have a positive

in�uence on upcoming standards, as we believe that the ability to model incidence relationships

between vector graphics shapes is not only desirable, but in fact paramount for user experience,

as already stressed in the abstract of Sutherland’s PhD thesis [1963] who pioneered the �eld, and

as suggested by the positive feedback we received from the users of our prototype.

133

Chapter 6. Conclusion

Of course, there still remain important open problems to be solved before the technology is ready

for standardization. In particular, there are many open questions related to styling and rendering

for which we do not have a clear answer yet. For example, even though vector graphics complexes

have the ability to model n-way joins between edges, it is still unclear how they should be ren-

dered, especially if edges are allowed to have variable width. In fact, it is already a non-trivial

question for 2-way joins, a case in point being the recent introduction [SVG Working Group 2017]

of new join styling attributes in SVG 2.0 to address some of the shortcomings of the prior SVG 1.1

speci�cation.

Besides the many advantages of topological modeling to author static illustrations, this paradigm

particularly shines when authoring vector graphics animations. Indeed, there is no better way to

ensure that two objects stay connected throughout an animation than to explicitly encode in the

representation that they must stay connected, and vector graphics complexes are a perfect repre-

sentation to encode such connections. In order to develop these ideas further, we introduced in

Chapter 5 the concept of vector animation complexes, which not only allow the representation of

animated vector graphics complexes, but also allow the topology of these complexes to change over

time. With web animation becoming increasingly popular, and the desire of web artists and devel-

opers to have better tools to author such animations, we believe that these types of representations

have the potential to be widely adopted by the community.

In this thesis, we focused on solving problems related to vector graphics and hand-drawn 2D

animation, but we believe that many of the ideas that have been developed are in fact applicable

to a wide range of domains. Among those we can cite non-photorealistic rendering, interactive

data visualization, games, geographic information systems, medical imaging, or representations of

geological layers, all of which share the need to represent incidence relationships between objects,

and possibly represent time-continuous changes of this topology. However, applying the ideas of

this thesis to these domains may require more work. For instance, for non-photorealistic rendering,

one would need to develop a conversion from 3D mesh silhouettes to vector graphics complexes,

which is non-trivial. For interactive data visualization or games, one may need to parameterize a

vector graphics complex according to user actions instead of time as we did in Chapter 5. All of

these are exciting directions for future work.

Finally, we would like to conclude this dissertation with important thoughts on how the proposed

techniques could be evaluated. Indeed, despite an informal positive reception from our users, the

general usefulness of the technique remains largely to be proven. A possible approach would be to

perform a formal user study where users are asked to perform the same set of tasks using existing

tools versus using our tool. However, it is hard if not impossible to objectively design a set of

tasks that tells us anything truly conclusive. Using our tool, users would quite obviously perform

better on tasks where our structure excels, that is, editing an illustration or an animation featuring

134

Chapter 6. Conclusion

shared boundaries. On the other hand, users would quite obviously perform worse on tasks where

our current implementation is too limited compared to existing professional tools, for instance,

drawing a complex unstructured illustration with subtle brush styles. Therefore, we believe that

the only objective and reliable way to prove the usefulness of the method is to monitor its adoption

over decades. Early feedback suggests that such adoption is likely to happen, but only time will

tell. In order to make the tool more attractive to use for artists, one would need to implement

the large feature set which is commonly found in other professional packages. Some of these

features are orthogonal with our proposed approach and therefore not harder to implement than

in the existing packages (e.g., layers, text, groups, masks, alignment tools, symmetry mode, cloned

instances, sound), while others may require some work to make them compatible with our data

structure (e.g., join styles, Bézier curve tangents, keyframe tangents).

135

Bibliography

Adobe Systems Inc., 2013. Adobe Illustrator: Help and tutorials.

Agarwala, A., Hertzmann, A., Salesin, D. H., and Seitz, S. M. 2004. Keyframe-based tracking

for rotoscoping and animation. ACM Trans. Graph. 23, 3, 584–591.

Alexa, M., Cohen-Or, D., and Levin, D. 2000. As-rigid-as-possible shape interpolation. In

Proceedings of SIGGRAPH 2000, 157–164.

Asente, P., Schuster, M., and Pettit, T. 2007. Dynamic planar map illustration. ACM Trans.
Graph. 26, 3, 30:1–30:10.

Baudelaire, P., andGangnet, M. 1989. Planar maps: An interaction paradigm for graphic design.

In Proceedings of CHI ’89, 313–318.

Baumgart, B. G. 1972. Winged edge polyhedron representation. Tech. rep., DTIC Document.

Baxter, W., Barla, P., and Anjyo, K.-I. 2009. Compatible embedding for 2d shape animation.

IEEE Trans. on Visualization and Computer Graphics 15, 5, 867–879.

Bénard, P., Lu, J., Cole, F., Finkelstein, A., and Thollot, J. 2012. Active strokes: Coherent line

stylization for animated 3d models. In Proceedings of NPAR ’12, 37–46.

Bénard, P., Hertzmann, A., and Kass, M. 2014. Computing smooth surface contours with

accurate topology. ACM Trans. Graph. 33, 2, 19:1–19:21.

Blair, P. 1994. Cartoon animation. How to Draw and Paint Series. W. Foster Pub.

Bregler, C., Loeb, L., Chuang, E., and Deshpande, H. 2002. Turning to the masters: Motion

capturing cartoons. ACM Trans. Graph. 21, 3, 399–407.

Brisson, E. 1989. Representing geometric structures in d dimensions: Topology and order. In

Proceedings of the Fifth Annual Symposium on Computational Geometry, ACM, New York, NY,

USA, SCG ’89, 218–227.

Buchholz, B., Faraj, N., Paris, S., Eisemann, E., and Boubekeur, T. 2011. Spatio-temporal

analysis for parameterizing animated lines. In Proceedings of NPAR ’11, 85–92.

Burtnyk, N., and Wein, M. 1971. Computer-generated key-frame animation. Journal of the
Society of Motion Picture & Television Engineers 80, 3, 149–153.

Capen, A., Severtson, J., Hemphill, T., and Cowles, D., 2014. The Adobe Illustrator Story.

https://vimeo.com/95415863, May. [Online; retrieved 29-July-2016].

136

https://vimeo.com/95415863

Bibliography

Carlson, W., 2003. A critical history of computer graphics and animation. https://design.
osu.edu/carlson/history/lessons.html. [Online; retrieved 21-July-2016].

Catmull, E., and Wallace, A. 2014. Creativity, Inc.: Overcoming the Unseen Forces That Stand in
the Way of True Inspiration. Random House of Canada.

Catmull, E. 1978. The problems of computer-assisted animation. SIGGRAPH Comput. Graph. 12,

3, 348–353.

Coons, S. A. 1967. Surfaces for computer-aided design of space forms. Tech. rep., Massachusetts

Institute of Technology.

Dalstein, B., Ronfard, R., and van de Panne, M. 2014. Point-curve-surface complex: A cell

decomposition for non-manifold two-dimensional topological spaces. Tech. rep., University of

British Columbia.

Dalstein, B., Ronfard, R., and van de Panne, M. 2014. Vector graphics complexes. ACM Trans.
Graph. 33, 4, 133:1–133:12.

Dalstein, B., Ronfard, R., and van de Panne, M. 2015. Vector graphics animation with time-

varying topology. ACM Trans. Graph. 34, 4 (July), 145:1–145:12.

Damiand, G., and Lienhardt, P. 2014. Combinatorial Maps: E�cient Data Structures for Computer
Graphics and Image Processing. CRC Press.

De Floriani, L., Morando, F., and Puppo, E. 2003. Representation of non-manifold objects

through decomposition into nearly manifold parts. In Proceedings of the Eighth ACM Symposium
on Solid Modeling and Applications, ACM, New York, NY, USA, SMA ’03, 304–309.

De Floriani, L., Hui, A., Panozzo, D., and Canino, D. 2010. A dimension-independent data

structure for simplicial complexes. In Proceedings of the 19th International Meshing Roundtable,
403–420.

de Juan, C. N., and Bodenheimer, B. 2006. Re-using traditional animation: methods for semi-

automatic segmentation and inbetweening. In Proceedings of SCA ’06, 223–232.

Dehn, M., and Heegaard, P. 1907. Analysis situs. In Enzyklopädie der Math. Wiss. III.1.1. 153–220.

Dobrindt, K., Mehlhorn, K., and Yvinec, M. 1993. A complete and e�cient algorithm for

the intersection of a general and a convex polyhedron. In Workshop on Algorithms and Data
Structures, Springer, 314–324.

Durand, F. 2002. An invitation to discuss computer depiction. In Proceedings of the 2nd Inter-
national Symposium on Non-photorealistic Animation and Rendering, ACM, New York, NY, USA,

NPAR ’02, 111–124.

Edelsbrunner, H., and Harer, J. 2010. Computational Topology: An Introduction. Applied math-

ematics. American Mathematical Society.

Edmonds, J. 1960. A combinatorial representation for polyhedral surfaces. Notices of the American
Mathematical Society 7 .

137

https://design.osu.edu/carlson/history/lessons.html
https://design.osu.edu/carlson/history/lessons.html

Bibliography

Eisemann, E., Paris, S., and Durand, F. 2009. A visibility algorithm for converting 3D meshes

into editable 2D vector graphics. ACM Trans. Graph. 28, 3, 83:1–83:8.

Elter, H., and Lienhardt, P. 1992. Extension of the notion of map for the representation of the

topology of cellular complexes. In 4th Canadian Conference on Computational Geometry.

Elter, H., and Lienhardt, P. 1993. Di�erent combinatorial models based on the map concept for

the representation of subsets of cellular complexes. In Modeling in Computer Graphics. 193–212.

Elter, H., and Lienhardt, P. 1994. Cellular complexes as structured semi-simplicial sets. Inter-
national Journal of Shape Modeling 1, 02, 191–217.

Fausett, E., Pasko, A., and Adzhiev, V. 2000. Space-time and higher dimensional modeling for

animation. In Proceedings of Computer Animation 2000, 140–145.

Favreau, J.-D., Lafarge, F., and Bousseau, A. 2016. Fidelity vs. simplicity: A global approach to

line drawing vectorization. ACM Trans. Graph. 35, 4 (July), 120:1–120:10.

Fekete, J.-D., Bizouarn, E., Cournarie, E., Galas, T., and Taillefer, F. 1995. TicTacToon: A

paperless system for professional 2D animation. In Proceedings of SIGGRAPH 95, 79–90.

Fiore, F. D., Schaeken, P., Elens, K., and Reeth, F. V. 2001. Automatic in-betweening in com-

puter assisted animation by exploiting 2.5D modelling techniques. In Proceedings of Computer
Animation 2001, 192–200.

Foley, J. D., and Van Dam, A. 1982. Fundamentals of Interactive Computer Graphics. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Foley, J. D., van Dam, A., Feiner, S. K., and Hughes, J. F. 1990. Computer Graphics: Principles
and Practice (2Nd Ed.). Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Fu, H., Tai, C.-l., and Au, O. K.-c. 2005. Morphing with laplacian coordinates and spatial-temporal

texture. In Proceedings of Paci�c Graphics 2005, 100–102.

Gale, D. 1987. The Classi�cation of 1-Manifolds: A Take-Home Exam. The AmericanMathematical
Monthly 94, 2, 170–175.

Granados, M., Hachenberger, P., Hert, S., Kettner, L., Mehlhorn, K., and Seel, M. 2003.

Boolean operations on 3D selective Nef complexes: Data structure, algorithms, and implemen-

tation. In Algorithms - ESA 2003, vol. 2832 of Lecture Notes in Computer Science. Springer Berlin

Heidelberg, 654–666.

Guibas, L., and Stolfi, J. 1985. Primitives for the manipulation of general subdivisions and the

computation of Voronoi. ACM Trans. Graph. 4, 2 (Apr.), 74–123.

Gursoz, E. L., Choi, Y., and Pinz, F. B. 1990. Vertex-based representation of non-manifold bound-

aries. In Geometric Modeling for Product Engineering, Eselvier, Amsterdam, 107–130.

Hatcher, A. 2001. Algebraic Topology.

Hoffman, D. D. 2000. Visual Intelligence: How We Create what We See. Norton.

138

Bibliography

Igarashi, T., and Mitani, J. 2010. Apparent layer operations for the manipulation of deformable

objects. ACM Trans. Graph. 29, 4 (July), 110:1–110:7.

Igarashi, T., Moscovich, T., and Hughes, J. F. 2005. As-rigid-as-possible shape manipulation.

ACM Trans. Graph. 24, 3, 1134–1141.

Inkscape, 2013. http://www.inkscape.org/en/. [Online; retrieved 01-July-2017].

Karsch, K., and Hart, J. C. 2011. Snaxels on a plane. In Proceedings of NPAR ’11, 35–42.

Kettner, L. 1999. Using generic programming for designing a data structure for polyhedral

surfaces. Comput. Geom. Theory Appl 13, 65–90.

Koenderink, J. J., and Doorn, A. J. v. 2002. Image processing done right. In Proceedings of the
7th European Conference on Computer Vision, 158–172.

Koenderink, J., and Doorn, A. 2008. The structure of visual spaces. Journal of Mathematical
Imaging and Vision 31, 2-3, 171–187.

Kort, A. 2002. Computer aided inbetweening. In Proceedings of NPAR ’02, 125–132.

Krull, F. N. 1994. The origin of computer graphics within general motors. IEEE Ann. Hist. Comput.
16, 3 (Sept.), 40–56.

Kwarta, V., and Rossignac, J. 2002. Space-time surface simpli�cation and edgebreaker compres-

sion for 2D cel animations. International Journal of Shape Modeling 8, 2, 119–137.

Lasseter, J. 1987. Principles of traditional animation applied to 3d computer animation. SIG-
GRAPH Comput. Graph. 21, 4, 35–44.

Lee, S. H., and Lee, K. 2001. Partial entity structure: A compact non-manifold boundary repre-

sentation based on partial topological entities. In Proceedings of the Sixth ACM Symposium on
Solid Modeling and Applications, ACM, New York, NY, USA, SMA ’01, 159–170.

Lee, J. M. 2011. Introduction to Topological Manifolds. Springer New York.

Levy, B., and Mallet, J.-L. 1999. Cellular modelling in arbitrary dimension using generalized

maps. Tech. rep., Technical report, ISA-GOCAD (Inria-Lorraine/CNRS).

Lienhardt, P. 1989. Subdivisions of n-dimensional spaces and n-dimensional generalized maps.

In Proceedings of the Fifth Annual Symposium on Computational Geometry, ACM, New York, NY,

USA, SCG ’89, 228–236.

Lienhardt, P. 1991. Topological models for boundary representation: A comparison with n-

dimensional generalized maps. Comput. Aided Des. 23, 1 (Feb.), 59–82.

Lienhardt, P. 1994. N-dimensional generalized combinatorial maps and cellular quasi-manifolds.

International Journal of Computational Geometry & Applications 04, 03, 275–324.

Liu, D., Chen, Q., Yu, J., Gu, H., Tao, D., and Seah, H. S. 2011. Stroke correspondence construction

using manifold learning. Computer Graphics Forum 30, 8, 2194–2207.

139

http://www.inkscape.org/en/

Bibliography

Marcheix, D., and Gueorguieva, S. 1995. Topological operators for non-manifold modeling.

Proceedings of the Third International Conference in Central Europe on Computer Graphics and
Visualisation ’95 1 (Feb.), 173–186.

Masson, T. 1999. CG 101: A Computer Graphics Industry Reference. 3D Graphics Other Series. New

Riders.

McCann, J., and Pollard, N. 2009. Local layering. ACM Trans. Graph. 28, 3, 84:1–84:7.

MIT Lincoln Laboratory, 1964. Ivan Sutherland : Sketchpad demo. https://www.youtube.
com/watch?v=USyoT_Ha_bA. [Online; retrieved 05-March-2017].

Moissinac, J.-C. 2010. SuperPath (vePath): A necessary primitive for vector graphic formats. In

Proceedings of the 8th International Conference on Scalable Vector Graphics.

Munkres, J. 2000. Topology. Featured Titles for Topology Series. Prentice Hall, Incorporated.

Nef,W. 1978. Beiträge zur Theorie der Polyeder: mit Anwendungen in der Computergraphik. Beiträge

zur Mathematik, Informatik und Nachrichtentechnik. Lang.

Ngo, T., Cutrell, D., Dana, J., Donald, B., Loeb, L., and Zhu, S. 2000. Accessible animation and

customizable graphics via simplicial con�guration modeling. In Proceedings of SIGGRAPH 2000,

403–410.

Noris, G., Sýkora, D., Coros, S., Whited, B., Simmons, M., Hornung, A., Gross, M., and Sumner,

R. W. 2011. Temporal noise control for sketchy animation. In Proceedings of NPAR ’11, 93–98.

Noris, G., Hornung, A., Sumner, R. W., Simmons, M., and Gross, M. 2013. Topology-driven

vectorization of clean line drawings. ACM Trans. Graph. 32, 1, 4:1–4:11.

Orzan, A., Bousseau, A., Winnemöller, H., Barla, P., Thollot, J., and Salesin, D. 2008. Dif-

fusion curves: A vector representation for smooth-shaded images. ACM Trans. Graph. 27, 3,

92:1–92:8.

Patterson, J. W., Taylor, C. D., and Willis, P. J. 2012. Constructing and rendering vectorised

photographic images. The Journal of Virtual Reality and Broadcasting 9, 3.

Pesco, S., Tavares, G., and Lopes, H. 2004. A strati�cation approach for modeling two-

dimensional cell complexes. Computers & Graphics 28, 2, 235–247.

Porter, T., and Duff, T. 1984. Compositing digital images. SIGGRAPH Comput. Graph. 18, 3

(Jan.), 253–259.

Raveendran, K., Wojtan, C., Thuerey, N., and Turk, G. 2014. Blending liquids. ACM Trans.
Graph. 33, 4, 137:1–137:10.

Reeves, W. T. 1981. Inbetweening for computer animation utilizing moving point constraints.

SIGGRAPH Comput. Graph. 15, 3, 263–269.

Reilly, E. 2003. Milestones in Computer Science and Information Technology. Greenwood Press.

Rivers, A., Igarashi, T., and Durand, F. 2010. 2.5D cartoon models. ACM Trans. Graph. 29, 4,

59:1–59:7.

140

https://www.youtube.com/watch?v=USyoT_Ha_bA
https://www.youtube.com/watch?v=USyoT_Ha_bA

Bibliography

Rossignac, J., and O’Connor, M. 1989. SGC: A Dimension-independent Model for Pointsets with
Internal Structures and Incomplete Boundaries. Research report. IBM T.J. Watson Research Center.

Rossignac, J. 1997. Structured topological complexes: A feature-based API for non-manifold

topologies. In Proceedings of the Fourth ACM Symposium on Solid Modeling and Applications,
ACM, New York, NY, USA, SMA ’97, 1–9.

Sebastian, T. B., Klein, P. N., and Kimia, B. B. 2003. On aligning curves. IEEE Trans. on Pattern
Analysis and Machine Intelligence 25, 1, 116–125.

Sederberg, T. W., Gao, P., Wang, G., and Mu, H. 1993. 2-D shape blending: an intrinsic solution

to the vertex path problem. In Proceedings of SIGGRAPH 93, 15–18.

Shirley, P., and Marschner, S. 2009. Fundamentals of Computer Graphics. Taylor & Francis.

Shreiner, D., Woo, M., Neider, J., and Davis, T. 2004. Tesselators and quadrics. In The OpenGL
Programming Guide, Fourth Edition. Addison-Wesley, ch. 11, 487–514.

Southern, R. 2008. Animation manifolds for representing topological alteration. Tech. Rep.

UCAM-CL-TR-723, University of Cambridge, Computer Laboratory.

Sun, J., Liang, L., Wen, F., and Shum, H.-Y. 2007. Image vectorization using optimized gradient

meshes. ACM Trans. Graph. 26, 3 (July).

Sutherland, I. E. 1963. Sketchpad, a man-machine graphical communication system. PhD thesis,

Massachusetts Institute of Technology.

SVG Working Group, 2011. Scalable Vector Graphics (SVG) 1.1 (Second Edition). http://www.
w3.org/TR/SVG11/. [Online; retrieved 01-July-2017].

SVG Working Group, 2016. Scalable Vector Graphics (SVG) 2.0 (W3C Candidate Recommen-

dation 15 September 2016). https://www.w3.org/TR/2016/CR-SVG2-20160915/. [Online;

retrieved 01-August-2016].

SVG Working Group, 2017. Controlling line joins: the ‘stroke-linejoin’ and ‘stroke-miterlimit’

properties. https://www.w3.org/TR/SVG2/painting.html#LineJoin. [Online; retrieved

27-March-2017].

Sýkora, D., Dingliana, J., and Collins, S. 2009. As-rigid-as-possible image registration for

hand-drawn cartoon animations. In Proceedings of NPAR ’09, 25–33.

Sýkora, D., Ben-Chen, M., Čadík, M., Whited, B., and Simmons, M. 2011. TexToons: practical

texture mapping for hand-drawn cartoon animations. In Proceedings of NPAR ’11, 75–84.

Takayama, K., Panozzo, D., Sorkine-Hornung, A., and Sorkine-Hornung, O. 2013. Sketch-

based generation and editing of quad meshes. ACM Trans. Graph. 32, 4 (July), 97:1–97:8.

Thomas, F., and Johnston, O. 1987. Disney Animation: The Illusion of Life. Abbeville Press.

Weiler, K. 1985. Edge-based data structures for solid modeling in curved-surface environments.

IEEE Computer Graphics and Applications 5, 1, 21–40.

141

http://www.w3.org/TR/SVG11/
http://www.w3.org/TR/SVG11/
https://www.w3.org/TR/2016/CR-SVG2-20160915/
https://www.w3.org/TR/SVG2/painting.html#LineJoin

Bibliography

Weiler, K. 1986. Topological Structures for Geometric Modeling. PhD thesis, Rensselaer Polytechnic

Institute.

Whited, B., Noris, G., Simmons, M., Sumner, R., Gross, M., and Rossignac, J. 2010. BetweenIT:

An interactive tool for tight inbetweening. Computer Graphics Forum 29, 2, 605–614.

Wiley, K., and Williams, L. R. 2006. Representation of interwoven surfaces in 2 1/2 D drawing.

In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, ACM, New

York, NY, USA, CHI ’06, 65–74.

Williams, R. 2009. The Animator’s Survival Kit. Faber and Faber.

Yu, J., Bian, W., Song, M., Cheng, J., and Tao, D. 2012. Graph based transductive learning for

cartoon correspondence construction. Neurocomputing 79, 0, 105–114.

Zhang, S.-H., Chen, T., Zhang, Y.-F., Hu, S.-M., and Martin, R. R. 2009. Vectorizing cartoon

animations. IEEE Trans. on Visualization and Computer Graphics 15, 4, 618–629.

142

Index

abstract cell 63

abstract edge 63

abstract face 63

abstract PCS complex 63

abstract topology 63

abstract vertex 63

after 119

after cycle 114

after face 116

after path 115

after time 116

after vertex 114

animated curve 114, 115

animated cycle 109, 116, 117

animated position 114

animated vertex 109, 117

attribute 112

before 119

before cycle 114

before face 116

before path 115

before time 116

before vertex 114

boundary 71

cell 3, 47, 64, 80, 82, 112, 119

cell-tuple 26

characteristic manifold 64

closed edge 3, 51, 63, 81, 83

closed halfedge 63, 83, 116

closedness 63, 83

combinatorial map 24

consistent parameterization 69

continuous 41

curve 113

CW complex 28

cycle 3, 64, 81, 83, 109, 114, 117

dimension 63, 82

direction 119

disjoint union 65

edge 82, 112

end animated vertex 115

end vertex 113

ε-g-k-face 54

face 3, 81, 82, 112

face-cut classi�cation 60

generalized map 25

genus 63

geometric realization 42, 46, 64, 66

geometrical attribute 112

graph 39

halfedge 4, 63, 81, 116

halfedge data structure 19

homeomorphism (graphs) 40

homeomorphism (PCS compl.) 70

homeomorphism (topol. spaces) 41

immersion 46

inbetween cell 112

inbetween closed edge 109, 112, 114

143

inbetween face 109, 112, 115

inbetween open edge 108, 112, 115

inbetween vertex 107, 112, 114

incidence graph 71, 86

invariant 112, 119

isomorphism (graphs) 40

isomorphism (PCS complexes) 64, 70

isomorphism (polygonal meshes) 44

key cell 112

key closed edge 109, 112, 113

key face 109, 112, 114

key open edge 108, 112, 113

key vertex 107, 112, 113

next 119

node 117

non-equivalent cuts 72

non-planar face 53

non-simple cycle 64, 83

number of cycles 83

number of holes 63

open edge 3, 63, 80, 83

open halfedge 63, 83, 116

open set 40

ordered boundary 63, 83

orientability 63

overlapping 46, 47

partial keyframing 108

path 108, 116

PCS complex 64

planar map 14

point 40

position 113

presentation 46

previous 119

quad-edge data structure 19

quotient space 46

radial-edge data structure 21

raster graphics 8

selective geometric complex 29

sequential keyframing 106

simple cycle 64, 83

simplicial complex 27

spatial boundary 108

spatial dimension 112

star 4, 91

start animated vertex 115

start vertex 113

starting node 119

starting point 117

Steiner cycle 64, 81, 83

Steiner vertex 56

stroke graph 15

SVG representation 13

temporal boundary 108

temporal dimension 112

time 113, 114

timespan 119

topological attribute 112

topological keyframing 107

topological modeling 2, 8, 16

topological operator 44, 71, 92

topological space 40

topological structure 47

topology 38, 40

type 51, 52, 112

vector graphics 1, 8

vector graphics complex 72, 82

vertex 3, 82, 112

winding number 86

winding rule 85, 114, 116

winged-edge data structure 18

144

Appendix A

Concepts of Algebraic Topology

In this appendix, we review a few concepts of algebraic topology which are relevant to this disser-

tation. These concepts are by no means a prerequisite for understanding most of the dissertation

(in fact, the author himself only has a super�cial understanding of some of them), but they were

an important source of inspiration, and we believe they may provide useful insight to interested

readers. For readability, we only provide informal de�nitions of most of these concepts. Formal

de�nitions can be found in [Lee 2011, Hatcher 2001].

A.1 Topological Spaces and Homeomorphisms

In this dissertation, whenever we say topological space, we mean a Hausdor� topological space.

Intuitively, a (general) topological space is a set, for instance X = {x ∈ R | 0 < x < 5}, together

with a de�nition of open subsets that has to satisfy a few properties that capture the notion of

“openness”. These properties are given in Section 3.1.2, but informally, it is simply a generalization

of the intuitive concepts of open intervals and closed intervals. For instance, I = (1, 2) = {x ∈
R | 1 < x < 2} is an open subset of X , while J = [1, 2) = {x ∈ R | 1 ≤ x < 2} is not

an open subset of X . For any point x ∈ X , a neighborhood of x is de�ned as any open subset

Nx ⊂ X that contains x. Finally, a Hausdor� topological space is a topological space that satis�es

the additional property that any two points x1 and x2 are separable by open sets, that is, there

exists neighborhoods of x1 and x2 that do not intersect. In practice, most “reasonable” spaces are

indeed Hausdor� topological spaces. For instance, Rn is a Hausdor� topological space, and any

subset of Rn is a Hausdor� topological space as well.

Two topological spaces X and Y are said to be homeomorphic, denoted X ∼= Y , if and only

if there exists a homeomorphism between X and Y , that is, an invertible continuous function

φ : X → Y whose inverse φ−1
is also continuous. X ∼= Y captures the intuitive concept of “X and

Y are essentially the same topological space”, meaning that even though they are not necessarily

“equal”, they behave similarly and have a similar “shape”. For instance, the two closed intervals

I1 = [0, 1] and I2 = [1, 2] are not equal but they are homeomorphic. The two open intervals

J1 = (0, 1) and J2 = (1, 2) are not equal but they are homeomorphic. Also, the two circles

145

A.2. Manifolds with Boundary and Compact Manifolds

Locally

homeo-

morphic

to

Figure A.1: The sphere S2 = {x ∈ R3, ||x|| = 1}
is a 2-manifold without boundary, since it is every-
where locally homeomorphic to R2.

At p, locally

homeomorphic to
p

Figure A.2: The surface [−1, 1] × [−1, 1] is a 2-
manifold with boundary, since it is locally homeo-
morphic either to R2 or to R× [0,+∞).

S1 = {(x, y) ∈ R2 | x2 + y2 = 1} and S1 = {(x, y) ∈ R2 | x2 + y2 = 2} are not equal

but they are homeomorphic. However, none of I1, J1 or S1 are homeomorphic to each other,

which is the formal way of saying: “they do not look alike”. This informal statement is so intuitive

that we have di�erent names for these objects (closed intervals, open intervals, circles), while

there is no terminology to di�erentiate, say, I1 and I2. Identifying that a topological space X is

homeomorphic to a known topological space Y is of primary importance because it makes possible

to infer properties of X from the known properties of Y .

A.2 Manifolds with Boundary and Compact Manifolds

An n-manifold without boundary M is a topological space that is everywhere locally home-

omorphic to Rn. More formally, M is an n-manifold without boundary if and only if for each

p ∈ M, there exists a neighborhood Np homeomorphic to Rn. For instance, the sphere S2
is a

2-manifold without boundary because for each point p on the sphere, it “looks locally like” the

plane, as illustrated in Figure A.1. However, the square [−1, 1]× [−1, 1] ⊂ R2
is not a 2-manifold

without boundary because at p = (1, 0), it is locally homeomorphic to R× [0,+∞), as illustrated

in Figure A.2. Since we want this last example to be included in our de�nition of manifold, we use

a more general de�nition: an n-manifold with boundary is de�ned as a topological space that

is everywhere locally homeomorphic either to Rn or to Hn = Rn−1 × [0,+∞). In this disserta-

tion, whenever we say manifold, we mean manifold with boundary, unless without boundary is

explicitly stated. If M is an n-manifold, then the interior of M, denoted int(M), are the points of

M that have a neighborhood homeomorphic to Rn. Conversely, the boundary of M, denoted ∂M,

are the points of M that have a neighborhood homeomorphic to Hn
, i.e. ∂M = M\ int(M).

A compact manifoldM is a manifold that is compact as a topological space. A general de�nition

can be found in [Lee 2011, Chapter 4], but in the speci�c case where M is a subset of Rn, then

being compact is equivalent to being bounded and topologically closed in Rn (i.e., Rn \M is open).

For instance, the closed interval [0, 1] is a compact manifold, but the real line R is not a compact

manifold because it is not bounded, and the open interval (0, 1) is not a compact manifold because

it is not closed in R. If M is a compact n-manifold, then ∂M is a compact (n − 1)-manifold but

146

A.3. Points, Curves, and Surfaces

V = R0 =

E| = D1 =

E◦ = S1 =

kF�,0,k = S2#D2# k· · ·#D2 =

F�,g,k = T2#
g
· · ·#T2#D2# k· · ·#D2 =

F6�,g,k = P2#
g
· · ·#P2#D2# k· · ·#D2 =

k

g

g ∼=k

g

k k

g
∼=

Figure A.3: The classi�cation of points, curves and surfaces. Any connected compact n-manifold with n ≤ 2
is homeomorphic to one and only one of these known compact manifolds. The notations V, E|, E◦, F�,g,k , and
F6�,g,k are non-standard and introduced for conciseness and clarity. They are the characteristic manifolds for,
respectively: vertices, open edges, closed edges, orientable faces, and non-orientable faces.

int(M) is an n-manifold generally not compact. More speci�cally, int(M) is compact i� ∂M = ∅
(i.e., i� M is a compact n-manifold without boundary).

A.3 Points, Curves, and Surfaces

Compact manifolds are important because their properties capture the intuitive concepts of points,

curves, and surfaces. More speci�cally, a point is de�ned as a connected compact 0-manifold,

a curve is de�ned as a connected compact 1-manifold, and a surface is de�ned as a connected

compact 2-manifold. Being compact ensures that curves (resp. surfaces) have a �nite, well-de�ned

length (resp. area), and avoid having to deal with many pathological cases.

A.4 Classification of Compact n-Manifolds for n ≤ 2

Compact manifolds of dimension two and lower, that is, points, curves, and surfaces, have been

completely “classi�ed”. This means that we know a very concise list of compact manifolds, illus-

trated in Figure A.3, such as any point, curve, or surface is necessarily homeomorphic to one and

only one of the manifolds in the list. In other words, any surface “looks like” one and only one of

the surfaces in the list. In this section, we recall this classi�cation. Following common practice,

we only consider here connected compact manifolds, but it is trivial to generalize to all compact

manifolds since any compact n-manifold can be decomposed as a �nite disjoint union of connected

compact n-manifolds.

Dimension 0 A point is always homeomorphic to R0 = {0}, that is, a set containing a unique

element. In practice, we identify the set to the unique element itself.

147

A.4. Classi�cation of Compact n-Manifolds for n ≤ 2

b b

a

a

Figure A.4: A polygonal presentation of the torus
is the single wordW = aba−1b−1.

b b

a

a

Figure A.5: A polygonal presentation of the Klein
bottle is the single wordW = abab−1.

a b

a

b

Figure A.6: A polygonal presentation of the sphere
is the single wordW = abb−1a−1.

b b

a

a

Figure A.7: A polygonal presentation of the projec-
tive plane is the single wordW = abab.

Dimension 1 A curve is homeomorphic either to the unit circle S1
or to the closed interval

D1 = [0, 1]. A proof can be found in [Gale 1987] or in [Lee 2011, Ch. 5, p. 143-147].

Dimension 2 A surface without boundary is homeomorphic to either:

• The sphere S2
, called the surface of genus 0.

• The connected sum of g ≥ 1 tori (T2)g = T2# g. . .#T2
, called the orientable surface of

genus g.

• The connected sum of g ≥ 1 projective planes (P2)g = P2# g. . .#P2
, called the nonori-

entable surface of genus g.

We clarify here the terminology. The torus T2
is the topological space obtained by “gluing” to-

gether (or “sewing”) the opposite boundaries of a cylinder as depicted in Figure A.4. Note that

direction matters: if you choose to glue using the reverse direction of one of the boundaries, as

depicted in Figure A.5, you get the Klein bo�le K2
instead, which is not homeomorphic to the

torus but to P2#P2
. The projective plane P2

is the topological space obtained by “gluing” the

unique boundary of a disk to the unique boundary of a Möbius strip. Alternatively, as illustrated

in Figure A.7, it can be obtained by gluing together one half of the boundary of a disk to the other

half, using the appropriate direction. The connected sum of two surfaces consists in removing

one disk from each surface, and gluing together the two obtained boundaries.

The classi�cation of surfaces given above has been �rst proven in [Dehn and Heegaard 1907], and

is nicely covered and illustrated in [Lee 2011, Ch. 6]. We recall below the high-level steps of this

proof, which involves the concept of polygonal presentations, related to our concept of abstract

PCS complexes introduced in Section 3.3.1.

• A wordW is de�ned, given a set S, as a �nite sequence of k ≥ 1 symbols, each of the form

148

A.4. Classi�cation of Compact n-Manifolds for n ≤ 2

a or a−1
with a ∈ S. It represents a regular polygon with k edges, where some edges are

identi�ed in pairs with a chosen direction. For instance, the wordW = abab−1
represents a

square, where the �rst and third edges are identi�ed with the same direction, and the second

and fourth edges are identi�ed with opposite directions (cf. Figure A.5, left). A polygonal
presentation P is de�ned as a set of words.

• The geometric realization ofP , denoted |P|, is the topological space obtained by gluing to-

gether the paired edges of the polygons described by its words. For instance, the geometric

realization of P = {abab} is a torus (cf. Figure A.4). Other examples are given in Fig-

ure A.5, A.6, and A.7. Two polygonal presentations are said to be topologically equivalent
if and only if their geometric realizations are homeomorphic.

• A surface presentation is de�ned as a polygonal presentationP where each element a ∈ S
occurs exactly twice. In this case, we can prove than |P| is a compact 2-manifold without

boundary. Conversely, it can be shown that any compact 2-manifold without boundary

admits a surface presentation P .

• Finally, combinatorial operations on surface presentations prove that any surface presenta-

tion is topologically equivalent to either:

– the canonical surface presentation of the sphere:

P = {aa−1} (A.1)

– the canonical surface presentation of the connected sum of g ≥ 1 tori:

P = {a1b1a
−1
1 b−1

1 . . . agbga
−1
g b−1

g } (A.2)

– the canonical surface presentation of the connected sum of g ≥ 1 projective planes:

P = {a1a1 . . . agag} (A.3)

The classi�cation above was only for surfaces without boundary. However, it turns out that sur-

faces with boundary can always be obtained from surfaces without boundary by removing the

interior of k ≥ 0 disjoint closed disks. We illustrate this complete classi�cation in Figure A.3.

Finally, we recall an interesting theorem which is used in the proof of this classi�cation, and is

relevant to analyze our cut and uncut topological operators:

149

A.5. Non-Manifold Topological Spaces

∼= R2
∼= H2

∼= H ∼= R

∼= ?

Figure A.8: X = {(x, y) | x2 +
y2 ≤ 1} ∪ {(x, 0) | x ∈ [−2,−1]}
is a non-manifold space: there ex-
ists no n such thatX is everywhere
locally homeomorphic to either Rn
or Hn.

Figure A.9: A two-dimensional
simplicial complex. The union of
the simplices is in general a non-
manifold space. Though, some con-
nected components may be mani-
folds.

Figure A.10: Left: minimal
simplicial decomposition of S2 (14
simplices). Middle: minimal CW
decomposition (2 CW-cells). Right:
minimal PCS decomposition (1
PCS-cell).

Theorem 1. The connected sum of a projective plane and a torus is homeomorphic to the connected

sum of three projective planes, i.e.:

P2#T2 ∼= P2#P2#P2
(A.4)

A.5 Non-Manifold Topological Spaces

Compact manifolds are very convenient to study, but unfortunately not all compact topological

spaces are compact manifolds, as for instance the one illustrated in Figure A.8. To include this

example and many others (but not all compact topological spaces, which would be too general), a

wider class of topological spaces has been de�ned: those that can be obtained by “gluing together”

simple manifold pieces. For instance, the topological space in Figure A.8 can be obtained by gluing

a segment with a disk. Topological spaces de�ned within this general framework are commonly

referred to as complexes, such as simplicial complexes and CW complexes, which we recall in this

section. As noted in [Edelsbrunner and Harer 2010, Ch. III, p. 51], one of the most important

characteristic that makes each kind of complex di�erent from one another is how “simple” the

glued pieces are. The simpler the pieces, the more pieces you need to decompose a given space (cf.

Figure A.10). Therefore, choosing the right formalism to tackle a given topological problem is a

trade-o� between the complexity of each piece, and the number of pieces you need to decompose

a given space. For instance, the pieces of a simplicial complex are called simplices and are n-

dimensional triangles, while the pieces of a CW complex are called cells and are homeomorphic to

an n-dimensional open disk. Thus, a simplex is a special case of a cell, meaning that the pieces of

CW complexes are “more complex” than the pieces of simplicial complexes. As a consequence, the

sphere can be decomposed with only two cells, while it requires 14 simplices. In this dissertation,

we introduce the concept of PCS complex, whose pieces, also called cells for lack of a better name,

are only required to be homeomorphic to the interior of a compact manifold. Thus, a “CW-cell” is

a special case of a “PCS-cell”, meaning that the pieces of PCS complexes are “even more complex”

150

A.5. Non-Manifold Topological Spaces

than the pieces of CW complexes, and can for instance decompose the sphere as a single PCS-

cell.

A.5.1 Abstract Simplicial Complexes

An abstract simplicial complex [Edelsbrunner and Harer 2010, p. 53] is a �nite collection of sets

A such that:

(α ∈ A and β ⊆ α) ⇒ β ∈ A (A.5)

The elements α in A are called simplices, and each simplex is given as the set of its vertices. The

dimension of a simplex is dim α = card α−1, and the dimension of the complex is the maximum

dimension of any of its simplices. Intuitively, a two-dimensional abstract simplicial complex is a

triangle mesh made of vertices, edges and triangles (possibly non-manifold, with dangling edges

or isolated vertices), as illustrated in Figure A.9. The formal de�nition ensures that if a triangle

de�ned by the vertices {0, 1, 2} is part of the complex, then all the vertices {0},{1}, and {2},
and all the edges {0, 1},{0, 2}, and {1, 2} are also part of the complex, and they are called the

boundary simplices of the triangle.

A.5.2 CW Complexes

Let us �rst formally de�ne this concept, then right after provide the intuition behind the formal-

ism. First, we de�ne the n-disk, its interior the open n-disk, and its boundary the (n-1)-sphere
as:

Dn = {x ∈ Rn | ‖x‖ ≤ 1}, (A.6)

◦
Dn = int(Dn) = {x ∈ Rn | ‖x‖ < 1}, (A.7)

Sn−1 = ∂Dn = {x ∈ Rn | ‖x‖ = 1}. (A.8)

An n-cell c is de�ned as a topological space homeomorphic to int(Dn). A cell decomposition C
of a topological space X is a collection of disjoints cells ci such that X =

⋃
i ci. The n-skeleton

Xn
of X is the union of k-cells of C such that k ≤ n. Finally, K = (X, C) is called a CW complex

if it satis�es the following three axioms:

Axiom 1 (Characteristic maps). For each n-cell c ∈ C, there exists a continuous function Φc :
Dn → X such that the restriction of Φc to int(Dn) is a homeomorphism from int(Dn) to c, and such
that Φc(∂Dn) ⊆ Xn−1.

Axiom 2 (Closure finiteness). The closure c intersects only a �nite number of other cells.

Axiom 3 (Weak topology). A ⊆ X is closed i� A ∩ c is closed for each c ∈ C.

151

A.6. Geometric Realizations and Quotient Spaces

Despite the fact that the last two axioms are those responsible for the acronym “CW”, you can

safely ignore them in this report, since they are automatically true if the number of cells is �nite,

which should always be the case for computer graphics applications. Therefore, let us simply

clarify this obscure CW complex de�nition by focusing on the preliminary de�nitions and the

�rst axiom. Since an n-cell is a pointset homeomorphic to int(Dn), this means that a 0-cell (called

vertex) is a single point in space, a 1-cell (called edge) is a pointset homeomorphic to the open

interval (−1, 1), and a 2-cell (called face) is a pointset homeomorphic to the open 2-disk

◦
D2

. A

two-dimensional cell decomposition of a topological space X is therefore a partition of X into

vertices v ∼= {0}, edges e ∼= (−1, 1) and faces f ∼=
◦
D2

.

invalid CW

complex

valid CW

complex

Figure A.11: Two valid cell de-

compositions of a cross, but only one
is a valid CW complex.

However, this allows spaces like X = R to be decomposed as a

single cell e = R, since R ∼= (−1, 1). Also, this allows a cross to

be decomposed as four vertices and three edges (cf. Figure A.11,

top). Because we do not want these decompositions to be valid

CW complexes, Axiom 1 adds some restrictions. In the case of

edges, instead of “simply” requiring e ∼= (−1, 1), we require the

existence of a continuous function Φe : [−1, 1] → X such that

Φe((−1, 1)) = e. This way, even though edges are “open inter-

vals”, they are forced to “look like interior of closed intervals”,

thus the edge e = R is not allowed as part of a CW complex. Finally, Axiom 1 also requires that

Φe(−1) and Φe(1) be included in the 0-skeleton of C. In other words, it requires that the “edge

boundary” ∂e = e \ e is made of vertices that are part of the decomposition. This additional

requirement enforces the existence of a vertex at the intersection of the cross (cf. Figure A.11).

We note that Φe restricted to (−1, 1) must be a homeomorphism (in particular, must be invert-

ible), but it is not required that Φe be invertible on the whole domain of de�nition [−1, 1]. This

prevents self-intersections in the interior of the edge, but allows Φe(−1) to be equal to Φe(1). In

other words, it is allowed that the start vertex of the edge is equal to the end vertex. All these

considerations scale for faces: the closure of a face must be compact, the boundary of a face must

be included in a union of vertices and edges, and faces cannot self-intersect in their interior, but

their boundary can “use” the same vertex or edge several times. For instance, the boundary of a

face can be a single vertex (cf. Figure A.10, middle), or even a single point in the interior of an

edge (cf. Figure B.2), or can do “switch-backs” in the interior of an edge (cf. Figure B.3).

A.6 Geometric Realizations and Quotient Spaces

The reader may have noticed that the de�nition of CW complexes that we have given di�ers

greatly from the de�nitions of polygonal presentations and abstract simplicial complexes because

152

A.6. Geometric Realizations and Quotient Spaces

it relies on the existence of a topological space X , that we decompose into cells. On the contrary,

a polygonal presentation or an abstract simplicial complex is not a topological space per se, but a

combinatorial description of one. From such combinatorial description, one can build the corre-

sponding topological space, called its geometric realization, by “gluing” together known topological

spaces, which is formally done using the concept of quotient space that we recall in the following

paragraph.

X =
0 1 2 3 4 5

Y = P

(0, 1]

(2, 3]
(4, 5]

Figure A.12: Illustration of X =
[0, 1]∪[2, 3]∪[4, 5], and the quotient
space Y = X/ ∼ de�ned by 0 ∼
2 ∼ 4.

Let X be a set, and let ∼ be an equivalence relation on X . For

instance, let us take as a very simple example X = {1, 2, 3} and

∼ de�ned such that 1 ∼ 2, 1 6∼ 2, and 2 6∼ 3. The equiva-
lence classes of ∼ are de�ned as a partition of X into subsets

regrouping elements that are equivalent to each others. In our

example, there are two equivalence classes: E = {1, 2} (since

1 and 2 are equivalent) and F = {3} (since 3 is not equivalent

to any other elements). The quotient set of X by ∼, denoted

X/ ∼, is de�ned as the set of equivalence classes of ∼. Therefore, in our example, we have

X/ ∼= {E,F} = {{1, 2}, {3}}. In other words, quotienting a set by an equivalence relation can

be understood as transforming elements that were equivalent into a single element. The concept

of quotient space is very similar, except that it acts on topological spaces instead of sets. This

means that in addition to de�ne Y = X/ ∼ as the set of equivalence classes of∼, it also makes Y

a topological space by de�ning which subsets of Y are “open”. More speci�cally, the open subsets

of Y are de�ned as the sets of equivalent classes whose unions are open sets in X . This means

that two equivalent classes E and F are “close-by” in Y if and only if there exist xE ∈ E and

xF ∈ F that were originally “close-by” in X . For instance, consider X = [0, 1] ∪ [2, 3] ∪ [4, 5],
i.e. X ⊂ R is a disjoint union of three closed intervals (cf. Figure A.12, top). Then let us consider

the equivalence relation ∼, de�ned by 0 ∼ 2, 0 ∼ 4, 2 ∼ 4, and x1 6∼ x2 for all other pairs in X .

This means that the set P = {0, 2, 4} is one equivalence class, and every other element x ∈ X
is its own equivalence class {x}. By using the convenient notation (a, b] = {{x} | x ∈ (a, b]},
then we have Y = (0, 1] ∪ (2, 3] ∪ (4, 5] ∪ {P}. Because 0 was in the closure of (0, 1] in X , and

0 ∈ P , it can be shown that P is in the closure of (0, 1] in Y . Similarly, it can be shown that

P is in the closure of (2, 3] and (4, 5]. Therefore, the closures of (0, 1], (2, 3], and (4, 5] intersect

in Y (at P), while the closures of (0, 1], (2, 3], and (4, 5] did not intersect originally in X . This

is why it is said that using this operation, the three closed intervals [0, 1], [2, 3], and [4, 5] have

been glued, by identifying the three real numbers 0, 2 and 4 as a single element. Quotienting X

by ∼ has transformed a disjoint union of three closed intervals (a 1-manifold with boundary) into

a star-like shape with three branches (a non-manifold space), as illustrated in Figure A.12.

With this formalism, the geometric realization of an abstract simplicial complex, called a sim-

153

A.6. Geometric Realizations and Quotient Spaces

plicial complex (i.e., not abstract), can be easily de�ned as a disjoint union of points, segments,

triangles, and n-dimensional triangles that are glued together by identifying their common bound-

aries with a well-chosen equivalence relation. The reverse viewpoint can also be taken: given a

possibly non-manifold topological spaceX (in a sense, “already glued”), and a decomposition ofX

into subsets homeomorphic to points, interior of segments, interior of triangles, and interior of n-

dimensional satisfying a few properties on their boundaries, then it is called a simplicial complex,

and its corresponding abstract simplicial complex can be de�ned.

v1 e1 v2

e2

f

Figure A.13: The space Fig-
ure A.8 can be seen as a CW com-
plex obtained by gluing together two
points, two closed intervals and one
disk. The double-arrows represent
the equivalence relation for the glue
operation.

Similarly, CW complexes can be de�ned either as we did (i.e., “Let

X be a topological space. If there exists a cell-decomposition C
such that there exists functions Φc satisfying [...], then (X, C) is

called a CW complex”), or by building them, via the explicit de�-

nition of characteristic maps Φc gluing disjoint n-disks together.

For instance, the space in Figure A.8 is homeomorphic to a CW

complex that can be built explicitly as follows. We �rst de�ne

X as the disjoint union of two points v1 and v2 (0-cells), two

closed intervals e1 and e2 (1-cells, parameterized as [−1, 1]), and

one disk f (2-cell, whose boundary is parameterized [0, 2π)). We

then de�ne Φe1(−1) = v1, Φe1(1) = v2, Φe2(−1) = v2, Φe2(1) = v2, Φf (θ = 0) = v2, and

Φf (θ ∈ (0, 2π)) = θ
π − 1 ∈ e2. From these characteristic maps, an equivalence relation ∼ can

be de�ned, identifying each point in the boundary of each n-cell to a point of a k-cell, k < n, as

illustrated in Figure A.13. Quotienting X by this equivalence relation gives the �nal CW complex

Y = X/ ∼.

The geometric realization of a polygonal presentation, informally described in Section A.4, is also

formally de�ned via quotient spaces. Each word of size k de�nes a regular polygon with k edges,

and points in the boundary of each polygon are identi�ed to each other via the symbols in the

words. This de�nes an equivalence relation, which subsequently de�nes the geometric realization

as a quotient space.

To summarize, a polygonal presentation is a combinatorial structure from which can be de�ned a

topological space using quotient spaces. An abstract simplicial complex is a combinatorial struc-

ture from which can be de�ned a topological space using quotient spaces. Finally, a CW complex is

a topological space that can be de�ned using quotient spaces. However, CW complexes cannot be

described combinatorially because the quotient spaces are de�ned via continuous functions, not

using a combinatorial structure. This makes them very inconvenient to implement on a computer.

On the contrary, our concept of PCS complex that does have a combinatorial description (called

abstract PCS complex).

154

A.7. Immersions vs. Embeddings

0 1 2 3 4 5 6 7

-0.5

0

0.5

1

-1

Figure A.14: The continuous mapping Φ :
[0, 4π] → R2 de�ned as Φ(t) = (sin(t) +
0.5t, cos(t)) is an immersion. However, since the
curve is self-intersecting, the mapping is not injective
and hence Φ is not an embedding.

Figure A.15: Two immersions of the Klein bottle in
R3. Both immersions intersect themselves in a closed
curve whose preimage consists of two loops. Image
and caption inspired from [Edelsbrunner and Harer
2010].

A.7 Immersions vs. Embeddings

In this dissertation, the term map is used to denote a continuous function Φ : X 7→ Y between

two topological spaces X and Y . Alternatively, we also use the term immersion, and we say that

X is immersed in Y by Φ. In addition, if Φ is injective then it is called an embedding, and we say

that X is embedded in Y by Φ. Intuitively, an embedding is an immersion that does not produce

self-intersections, as illustrated in Figure A.14.

If the space Y is too low dimensional, there may not exist an embedding of X into Y . Classical

examples are non-orientable surfaces without boundary, such as the Klein bottle, that can be em-

bedded in R4
but not in R3

. Hence, if S is an abstract simplicial complex representing a Klein

bottle, and X = |S| is a geometric realization of S , then every mapping from X to Y = R3
will

produce self-intersections, as illustrated in Figure A.15.

Combinatorial structures have the advantage to enable de�ning an immersion of their geomet-

ric realization (and hence making possible to visualize it and manipulate it in 2D or 3D), without

actually constructing the geometric realization itself that would require additional dimensions.

This is actually very standard in 3D polygon modeling: a Klein bottle can be easily modeled with

any triangle mesh structure supporting non-orientable meshes. This will result in intersections of

some triangles, but these intersections are not tracked and the intersecting triangles just ignore

each others, which is the behavior that modeling artists expect. We use exactly the same concept

for our vector graphics complexes: instead of working with an embedding, like planar maps do,

we work with an abstract combinatorial structure that is immersed in R2
. There is no need to

explicitly construct the geometric realization of a vector graphics complex, which may require 3

or 4 dimensions, since the combinatorial structure is enough to characterize this geometric real-

ization.

155

Appendix B

Non-Combinatorial Definition of
PCS Complexes

In Chapter 3, we de�ned a combinatorial structure called abstract PCS complex, from which we

de�ned the concept of PCS complex as a geometric realization. In this Appendix, we propose

an alternative de�nition of PCS complexes, directly de�ned as a cell decomposition of an existing

topological space, similarly to how we de�ned CW complexes in Appendix A. This allows to better

compare PCS complexes and CW complexes, and also provides some insight on the concept of

abstract PCS complex.

This Appendix is organized as follows. First, in Section B.1, we de�ne a concept of cell complex for

arbitrary dimension, di�erent from the one used for CW complexes, and in Section B.2 we prove

a few properties of this complex. In Section B.3, we provide a comparison between our concept of

cell complex and the one used for CW complexes. Finally, in Section B.4, we de�ne a PCS complex

as a cell complex of dimension at most two, and we exhaustively characterize all possible types of

vertices, edges, and faces, and how they are allowed to be glued together. This characterization is

much less compact than the original de�nition, but looks more similar to the de�nition of abstract

PCS complexes and therefore provides a link between the two de�nitions. Finally, in Section C,

we show that the class of topological spaces decomposable as a PCS complex is equal to the class

of topological spaces decomposable as a two-dimensional simplicial complex.

B.1 Cell Complex

Throughout this Appendix, a topological space means a Hausdor� topological space, and an n-

manifold means a topological n-manifold with boundary.

Cell An n-cell c is de�ned as a topological space homeomorphic to the interior of a connected

compact n-manifold. The dimension of c is dim c = n. A cell is an n-cell for some n. For n = 0,

1, and 2, we call them vertices, edges and faces.

156

B.1. Cell Complex

Cell decomposition Let X be a topological space. A cell decomposition C of X is a �nite col-

lection of disjoints cells ci such that X =
⋃
i ci. The n-skeleton Xn

of X (resp. the n-skeletonset
Cn of C) is the union (resp. the set) of all the k-cells of C such that k ≤ n. The smallest n such that

Xn = X is called the dimension of (X, C).

Pointsets and set of pointsets We will often refer to objects that are either pointsets or sets

of pointsets, and it is important not to confuse them. For instance, X is a pointset, a cell c is a

subset of X and hence is also a pointset (a set of points p ∈ X). A union of cells is also a pointset.

However, a set of cells, such as C, is not a pointset but a set of pointsets. A subset C′ ⊂ C is

also a set of pointset. If ci are pointsets, and Cj are sets of pointsets, we introduce the notation

c′ =< c1, . . . , ck, C1, . . . , Cm > to conveniently de�ne c′ as the pointset obtained by the union of

the pointsets ci and of the pointsets in the sets Cj . For instance, < c1, c2 >= c1 ∪ c2, < C >= X ,

and < Cn >= Xn
.

Closure and boundary The closure of a cell c ∈ C, denoted c, is the closure of c in X . The

boundary of a cell c ∈ C, denoted ∂c, is de�ned as the set di�erence c \ c. An edge whose

boundary is empty is called a closed edge, otherwise it is called an open edge.

Cell complex Let X be a topological space and C be a cell decomposition of X . The pair K =
(X, C) is called a cell complex if and only if, for each n-cell c ∈ C, there exists a connected compact

n-manifoldMc and a map Φc : Mc → X satisfying the following cell complex constraints:

• The restriction of Φc to int(Mc) is a homeomorphism from int(Mc) to c.

• For each connected component Bc,i of ∂Mc, either:

1. there exists a cell decompositionDc,i ofBc,i such that for all dc,i,j ∈ Dc,i, the restriction

of Φc to dc,i,j is a homeomorphism from dc,i,j to a cell ec,i,j ∈ C, or

2. the image of Bc,i by Φc is a single vertex vc,i ∈ C, or

3. the boundary component Bc,i is homeomorphic to S1
, it is mapped by Φc to a single

closed edge ec,i ∈ C, and the restriction of Φc to Bc,i “wraps Nf,i times around ec,i”,

for some Nf,i ∈ N+
.

In other words, Φc must be a “homeomorphism by part” from cells decomposing Mc to cells of C

(case 1.), with the �rst exception that a connected component of ∂Mc is allowed to shrink to a single

vertex (case 2.), and the second exception that a connected component of ∂Mc homeomorphic to

S1
is allowed to be mapped to a closed edge by wrapping around it several times (case 3.). We

illustrate these cases in Figure B.1, and formalize below what we mean by “wrapsNf,i times around

ec,i”.

157

B.1. Cell Complex

X =

Bc,i

ec,i,j ∈ C

X = X =

Bc,i
vc,i ∈ C

Bc,i
ec,i ∈ C

1. Homeomorphic by part 2. Shrink to a vertex 3. Wrap around a closed edge

Figure B.1: The three possible “gluing conditions” that each connected component Bc,i of the boundary of
each cell c must satisfy. We illustrate them for dim c = 2, since it is the dimension for which they have been
designed. Top: How each connected component of the boundary of the characteristic manifold is glued to cells
of lower dimension. Bottom: The actual, glued topological space X . In terms of abstract PCS complex, these
three cases correspond to the three types of cycle. From left to right: non-simple cycle, Steiner cycle, and simple
cycle.

Wrapping circles around circles Let A and B be two spaces homeomorphic to the circle S1
.

We say that a map Φ : A → B wraps N > 0 times around B if and only if there exist two

homeomorphisms ΦA : A→ S1
and ΦB : B → S1

such that:

Φ = Φ−1
B ◦WN ◦ ΦA (B.1)

where, by using the usual parameterization θ ∈ [0, 2π) of S1
, WN : S1 → S1

is the continuous

map de�ned by:

WN (θ) = Nθ (B.2)

Characteristic objects The connected compact n-manifold Mc is called the characteristic
manifold of c, and the map Φc is called the characteristic map of c.

Cell neighborhood We de�ne the boundary cells of c as the set Bc of all ec,i,j , vc,i, and ec,i.

The star of a cell c ∈ C is de�ned as the set of cells

Sc = {c′ ∈ C | c ∈ Bc′}. (B.3)

Dimension The dimension of a cell complex is de�ned as the dimension of its cell decomposi-

tion. A cell complex of dimension n is also called an n-complex for conciseness.

158

B.2. Relation Between ∂c and Bc, Compactness, and Subcomplexes

B.2 Relation Between ∂c and Bc, Compactness, and
Subcomplexes

For the sake of completeness and comparison with CW complexes, we formally prove in this sec-

tion a few immediate properties that cell complexes (in a PCS sense) satisfy, for arbitrary dimen-

sion. The reader not familiar with CW complexes may safely skip this section. Let (X, C) be a cell

complex. Then we have:

Lemma 1. ∀c ∈ C, Bc ⊆ Cn−1, where n = dim c.

Proof. If n = 0, then Mc is a singleton and ∂Mc = ∅ so there are no Bc,i hence no vc,i, ec,i, or

ec,i,j and Bc = ∅. Let n ≥ 1. Since dim vc,i = 0, then dim vc,i ≤ n− 1 and vc,i ∈ Cn−1
. The case

where Bc contains a cell of type ec,i can only occur when n ≥ 2, so we also have ec,i ∈ Cn−1
. Since

dc,i,j is a cell of Bc,i and that Bc,i is a compact (n − 1)-manifold, we have dim dc,i,j ≤ n − 1. In

addition, dim ec,i,j = dim dc,i,j since Φc restricts to a homeomorphism from dc,i,j to ec,i,j , hence

dim ec,i,j ≤ n− 1 and ec,i,j ∈ Cn−1
.

Lemma 2. ∀c ∈ C, Φc(∂Mc) =< Bc >.

Proof. We have ∂Mc =
⋃
i Bc,i, hence Φc(∂Mc) =

⋃
i Φc(Bc,i). The image of Bc,i is either a single

vertex vc,i (case 2.), a closed edge ec,i (case 3.), or Bc,i =
⋃
j dc,i,j (case 1.) in which case Φc(Bc,i) =⋃

j Φc(dc,i,j) =
⋃
j ec,i,j . Hence, Φc(∂Mc) =< . . . , vc,i, . . . , ec,i,j , . . . , ec,i, · · · >=< Bc >.

Lemma 3. ∀c ∈ C, c = Φc(Mc).

Proof. If Φ : X → Y is a map and X ′ ⊆ X , then Φ(X ′) ⊆ Φ(X ′). Thus in our case:

Φc(Mc) = Φc(int(Mc)) ⊆ Φc(int(Mc)) = c.

In addition, Φc(Mc) is compact as a continuous image of a compact, thus Φc(Mc) is closed in

X since X is Hausdor�. Considering that c is de�ned as the intersection of all closed set in X

containing c, that Φc(Mc) contains c, and that Φc(Mc) is closed in X , it proves that c ⊆ Φc(Mc).

Hence, we proved that Φc(Mc) ⊆ c ⊆ Φc(Mc) thus c = Φc(Mc).

Lemma 4. ∀c ∈ C, c =< c, Bc >.

Proof. c = Φc(Mc) = Φc(int(Mc) ∪ ∂Mc) = Φc(int(Mc)) ∪ Φc(∂Mc) = c∪ < Bc >.

Proposition 1. ∀c ∈ C, ∂c =< Bc >.

Proof. ∂c = c\ c =< c, Bc > \c =< Bc > since Bc ⊆ Cn−1
and dim c = n thus c /∈ Bc.

159

B.3. Comparison with CW Complexes

Proposition 2. X is compact.

Proof. ∀c ∈ C, c ⊆ c and c ⊆ X thus X = (
⋃
c∈C c) ⊆ (

⋃
c∈C c) ⊆ X . Hence, all inclusions are

equalities, and X is compact as a �nite union of compacts.

Proposition 3. ∀c ∈ C, ∂c is compact and closed in X .

Proof. The boundary of a compact manifold is compact, hence ∂Mc is compact, and then Φc(∂Mc) =
< Bc >= ∂c is compact. Thus, it is closed in X since X is Hausdor�.

Proposition 4. ∀c ∈ C, (∂c,Bc) is a cell complex.

Proof. ∂c =< Bc > hence Bc is a cell decomposition of ∂c. Let c′ ∈ Bc, and n′ = dim c′. The

existence of a manifold Mc′ , a map Φc′ : Mc′ → X , decompositionsDc′,i of Mc′ and cells vc′,i ∈ C,

ec′,i ∈ C, and ec′,i,j ∈ C comes directly from the fact that (X, C) is a cell complex. We only need

to verify that Φc′ : Mc′ → ∂c (instead of X) and that vc′,i ∈ Bc, ec′,i ∈ Bc and ec′,i,j ∈ Bc (instead

of C).

We know that c′ ∈ Bc, thus c′ ⊆ ∂c, thus c′ ⊆ ∂c (because ∂c is closed inX), thus Φc′ : Mc′ → ∂c

(because Φc′(Mc′) = c′). In addition, the cells vc′,i, ec′,i and ec′,i,j are images of restrictions of Φc′

thus are subsets of Φc′(Mc′), thus are subset of ∂c, hence are elements of Bc.

Corollary 1. ∀c ∈ C, (c, {c} ∪ Bc) is a cell complex.

Proof. We are just adding c to the complex above, and we know that Φc : Mc → c, as well as the

cells vc′,i, ec′,i,j and ec′,i are in {c} ∪ Bc since they are by de�nition in Bc.

Proposition 5. ∀c ∈ C, if c′ ∈ Bc then Bc′ ⊆ Bc. In other words, the relation “c′ is in the boundary

of c” is transitive:

(c′′ ∈ Bc′ ∧ c′ ∈ Bc) ⇒ c′′ ∈ Bc

Proof. If c′ ∈ Bc then c′ ⊆ ∂c. Hence, c′ ⊆ ∂c since ∂c is closed, from which it follows that

∂c′ ⊆ ∂c since ∂c′ = c′\c′. Thus < Bc′ >⊆< Bc >, thus Bc′ ⊆ Bc.

B.3 Comparison with CW Complexes

Our de�nitions of cell, cell decomposition and cell complex di�er from the ones of CW complexes,

thus there are a few di�erences that are worth noting. In this section, we use the terms PCS-cell,

PCS-cell decomposition and PCS-cell complex to refer to our de�nition (for arbitrary dimension),

while we use the terms CW-cell, CW-cell decomposition and CW-cell complex for the classical

de�nition.

160

B.3. Comparison with CW Complexes

v1

v2

e

f

X = S2 ∪ {(1, t, 0) | t ∈ [−1, 1]}

valid CW complex

invalid PCS complex

v1

v2

e1

f

v3

e2

valid CW complex

valid PCS complex

v1 = {(1, 1, 0)}

v3 = {(1, 0, 0)}
e = {(1, t, 0) | t ∈ (−1, 1)}

f = S2 \ {(1, 0, 0)}

e1 = {(1, t, 0) | t ∈ (0, 1)}

v2 = {(1,−1, 0)}

e2 = {(1, t, 0) | t ∈ (−1, 0)}

Figure B.2: Left: Counter-example showing that
Proposition 1 is not true for CW complexes: ∂f is not
equal to any union of other cells, but only “included”
in such a union (e.g., ∂f = {(1, 0, 0)} ⊂ e). Right:
A valid PCS decomposition of X requires adding the
additional vertex v3 splitting e into e1 and e2.

Bf,1

Mf

valid CW complex

invalid PCS complex

valid CW complex

valid PCS complex

v1
v4

v2

v3

e3

e4

e1

e2

v1
v4

v2

v3

e3

e4

e1

e2

v5

v6

e5

e6

ff

Figure B.3: Top-left: The boundary of a CW face
is allowed to do “switch-backs” within an edge. Top-
right and bottom: A valid PCS decomposition of X
requires the additional vertices v5 and v6 so that
Φf (Bf,1) is homeomorphic by part from vertices and
edges decomposing Bf,1 to vertices and edges of C.

An n-CW-cell is a speci�c case of n-PCS-cell, since an n-CW-cell is homeomorphic to int(Dn),

and that Dn is a connected compact n-manifold. Likewise, a �nite CW-cell decomposition is a

speci�c case of a PCS-cell decomposition. Note that PCS-cell decompositions are enforced to be

�nite, while CW-cell decompositions can be in�nite.

However, a �nite CW-cell complex is not necessarily a PCS-cell complex. Indeed, even though the

de�nition of PCS-cells is more general than CW-cells, the “gluing conditions” that PCS-cells must

satisfy to de�ne a PCS-cell complex are stricter than those for CW-cell complexes. Indeed, we

replaced Φc(∂Mc) ⊆ Xn−1
by a stricter version imposing, for each connected component Bc,i of

∂Mc, that Φc(Bc,i) is either homeomorphic by part from PCS-cells decomposing Bc,i to PCS-cells

of C (case 1.), or maps Bc,i to a single vertex (case 2.), or, if Bc,i ∼= S1
, wraps it around a closed edge

(case 3.). In other words, CW-cells have very little restrictions on how their boundaries are glued to

cells of lower dimension, while the boundary of our PCS-cells must be glued to lower dimensional

cells in very speci�c ways. For instance, the boundary of a PCS-face cannot be mapped into a strict

subset of an edge (cf. Figure B.2), or do “switch-backs” in the interior of an edge (cf. Figure B.3).

This imposes a cleaner incidence structure as illustrated by Proposition 1, which is not true for

161

B.4. PCS Complex

Figure B.4: A valid 1-complex. It can be seen as an extension of multigraph to support closed edges.

CW-cell complexes (indeed, there may not exist Bc ⊆ Cn−1
such that ∂c =< Bc >, a counter-

example being Figure B.2). This regularity is what makes possible to describe combinatorially a

PCS-cell complex. Note that this regularity is still less strict than the notion of regular CW complex

[Hatcher 2001, p. 534], which is too strict to provide uniqueness of a minimal complex.

B.4 PCS Complex

A PCS complex is de�ned as a cell complex of dimension at most two. Hence, its cells are either

vertices, edges, or faces. In this section, we analyze in depth what the general de�nition of cell

complex means for each type of cells in a PCS complex, which allows us to provide a detailed char-

acterization of them. This characterization can be seen as an alternate, less compact de�nition of

PCS complex, which provides the link between PCS complexes and abstract PCS complexes.

Vertices Vertices are 0-cells, i.e. pointsets homeomorphic to the interior of a connected compact

0-manifold. Up to homeomorphism, there exists only one connected compact 0-manifold:

• V: the singleton R0 = {0} whose interior is R0
and boundary is ∅.

Hence, a pointset v is a vertex if and only if it is a singleton, in which case its characteristic manifold

is Mv = V.

Since ∂V = ∅, a vertex automatically satis�es the cell complex constraints. Therefore, cell com-

plexes of dimension 0 are �nite sets X . They admit a unique cell decomposition C = {{x}, x ∈
X}.

Edges Edges are 1-cells, i.e. pointsets homeomorphic to the interior of a connected compact

1-manifold. Up to homeomorphism, there exist only two connected compact 1-manifolds:

• E|: the segment D1 = [0, 1] whose interior is (0, 1) and boundary is {0, 1}.

• E◦: the circle S1
whose interior is S1

and boundary is ∅.

162

B.4. PCS Complex

cells must be manifold pointsets cells must be disjoint
cells must be

connected pointsets

open edges must

have end vertices

v
a
l
i
d

i
n

v
a
l
i
d

e

e1
e2

e3
v1

e′
e′′

e4

e5 e6

v2
e7

e8

v3

e

e′

e1
e2

e3

e4

e e′

e1

e2 e3

e4

v

e e′
e′′

e1

v1

v2

e2

e3

e′′

v3

Figure B.5: Invalid 1-complexes (top), and how to make them valid (bottom).

Hence, a pointset e is an edge if and only if it is homeomorphic to (0, 1) or S1
. In the �rst case, it

is called an open edge and its characteristic manifold is Me = E|. In the second case, it is called a

closed edge and its characteristic manifold is Me = E◦.

Since ∂E◦ = ∅, a closed edge e automatically satis�es the cell complex constraints. Let e be an

open edge. Its characteristic manifold E| = [0, 1] has a non-empty boundary ∂E| = {0, 1} made

of two connected components Be,start = {0} and Be,end = {1}. For each Be,i, the two cases 1. and

2. of the cell complex constraints are equivalent to:

∃ve,i ∈ C, Φe(Be,i) = ve,i. (B.4)

The case 3. does not apply since Be,i is not homeomorphic to S1
. Therefore, a decomposition of

X into a �nite disjoint union of vertices and edges is a cell complex of dimension 1 if and only if:

for all open edge e ∈ C,

there exist

Φe : [0, 1]→ X continuous
ve,start ∈ C
ve,end ∈ C

such that

Φe : (0, 1)→ e homeomorphism
Φe(0) = ve,start

Φe(1) = ve,end

(B.5)

This is illustrated in Figure B.4. Invalid cell complexes of dimension 1 are illustrated in Fig-

ure B.5.

163

B.4. PCS Complex

vf,i,1

Nf,i = 0 Nf,i ≥ 1
Nf,i vertices vf,i,j

1 closed edge ef,i,1 Nf,i open edges ef,i,j

ef,i,1 ef,i,Nf,i

vf,i,1

vf,i,Nf,i

vf,i,2
vf,i,3

vf,i,4
ef,i,1

ef,i,2

ef,i,3

Figure B.6: The only possible cell decompositions Df,i of a boundary component Bf,i of Fε,g,k .

Faces Faces are 2-cells, i.e. pointsets homeomorphic to the interior of a connected compact 2-

manifold. Up to homeomorphism, there exist only three “kinds” of connected compact 2-manifolds

(cf. Section A.4):

• F�,0,k: the sphere with k holes.

• F�,g,k: the connected sum of g ≥ 1 tori with k holes.

• F6�,g,k: the connected sum of g ≥ 1 projective planes with k holes.

Hence, a pointset f is a face if and only if it is homeomorphic to the interior of one of the above

manifolds. More formally, f is a face if and only if there exist ε ∈ {�, 6�}, g ∈ N and k ∈ N such

that f ∼= int(Fε,g,k), in which case it is called an (ε, g, k)-face and its characteristic manifold is

Mf = Fε,g,k. All these characteristic manifolds are illustrated in Figure A.3 (right).

Now, let us characterize how the boundary components Bf,i of a face f are allowed to be glued

to vertices and edges. First, since Mf is a compact 2-manifold, we know that Bf,i is a compact

1-manifold without boundary, i.e. Bf,i ∼= S1
. This means that the three cases of the gluing con-

straints (cf. Figure B.1) have to be considered, and are not equivalent. The cases 2. and 3. do not

need further analysis. However, let us explicit what the case 1. means for faces, i.e. let us expand

the de�nition in the speci�c case where Bf,i ∼= S1
. Let us start by the following lemma, illustrated

in Figure B.6:

Lemma 5. Let Df,i be a cell decomposition of Bf,i, and let Nf,i be the number of vertices in Df,i.

• If Nf,i = 0, then Df,i = {Bf,i}, i.e. the decomposition is a single closed edge.

• If Nf,i ≥ 1, then Df,i is decomposed into Nf,i vertices and Nf,i open edges.

Proof. By de�nition, Df,i is a �nite collection of disjoint cells df,i,j such that Bf,i =
⋃
j df,i,j .

Since Bf,i ∼= S1
, it can only involve vertices and/or edges. Let N

(v)
f,i be the number of vertices and

N
(e)
f,i the number of edges.

164

B.4. PCS Complex

Bounded double cone Rectangle glued to sphere

v

e1 e2

f1 f2

v

e1 e2
Mf1 = F�,0,2 Mf2 = F�,0,2

f1

f2
v1

v2 v3

v4

e1
e2

e3e4

Mf2 = F�,0,1Mf1 = F�,0,1

Figure B.7: Two examples of valid PCS complexes. Top: The topological space X and its PCS decomposition.
Bottom: Characteristic manifolds of the faces, and how their boundary components are glued to the 1-skeleton.

• Let assume N
(v)
f,i = 0. Hence, Bf,i is a �nite disjoint union of edges. Since Bf,i is compact,

but open edges are not compacts (thus a �nite union of open edges is not compact either),

there exists at least an edge e in Df,i that is a closed edge. However, the only closed 1-

manifold included in S1
is S1

itself, thus N
(e)
f,i = 1 and Df,i = {e}.

• Let assume N
(v)
f,i ≥ 1, and let vf,i,j be the N

(v)
f,i vertices of Df,i. By �xing θ ∈ [0, 2π) a

parameterization of Bf,i, each vertex vf,i,j corresponds to a unique θf,i,j , and we assume

θf,i,1 < θf,i,2 < · · · < θ
f,i,N

(v)
f,i

, without loss of generality. Let ef,i,j be the pointset

(θf,i,j , θf,i,j+1) ⊂ Bf,i. Since ef,i,j contains no vertices of Df,i, then ef,i,j is included in

a disjoint union of edges in Df,i. None of them can be a closed edge, because it would

contradict N
(v)
f,i ≥ 1 (see bullet above: if Df,i contains a closed edge e then Df,i = {e},

thus N
(v)
f,i = 0). Hence, ef,i,j is included in a disjoint union of m open edges in Df,i. Be-

sides, it can be shown that a disjoint union of m ≥ 2 open edges in S1
is a disconnected

set, the connected components being the m open edges. Therefore, since ef,i,j is a con-

nected set, ef,i,j is actually included in a single open edge e ∈ Df,i. In addition, we know

that e contains neither θf,i,j nor θf,i,j+1 (since the cells of Df,i are disjoint). In conclusion,

ef,i,j = (θf,i,j , θf,i,j+1) is included in e, e is connected, and e contains neither θf,i,j nor

θf,i,j+1, therefore e = ef,i,j = (θf,i,j , θf,i,j+1). This proves that the ef,i,j are actually open

edges of Df,i. In addition, since the union of the vf,i,j and ef,i,j is equal to Bf,i, it proves

that there are no other cells inDf,i. In conclusion, N
(e)
f,i = N

(v)
f,i , andDf,i is a disjoint union

of N
(v)
f,i vertices and N

(v)
f,i open edges.

165

B.4. PCS Complex

Figure B.8: More examples of valid PCS complexes. Is has to be imagined embedded in R4, i.e. with no
“self-intersection” of the Klein bottle or the sphere with three holes glued together.

Using the above lemma, the cell complex constraints for a face f ∈ C can be rewritten to:

• Case 1a (Nf,i = 0): Bf,i is mapped homeomorphically by Φf to a single closed edge ef,i ∈ C,

or

• Case 1b (Nf,i ≥ 1): Bf,i is decomposed into Nf,i ≥ 1 vertices, each mapped by Φf to a

vertex vf,i,j ∈ C, and Nf,i open edges, each mapped homeomorphically by Φf to an open

edge ef,i,j ∈ C, or

• Case 2: Bf,i is mapped by Φf to a single vertex vf,i ∈ C, or

• Case 3: Bf,i is mapped by Φf by being wrapped Nf,i times around a closed edge ef,i ∈ C.

Finally, we can observe that Case 1a. is already taken into account by Case 3. (wrapping one

time around a closed edge), and therefore can be ignored. These three cases are illustrated in

Figure B.1.

By combining all the information that we have shown, we are �nally able to provide a characteri-

zation of PCS complexes: a decomposition of X into a �nite disjoint union of vertices, edges and

faces is a PCS complex if and only if (see next page):

166

B.4. PCS Complex

For all open edge e ∈ C,

there exist

Φe : [0, 1]→ X continuous
ve,start ∈ C
ve,end ∈ C

such that

Φe : (0, 1)→ e homeomorphism
Φe(0) = ve,start

Φe(1) = ve,end

And for all (ε, g, k)-face f ∈ C,

there exist

Φf : Fε,g,k → X continuous
a partition of [1..k] into If,1, If,2 and If,3

∀i ∈ If,1,

Nf,i ∈ N, Nf,i ≥ 1
∀j ∈ [1..Nf,i], vf,i,j vertex of C
∀j ∈ [1..Nf,i], ef,i,j open edge of C

∀i ∈ If,2,
{
vf,i vertex of C

∀i ∈ If,3,
{
Nf,i ∈ N, Nf,i ≥ 1
ef,i closed edge of C

such that

Φf : int(Fε,g,k)→ f homeomorphism
∀i ∈ If,1, ∀j ∈ [1..Nf,i],{

Φf (vf,i,j) = vf,i,j

Φf : ef,i,j → ef,i,j homeomorphism
∀i ∈ If,2, Φf (Bf,i) = vi,f

∀i ∈ If,3, Φf : Bf,i → ef,i wraps Nf,i times around ef,i

where

Bf,i is the i-th boundary component of Fε,g,k
and {. . . ,vf,i,j , . . . , ef,i,j , . . . } is a

decomposition of Bf,i into Nf,i vertices and

Nf,i open edges, ordered clockwise or counter-clockwise.

(B.6)

This is, for the case of the dimension 2, an equivalent formulation of the cell complex constraints

described in Section B.1. It is much less compact and does not scale in dimension, but exhaustively

describes the di�erent types of cells involved and how they can be glued together. Examples of

valid PCS complex are given in Figure B.7 and B.8. By comparing this characterization and the

de�nition of abstract PCS complexes (see Section 3.3.1), one can notice that they are in correspon-

dence, and deduce the equivalence between the two de�nitions.

167

Appendix C

Equivalence between PCS-Decomposable and
2-Triangulable Spaces

(a) (b) (c) (d) (e)

Mf

Bf,i

M′f
B′f,i

Case 1. Case 2. Case 1. Case 2.

Figure C.1: Steps in the construction of the mixed triangulation-quadrangulation of Mf , from the proof of
Proposition 7.

In this section, we show that the class of topological spaces that can be decomposed as a PCS

complex is the same as the class of topological spaces that admits a 2-triangulation. This shows

that PCS complexes are able to represent any “reasonable” two-dimensional object.

Proposition 6. A topological space that admits a 2-triangulation can be decomposed as a PCS com-

plex.

Proof. This proposition comes directly from the observation that a 2-triangulation of a space X is

in fact also a valid PCS decomposition. Indeed, a 0-simplex is a PCS vertex, a 1-simplex is a PCS

open edge, and a 2-simplex is a PCS face whose characteristic manifold is F�,0,1 (the sphere with

one hole), with its unique boundary component Bf,1 decomposed into three vertices and three

open edges, each mapped homeomorphically to vertices and open edges.

Proposition 7. A topological space that can be decomposed as a PCS complex admits a 2-triangulation.

Proof. To prove this statement, we provide an explicit construction of the triangulation. Let K =
(X, C) be a PCS complex. Without loss of generality, we assume that C does not contain any

closed edge. Indeed, any valid PCS decomposition (X, C) can be preliminary turned into a valid

PCS decomposition (X, C′) that does not contain closed edges, by partitioning every closed edge

of C into an open edge and a vertex. Now, let us start the construction of the triangulation:

168

Appendix C. Equivalence between PCS-Decomposable and 2-Triangulable Spaces

• The vertices in C are 0-simplices of the triangulation.

• The open edges in C are all split into three 1-simplices and two 0-simplices.

These two �rst steps have constructed a valid 1-triangulation of the 1-skeleton ofX . Splitting each

edge in three is necessary to ensure that each 1-simplex has a di�erent start and end 0-simplex, and

that any given pair of 0-simplices is connected by at most one 1-simplex. Now, let us triangulate

the faces:

• Let f be a face in C.

• Let Mf be the characteristic manifold of f , Φf be the characteristic map, and Bf,i ∼= S1
be

the boundary components of Mf .

• Let M′f be a compact submanifold of Mf obtained by “o�setting by a small amount” the

holes of Mf (cf. Figure C.1(b)). We call B′f,i the boundary components of M′f .

• For each boundary component Bf,i mapped by Φf to vertices and open edges (Case 1., i.e.

when i ∈ If,1 from the characterization Eq. B.6), we 1-triangulate Bf,i by using the pre-

image by Φf of the previously constructed 1-triangulation of ∂f (cf. Figure C.1(c), left hole).

This 1-triangulation has 3Nf,i 0-simplices, and the same number of 1-simplices.

• For each boundary component Bf,i mapped by Φf to a single vertex (Case 2.), we arbitrarily

1-triangulateBf,i using three 0-simplices, and three 1-simplices (cf. Figure C.1(c), right hole).

We note that Case 3. can be ignored since C does not contain any closed edge.

• For each boundary component Bf,i in Case 1., we arbitrarily 1-triangulate B′f,i using 3Nf,i

0-simplices and 3Nf,i 1-simplices. Then, we 2-triangulate the topological cylinder between

Bf,i and B′f,i using the pattern illustrated in Figure C.1(d), left hole.

• For each boundary component Bf,i in Case 2., we arbitrarily 1-triangulate B′f,i using three

0-simplices and three 1-simplices. Then, we quadrangulate the topological cylinder between

Bf,i and B′f,i using the pattern illustrated in Figure C.1(d), right hole.

• Finally, we 2-triangulate M′f by preserving the existing 1-triangulation of its boundary, that

we know is possible since M′f is a compact 2-manifold (cf. Figure C.1(e)).

• At this stage of the construction, we have obtained a mixed triangulation-quadrangulation

T of Mf . To conclude the construction, we de�ne the triangulation of f to be the image of

T by Φf .

The reader can verify that the quads of Mf become triangles of f since in Case 2., Bf,i shrinks

to a single vertex. Also, due the homeomorphism properties of Φf , the triangles stay triangles,

no 1-simplex of f has its start 0-simplex equal to its end 0-simplex, and no pair of 0-simplices

169

Appendix C. Equivalence between PCS-Decomposable and 2-Triangulable Spaces

are connected by 2 or more 1-simplices (this is guaranteed by the speci�c triangle pattern chosen

around Bf,i for Case 1.). Therefore, by performing this process for all faces, we obtain a valid

2-triangulation of X .

170

Appendix D

Topological Operators on PCS Complexes

In this appendix, we detail topological operators acting on PCS complexes. More precisely, we pro-

vide algorithms on abstract PCS complexes that correspond to well-de�ned geometric operations

on (non-abstract) PCS complexes. For example, the cut operator is geometrically de�ned as parti-

tioning an existing cell into several cells, and we use this de�nition to classify all the di�erent types

of cuts that are possible (for example, cutting a Möbius strip along an edge may either disconnect

it or not, depending on the geometry of the edge). The concept of PCS complex was necessary to

infer the combinatorial algorithms from the geometric de�nitions of operators, but the algorithms

themselves can be used on both abstract PCS complexes and vector graphics complexes.

D.1 Notations

Vertices We use the notation v to refer to a vertex, and the notation V to refer to the set of all

vertices.

Open edges We use the notation e| to refer to an open edge, or simply e when it is clear from

the context that the edge is open. We denote by E| the set of all open edges. Sometimes we use

the abuse of notation e = (vstart, vend) to de�ne or refer to an edge e whose ordered boundary is

∂̂e = (vstart, vend).

Closed edges We use the notation e◦ to refer to a closed edge, or simply e when it is clear from

the context that the edge is closed. We denote by E◦ the set of all closed edges.

Edges We use the notation e to refer to an edge that can be either open or closed, and we denote

by E = E| ∪ E◦ the set of all edges.

Halfedges We use the notation h = (e, β), with β ∈ {>,⊥}, to refer to or de�ne a halfedge

that can be either open or closed. We use the notation h◦ to refer speci�cally to a closed halfedge,

and the notation h| to refer speci�cally to an open halfedge. Similarly, we denote by H| the set

of all open halfedges, by H◦ the set of all closed halfedges, and by H = H| ∪ H◦ the set of all

171

D.1. Notations

halfedges. Finally, we use the notation e(h) and β(h) to refer to the �rst and second components

of the pair de�ning the halfedge.

Steiner cycles We use the notation γ• to refer to a Steiner cycle, or simply γ when it is clear

from the context that we refer to a Steiner cycle. We use the notation Γ• to refer to the set of all

possible Steiner cycles. We use the notation v(γ•) to refer to the vertex that de�nes a Steiner cycle,

and the following notation to refer to or de�ne a Steiner cycle together with its vertex v:

γ• = [v] (D.1)

Simple cycles We use the notation γ◦ to refer to a simple cycle, or simply γ when it is clear

from the context that we refer to a simple cycle. We use the notation Γ◦ to refer to the set of all

possible simple cycles. We use the notations h◦(γ◦) and N(γ◦) to refer to the closed halfedge and

integer that de�ne a simple cycle. We also use the convenient notations e◦(γ◦) = e(h◦(γ◦)) and

β(γ◦) = β(h◦(γ◦)). Finally, we use the following notation to refer to or de�ne a simple cycle

together with its de�ning components:

γ◦ = [h◦N] = [(e◦, β)N] (D.2)

Non-simple cycles We use the notation γ+
to refer to a non-simple cycle, or simply γ when

it is clear from the context that we refer to a non-simple cycle. We use the notation Γ+ to refer

to the set of all possible non-simple cycles. We use the following notation to refer to or de�ne a

non-simple cycle together with its de�ning open halfedges:

γ+ = [h1, . . . , hN] = [(e1, β1), . . . , (eN , βN)] (D.3)

We conveniently refer to these objects byN(γ), hj(γ), ej(γ) and βj(γ), where j ∈ N is considered

modulo N (e.g., h0(γ) is well-de�ned and refers to hN). We use the notation vi(γ) = vend(hi(γ)).

In particular, we have v0(γ) = vN (γ), and to conveniently visualize all the cells involved in a

non-simple cycle, we use the notation:

γ+ = [•
v0

(e1, β1) •
v1
· · · •

vN−1
(eN , βN) •

vN
] (D.4)

Cycles We use the notation γ to refer to a cycle that can be Steiner, simple or non-simple.

172

D.2. Algebraic Operations on Halfedges, Paths and Cycles

Faces We use the notation f to refer to a face. To conveniently refer to or de�ne a face f together

with its ordered boundary ∂̂f , we use the following abuse of notation:

f = (ε, g, [γ1, . . . , γk]) (D.5)

or simply

f = [γ1, . . . , γk] (D.6)

when ε and g are irrelevant or clear from context. We conveniently refer to these objects by ε(f),

g(f), k(f), and γi(f). It is possible that f = [], in which case f is a face without boundary (we

do not use a special notation for faces without boundary).

D.2 Algebraic Operations on Halfedges, Paths and Cycles

In order to describe more conveniently the topological operators on abstract PCS complexes, we

�rst introduce the notion of paths, and a few basic algebraic operations on halfedges, paths and

cycles, which are: �ipping a halfedge, a path, or a cycle; converting an open halfedge to a path

and a path to a cycle; concatenating paths to create a longer path; rotating a non-simple cycle; and

extracting a subpath from a path or a non-simple cycle.

D.2.1 Paths

Given an abstract PCS complex P , a path is de�ned as a triplet π = (vstart, (hj)j∈[0..N], vend) ∈
Π = V ×H∗| × V satisfying the following constraints:

• if N = 0 (i.e., the sequence (hj) is empty), then vstart = vend

• if N > 0 (i.e., the sequence (hj) is not empty), then

– vstart = vstart(h1)

– ∀j ∈ [1..N − 1], vend(hj) = vstart(h(j+1))

– vend(hN) = vend

Intuitively, a path starts at a given vertex vstart, then travels along N ≥ 0 edges ei with a given

direction βi, and �nally ends its course at a vertex vend. IfN = 0, we conveniently use the notation

π = [v] instead of π = (v, [], v). If N > 0, we conveniently use the notation π = [h1, . . . , hN]
instead of π = (vstart, [h1, . . . , hN], vend), since the start and end vertices can be inferred from

the halfedges. The integer N ∈ N is called the length of the path. While the notion of path

shares similarities with the notion of cycle (e.g., can be reduced to a single vertex), we note that

173

D.2. Algebraic Operations on Halfedges, Paths and Cycles

the concept of “simple path” does not exist: a path necessarily starts and ends at given vertices

(possibly equal), therefore it cannot contain closed edges. To better emphasize the di�erences

between paths and cycles, we use the following terminology: if N = 0, we refer to the path as a

trivial path (rather than a “Steiner path”); and if N > 0, we refer to the path as a non-trivial
path (rather than a “non-simple path”).

D.2.2 Flipping Halfedges, Paths and Cycles

Given a halfedge h = (e, β), we de�ne its flipped halfedge as:

h = (e, β), where β =

⊥ if β = >

> if β = ⊥
(D.7)

Given a path π = (vstart, [h1, . . . , hN], vend), we de�ne its flipped path as:

π = (vend, [hN , . . . , h1], vstart) (D.8)

Given a cycle γ, we de�ne its flipped cycle as:

γ =

[v] if γ = [v] is a Steiner cycle

[h◦N] if γ = [h◦N] is a simple cycle

[hN , . . . , h1] if γ = [h1, . . . , hN] is a non-simple cycle

(D.9)

D.2.3 Converting Open Halfedges to Paths and Paths to Cycles

An open halfedge h can always be interpreted as a path π of lengthN(π) = 1, using the following

conversion:

H| → Π
h 7→ [h] = (vstart(h), [h], vend(h))

(D.10)

For conciseness, we will often omit the brackets and simply write h instead of [h] when it is clear

from the context that we interpret h as a path.

Similarly, a path satisfying vstart = vend can always be interpreted as a cycle (more speci�cally, a

174

D.2. Algebraic Operations on Halfedges, Paths and Cycles

Steiner cycle if N = 0 and a non-simple cycle if N > 0), using the following conversion:

{π ∈ Π | vstart = vend} → Γ

π 7→ [π) =

[vstart] if N = 0

[h1, . . . , hN] if N > 0

(D.11)

For conciseness, we will often omit the brackets and parentheses and simply write π instead of [π)
when it is clear from the context that we interpret π as a cycle.

D.2.4 Concatenating Paths

Given two paths π = (vstart, [h1, . . . , hN], vend) and π′ = (v′start, [h′1, . . . , h′N ′], v′end) satisfying

vend = v′start, we de�ne the concatenation of π with π′ by:

[π, π′] = (vstart, [h1, . . . , hN , h
′
1, . . . , h

′
N ′], v′end) (D.12)

Since this operation is associative (i.e., [[π, π′], π′′] = [π, [π′, π′′]]), we conveniently omit the extra

brackets and simply write [π1, . . . , πm] when concatenating more than two paths together. Also,

since open halfedges can be interpreted as paths of length one, we extend the notation to con-

catenate paths and halfedges, leading to expressions such as [π1, (e,>), π2, (e,⊥)]. If vstart(π1) =
vstart(e), this expression can subsequently be implicitly interpreted as a cycle, so we would simply

write γ = [π1, (e,>), π2, (e,⊥)] instead of γ = [[[π1, [(e,>)]], π2], [(e,⊥)]]].

In pseudocode, we will often use the wording “Append h to π”, which means “π ← [π, h]”. Finally,

we note that as per the de�nitions, concatenating with a trivial path is a null operation. For

instance, if π2 is trivial, then [π1, π2, π3] = [π1, π3]. In other words, all trivial paths are neutral

elements for the concatenation operation.

D.2.5 Rotating Non-Simple Cycles

Intuitively, we want a cycle to represent a “loop” made of consecutive halfedges, but we would

like the starting point of this loop to be irrelevant. However, in our de�nition, we de�ned a non-

simple cycle as a sequence of halfedges [h1, . . . , hN] which means that a �rst halfedge h1 must

be arbitrarily chosen among h1, . . . , hN . A negative consequence is that if h1 6= h2, then the two

cycles γ1 = [h1, h2] and γ2 = [h2, h1] are mathematically di�erent even though they intuitively

represent the same cycle. To capture this intuitive notion, we de�ne the following equivalence

175

D.2. Algebraic Operations on Halfedges, Paths and Cycles

relation between non-simple cycles:

γ+
1 ∼ γ

+
2 ⇔ ∃d ∈ N, ∀j ∈ [1..N], hj(γ+

1) = hj−d(γ+
2) (D.13)

In other words, two non-simple cycles γ+
1 and γ+

2 are equivalent if and only if γ+
2 can be obtained

from γ+
1 by choosing a di�erent “starting point”, formally done via an operation called a rotation,

de�ned by:

Rotd : Γ+ → Γ+

γ+ = [h1, . . . , hN] 7→ Rotd(γ+) = [h(1+d) mod N , . . . , h(N+d) mod N]
(D.14)

Using this operation, the equivalence relation can be rewritten as:

γ+
1 ∼ γ

+
2 ⇔ ∃d ∈ N, γ+

2 = Rotd(γ+
1) (D.15)

We extend the equivalence relation to all types of cycles by de�ning:

• Two Steiner cycles γ•1 and γ•2 are equivalent i� v(γ•1) = v(γ•2).

• Two simple cycles γ◦1 and γ◦2 are equivalent i� e◦(γ◦1) = e◦(γ◦2), β(γ◦1) = β(γ◦2), and

N(γ◦1) = N(γ◦2)

• Two cycles γ1 and γ2 of di�erent nature (i.e., non-simple, Steiner or simple) are not equiva-

lent.

We note that while a more carefully crafted de�nition of cycles would avoid the need for such an

equivalence relation, we would lose a lot of clarity and the convenience of referring to a halfedge

via its index. In addition, this simpler de�nition is closer to our actual implementation and hence

has a practical value. Finally, we also note that using a circular linked list instead of an indexed

sequence does not avoid the theoretical and practical need for an equivalence relation, since the

circular linked list must still arbitrarily point to one element of the list, and hence testing for

“logical equality” between two circular linked lists also requires to take into account rotations, in

this case simply achieved by pointing to a di�erent element in the list.

176

D.3. Cell Creation

D.2.6 Extracting Subpaths from Paths and Non-Simple Cycles

Given a path π = (vstart, [h1, . . . , hN], vend) and two indices jstart and jend satisfying 0 ≤ jstart ≤
jend ≤ N , we de�ne the subpath π′ = π[jstart; jend] by:

π[jstart; jend] =

[vstart] if jstart = jend = 0

[vend(hjend)] if jstart = jend 6= 0

[hjstart+1, . . . , hjend] otherwise (i.e., if jstart < jend)

(D.16)

Given a non-simple cycle γ = [h1, . . . , hN] and two indices jstart and jend, we de�ne the subpath
π′ = γ[jstart; jend] by:

γ[jstart; jend] =

[vend(hjend

)] if jstart = jend

[hjstart+1, . . . , hjend
] if jstart + 1 ≤ jend

[hjstart+1, . . . , hN , h1, . . . , hjend
] if jstart + 1 > jend

(D.17)

where j = j mod N . The above formal de�nition can be implemented with the following pseu-

docode:

SubPath (γ ∈ Γ+, jstart ∈ N, jend ∈ N)

1 π ← [vjstart(γ)]
2 j ← jstart

3 while j 6≡ jend (mod N(γ)) do
4 j ← j + 1
5 Append hj(γ) to π

6 return π

D.3 Cell Creation

In this section and all following sections, we �nally de�ne PCS topological operators, that is, oper-

ations that transform a valid abstract PCS complex into another valid abstract PCS complex, given

some relevant input. These PCS topological operators apply to vector graphics complexes as well:

just ignore all genuses and orientabilities. This is possible since, except in two exceptional cases,

genuses and orientabilities are never used to determine what actions to take: they are only used

to compute other genuses and orientabilities. The two exceptional cases are CutNonOrientable-

FaceAtNonDisconnectingOrientingClosedEdge() and CutNonOrientableFaceAtNonDisconnectin-

gOrientingOpenEdge(). In these cases, the “if” branching can be seen as two alternatives that are

177

D.3. Cell Creation

both valid. Since the input always includes a valid abstract PCS complex, and the output is always

a valid abstract PCS complex, we do not mention them, and instead we assume that we are working

on a globally accessible abstract PCS complex P = (C, dim, isClosed, ε, g, k, ∂̂) that is modi�ed

in-place by the topological operator.

Our �rst and simplest topological operator is cell creation. Creating a cell means adding to C a

new symbol c that is not already contained in C , and de�ning the value of dim(c) and ∂̂c for this

new symbol. If dim(c) = 1, we also need to de�ne isClosed(c), and if dim(c) = 2, we also need

to de�ne ε(c), g(c), and k(c). Below are the topological operators for vertices and edges:

CreateVertex ()

1 Let v 6∈ C . Memory allocation in real-life code, cf. next paragraph

2 dim(v)← 0
3 ∂̂v ← ∅
4 Insert v in C

5 return v

CreateClosedEdge ()

1 Let e◦ 6∈ C
2 dim(e◦)← 1
3 isClosed(e◦)← >
4 ∂̂e◦ ← ∅
5 Insert e◦ in C

6 return e◦

CreateOpenEdge (vstart ∈ V , vend ∈ V)

1 Let e 6∈ C
2 dim(e)← 1
3 isClosed(e)← ⊥
4 ∂̂e← (vstart, vend)
5 Insert e in C

6 return e

In real-life code, “�nding a new symbol not already in C” is typically a memory allocation. For

instance, in C++, “Let c 6∈ C” might translate to “Cell * c = new Cell;”. Also, de�ning the

value dim(c) or isClosed(c) may translate to “do nothing” when implemented with an object-

oriented language where the type of c already tells you if it’s a vertex, an edge, or a face, and if

the closedness of an edge can be inferred from whether some pointers are null pointers or not. We

clarify this with a C++ snippet:

178

D.3. Cell Creation

1 class Cell
2 {
3 public :
4 virtual int dimension () const =0;
5 virtual std ::set <Cell*> boundary () const =0;
6 };
7

8 class Vertex : public Cell
9 {

10 public :
11 // Returns the dimension of this Vertex (= 0)
12 int dimension () const { return 0; }
13

14 // Returns the boundary of this Vertex (= empty set)
15 std ::set <Cell*> boundary () const { return std ::set <Cell *>(); }
16 };
17

18 class Edge: public Cell
19 {
20 private :
21 Vertex * start_ ;
22 Vertex * end_;
23

24 public :
25 // Creates a closed edge
26 Edge () : start_ (nullptr), end_(nullptr) {}
27

28 // Creates a open edge
29 Edge(Vertex * vs , Vertex * ve) : start_ (vs), end_(ve) {}
30

31 // Returns whether this Edge is a closed edge or an open edge
32 bool isClosed () const { return start_ == nullptr ; }
33

34 // Returns the dimension of this Edge (= 1)
35 int dimension () const { return 1; }
36

37 // Returns the boundary of this Edge (= its end vertices , if any)
38 std ::set <Cell*> boundary () const
39 {
40 std ::set <Cell*> res;
41 if(isClosed ()) // Closed edge
42 {
43 return res;
44 }
45 else // Open edge
46 {

179

D.3. Cell Creation

47 res. insert (start_);
48 res. insert (end_);
49 return res;
50 }
51 }
52 };

And then the method CreateClosedEdge() would simply be

1 Edge * createClosedEdge ()
2 {
3 Edge * e = new Edge ();
4 C. insert (e);
5 return e;
6 }

Finally, the most atomic way to create a face is in several steps: one step to create a face without

boundary, and then one step per cycle to add. Cycles can also be removed afterwards. Since the

number of cycles k(f) can always be inferred from ∂̂f , we omit to specify it.

CreateFace (εf ∈ {�, 6�}, gf ∈ N)

1 Let f 6∈ C
2 dim(f)← 2
3 ∂̂f ← [] . Empty sequence of cycles

4 ε(f)← εf

5 g(f)← gf

6 Insert f in C

7 return f

AddSteinerCycleToFace (f ∈ F , v ∈ V)

1 Append γ• = [v] to ∂̂f

AddSimpleCycleToFace (f ∈ F , e◦ ∈ E◦, β ∈ {>,⊥}, N ∈ N)

1 Append γ◦ = [(e◦, β)N] to ∂̂f

AddNonSimpleCycleToFace (f ∈ F , γ ∈ Γ+)

1 Append γ to ∂̂f

AddCycleToFace (f ∈ F , γ ∈ Γ)

1 Append γ to ∂̂f

180

D.4. Cell Deletion

No

UnCut?

Yes!

UnCut?

No

UnCut?

Yes

UnCut?

No

UnCut?

No

UnCut?

Yes!

UnCut?

Yes

UnCut?

Yes

UnCut?

Yes

UnCut?

No

UnCut?

No again

UnCut?

No

UnCut?

No

UnCut?

No

UnCut?

Thus:
HardDelete

Figure D.1: Three scenarios using SmartDelete().

RemoveCyclesFromFace (f ∈ F , I ⊂ N)

1 ∆← []
2 for all i ∈ [1..k(f)], i 6∈ I do
3 Append γi(f) to ∆

4 ∂̂f ← ∆

RemoveCycleFromFace (f ∈ F , i ∈ N)

1 RemoveCyclesFromFace(f ,{i})

D.4 Cell Deletion

In the general case, deleting a cell by simply removing it fromC would result in an invalid abstract

PCS complex. For instance, if C = {v1, v2, e} with ∂̂e = (v1, v2), them removing v1 would result

in C = {v2, e} with ∂̂e = (v1, v2), which is clearly an invalid abstract PCS complex since we

must have vstart(e) ∈ V which is not anymore the case. More generally, removing a cell c from

C is valid if and only if we have star(c) = ∅. Hence, one possible way to de�ne “deletion” is to

remove c and star(c) together, an operation that we call “hard delete”, that is safely achieved by

the following recursive method:

HardDelete (c ∈ C)

1 while ∃c′ ∈ star(c) do
2 HardDelete(c′)

3 Remove c from C . In real-life code, remove from set, then release memory

181

D.4. Cell Deletion

But there is a less destructive way to remove c from C : perform an atomic simpli�cation at c, as

de�ned in Appendix E and illustrated in Figure E.1. This operation is equivalent to the UnCut()

topological operator de�ned in Section D.8. However, not all cells are candidate for atomic sim-

pli�cation. So we may think of a method “if can be atomically simpli�ed, atomically simplify;

otherwise, hard delete”. But this approach is still too destructive: in the �rst two scenarios in Fig-

ure D.1, it would be equivalent to hard delete, while we can see that a less destructive approach

exists. This approach is “if can be simpli�ed, simplify; otherwise, hard delete”, where “simplify cell

c” corresponds to “recursively simplify all its star cells �rst, then atomically simplify c, if possible”.

This “smart delete” operation is implemented by the following topological operators:

SmartDelete (c ∈ C)

1 if c ∈ V then
2 SmartDeleteVertex(c)

3 else if c ∈ E then
4 SmartDeleteEdge(c)

5 else if c ∈ F then
6 SmartDeleteFace(c)

SmartDeleteFace (f ∈ F)

1 HardDelete(f)

SmartDeleteEdge (e ∈ E)

1 if CanUncutAtEdge(e) then
2 UnCutAtEdge(e)

3 else
4 HardDelete(e)

SmartDeleteVertex (v ∈ V)

1 if CanUncutAtVertex(v) then
2 UnCutAtVertex(v)

3 else
4 for all Edge e ∈ star(c) do
5 if CanUncutAtEdge(e) then UnCutAtEdge(e)

6 if CanUncutAtVertex(v) then
7 UnCutAtVertex(v)

8 else
9 HardDelete(v)

182

D.5. Glue Cells

D.5 Glue Cells

Gluing is a rather simple topological operator, both conceptually and to implement. To glue two

cells c1 and c2 of same “type”, the idea is to create a new cell c, then replace every occurrence of c1

or c2 (in the ordered boundary of other cells) by c, and �nally delete c1 and c2. Note that because

c1 or c2 do not belong anymore to the boundary of any cell, we have star(c1) = star(c2) = ∅,

thus deleting them simply means removing them from C . In case some geometry is associated

to the topology, the geometry of c would be the “average” of the geometry of c1 and c2, where

the exact meaning of “average” depends how the geometry is represented and is a choice of the

implementer.

First, let us show what this means for vertices. In order to glue two vertices v1 or v2, you should

replace every occurrence of v1 or v2 (as a start vertex, end vertex, or Steiner cycle) by the new

“glued” vertex v.

GlueVertices (v1 ∈ V , v2 ∈ V)

Require: v1 6= v2

1 v ← CreateVertex()

2 for all open edge e ∈ star(v1) ∪ star(v2) do
3 if vstart(e) = v1 OR vstart(e) = v2 then
4 vstart(e)← v

5 if vend(e) = v1 OR vend(e) = v2 then
6 vend(e)← v

7 for all face f ∈ star(v1) ∪ star(v2) do
8 for all Steiner cycle γ•i ∈ ∂̂f do
9 if γ•i = [v1] OR γ•i = [v2] then

10 γ•i ← [v]

11 HardDelete(v1)

12 HardDelete(v2)

13 return v

Gluing two edges is ambiguous: one needs to decide on a chosen relative direction �rst. If there

is geometry available, simple heuristics should be enough (for instance using the sign of a dot

product). Once direction is decided, we are left to glue two halfedges (e1, β1) and (e2, β2). To

achieve this, we �rst glue their start vertices and end vertices together (if any), then we create a

new edge e, and replace every occurrence of (e1,>), (e1,⊥), (e2,>), or (e2,⊥) by either (e,>)
or (e,⊥).

183

D.5. Glue Cells

GlueClosedHalfedges ((e◦1, β1) ∈ H◦, (e◦2, β2) ∈ H◦)
Require: e◦1 6= e◦2

1 e◦ ← CreateClosedEdge()

2 for all face f ∈ star(e◦1) ∪ star(e◦2) do
3 for all simple cycle γ◦i = [(e◦i , βi)Ni] ∈ ∂̂f do
4 if e◦i = e◦1 then
5 γ◦i ← [(e◦, (βi ⇔ β1))Ni] . “β ⇔ β′” returns > if β = β′, ⊥ otherwise

6 else if e◦i = e◦2 then
7 γ◦i ← [(e◦, (βi ⇔ β2))Ni]

8 HardDelete(e◦1)

9 HardDelete(e◦2)

10 return e◦

GlueOpenHalfedges (h1 = (e1, β1) ∈ H|, h2 = (e2, β2) ∈ H|)

Require: e1 6= e2

1 if vstart(h1) = vstart(h2) then
2 vstart ← vstart(h1)
3 else
4 vstart ← GlueVertices(vstart(h1),vstart(h2))

5 if vend(h1) = vend(h2) then
6 vend ← vend(h1)
7 else
8 vend ← GlueVertices(vend(h1),vend(h2))

9 e← CreateOpenEdge(vstart,vend)

10 for all face f ∈ star(e1) ∪ star(e2) do
11 for all non-simple cycle γi = [h1, . . . , hNi] ∈ ∂̂f do
12 for all halfedge hj = (ej , βj) ∈ γi do
13 if ej = e1 then
14 hj ← (e, (βj ⇔ β1))
15 else if ej = e2 then
16 hj ← (e, (βj ⇔ β2))

17 HardDelete(e1)

18 HardDelete(e2)

19 return e

184

D.6. UnGlue Cells

D.6 UnGlue Cells

Informally, unglue is the “reverse” topological operation of glue. However, this is slightly inaccu-

rate. For instance, creating a vertex shared by three edges requires two glue operations, but can be

reversed in a single unglue operation. Conversely, gluing two isolated vertices results in a single

isolated vertex, but ungluing at this vertex is a null operation instead of reversing back into two

isolated vertices. We illustrate this with a few examples below:

{
v1

v2

}
Glue(v1,v2)
−−−−−−−→

{
v

}
UnGlueAt(v)
−−−−−−−−→

{
v

}

v1

v2

v′1

v′2

e1 = (v1, v′1)
e2 = (v2, v′2)

Glue(v1,v2)
−−−−−−−→

v

v′1

v′2

e1 = (v, v′1)
e2 = (v, v′2)

UnGlueAt(v)
−−−−−−−−→

v1

v2

v′1

v′2

e1 = (v1, v′1)
e2 = (v2, v′2)

v1

v2

v3

v′1

v′2

v′3

e1 = (v1, v′1)
e2 = (v2, v′2)
e3 = (v3, v′3)

Glue(v1,v2)
−−−−−−−→

v

v3

v′1

v′2

v′3

e1 = (v, v′1)
e2 = (v, v′2)
e3 = (v3, v′3)

Glue(v,v3)
−−−−−−→

v′

v′1

v′2

v′3

e1 = (v′, v′1)
e2 = (v′, v′2)
e3 = (v′, v′3)

UnGlueAt(v′)
−−−−−−−−→

v1

v2

v3

v′1

v′2

v′3

e1 = (v1, v′1)
e2 = (v2, v′2)
e3 = (v3, v′3)

Fundamentally, UnGlue(c) duplicates c as many times as it is “used” by cells of higher dimension,

or do nothing if star(c) = ∅. We formalize now the notion of “use”, which is similar to the vertex-

use, edge-use and face-use in the radial-edge data structure [Weiler 1985], but not exactly identical.

The fundamental di�erence is that while in the radial-edge data structure, these uses are explicit

objects (for instance, vertex-uses are ordered in a cyclic doubly-linked list around the vertex they

represent), they are only implicit in abstract PCS complexes. Another less signi�cant di�erence

is that the radial-edge data structure does not support Steiner cycles and closed edges, but we

believe it could be easily extended to support them. Finally, since the radial-edge data structure

is designed to represent solid 3D objects, it also de�nes volumes via shells (shells are for volumes

what cycles are for surfaces) and hence de�nes face-uses, while we stop at the dimension 2 and

hence do not need them.

185

D.6. UnGlue Cells

Vertex-use A vertex v can be used in three di�erent ways:

• As a start or end vertex of an open edge e that has no incident face (i.e., ∂̂e = ∅). Such a

use is called end-vertex-use and denoted©v e,β with β ∈ {start, end}. Note that an open

edge e uses twice the same vertex if it has no incident faces and vstart(e) = vend(e). Note

also that if e has incident faces, then it is not considered as using any of its end vertices

(otherwise redundant with corner-vertex-uses).

• As a Steiner cycle γ•i of a face f . Such a use is called Steiner-
vertex-use and denoted©v f,i. Note that the same vertex can be

used as Steiner more than once by the same face. For instance,

consider the “pinched torus” made of one vertex v and one face

f such that ∂̂f = [[v], [v]].

• As the vertex vj(γi), junction between the consecutive halfedges hj and hj+1 in a non-

simple cycle γi of a face f . Such a use is called corner-vertex-use and denoted©v f,i,j
Open-edge-use An open edge e can only be used in one way: as an open halfedge hj in a

non-simple cycle γi of a face f . Such a use is called open-edge-use and denoted©e f,i,j .

Closed-edge-use A closed edge e◦ can only be used in one way: as a simple cycle γ◦i of a face

f . If Ni (i.e., N(γ◦i)) is greater than one, then the closed edge e◦ is considered to be used as many

times by the face. Such a use is called closed-edge-use and denoted©e◦ f,i,j , where j allows to

distinguish repeated uses in the same simple cycle. An example whereNi = 2 is the “cut-Möbius”

illustrated in Figure D.2, bottom-middle.

Once this notion of use is de�ned, the unglue topological operators are conceptually simple: to

unglue at a cell c, you create a new cell ck for each use©c k of c, and replace c by ck for this speci�c

use. After this operation, c is not used anymore and hence we delete it, as shown below:

UnGlueAtOpenEdge (e ∈ E|)

1 if star(e) = ∅ then
2 Do nothing.

3 else
4 for all face f ∈ star(e) do
5 for all non-simple cycle γi ∈ ∂̂f do
6 for all halfedge hj ∈ γi do
7 if e(hj) = e then . Found open-edge-use©e f,i,j
8 e(hj)← CreateOpenEdge(vstart(e), vend(e))

9 HardDelete(e)

186

D.6. UnGlue Cells

ε =�
g = 1

∂̂f = []

ε =�
g = 0

∂̂f =
[
γ1 = [(e◦,>)]
γ2 = [(e◦,>)]

] ε =�
g = 0

∂̂f =
[
γ1 = [(e◦1,>)]
γ2 = [(e◦2,>)]

]

ε = 6�
g = 1

∂̂f = [γ1 = [(e◦1,>)]]

ε =�
g = 0

∂̂f =
[
γ1 = [(e◦1,>)]
γ2 = [(e◦,>)2]

] ε =�
g = 0

∂̂f =
[
γ1 = [(e◦1,>)]
γ2 = [(e◦2,>)]

]

e◦1 e◦e◦1 e◦2e◦1

Figure D.2: The “cut-torus” (top row, middle column) and “cut-Möbius” (bottom row, middle column) are two
examples of abstract PCS complexes where a closed edge e◦ is used twice by the same face. In the case of the
cut-torus, the two closed-edge-uses of e◦ come from two simple cycles, while in the case of the cut-Möbius, the
two closed-edge-uses of e◦ come from a single cycle repeating e◦ twice. We show these examples before the cut
(left), then after the cut (middle), then after ungluing at the cut edge e◦ (right). Ungluing the cut-torus or the
cut-Möbius at e◦ gives the same abstract PCS complex: the cylinder. It has no vertices, two closed edges e◦1 and
e◦2, and a face f such that ∂̂f = (�, 0, [[h◦1]; [h◦2]]). Indeed, the two surfaces depicted in the right column are
both homeomorphic to F�,0,2.

The case of closed edges is as easy to implement, but conceptually challenging. If Ni = 1 for

all simple cycles γ◦i using e◦, then there are no di�culties. However, the case Ni > 1 is not

as straightforward. To understand what the algorithm should do in this case, let us clarify what

a “repeated closed edge” represents. Consider a Möbius strip represented by its minimal PCS

decomposition (Figure D.2, bottom-left):

• one closed edge e◦1: its unique boundary edge

• one face f = (6�, 1, [[(e◦1,>)]]): non-orientable, genus-1, one simple cycle

The closed edge e◦1 is only used once by f . Indeed, if we arbitrarily choose a direction for this

closed curve, we can see that locally, f is only “at the left side” of e◦1, or “at the right side”, but not

on both sides. It is well-known that if you take scissors and cut this Möbius strip in half along its

length, you obtain a single orientable surface (Figure D.2, bottom-right). In terms of abstract PCS

complexes, this operation can be decomposed into two atomic topological operators:

1. The �rst topological operator is CutNonOrientableFaceAtNonDisconnectingOrientingClo-

sedEdge(f) (see Section D.7.6), and corresponds to “tracing” the red closed edge e◦ along

187

D.6. UnGlue Cells

the centerline of the Möbius strip (Figure D.2, bottom-middle). In terms of PCS complexes,

this corresponds to partition f into two cells: e◦ and f \ e◦. With this new (not minimal)

decomposition of the Möbius strip, the cell f is now homeomorphic to int(F�,0,2), while it

was homeomorphic to int(F6�,1,1) before the cut. However, this does not change the whole

topological space X that the PCS complex represents (i.e., the union of cells), which is still

homeomorphic to the Möbius strip F 6�,1,1 (“Cutting” is simply decomposing the same space

into more cells as will be discussed later).

After this cut, we can observe that if we arbitrarily choose a di-

rection for this closed curve e◦, then f is actually “both at the

left side and the right side” of e◦. This explains why f actually

uses e◦ twice. But unlike the “cut-torus” (Figure D.2, top-middle),

these two uses are from the same cycle. To understand why, pick

a point on e◦, then pick one side of the face (for instance, the “left

side”). If you move along e◦ while keeping in mind which side of

f you picked, then after one turn you will realize that you end up

at the other side of e◦. Hence, you have to perform two complete

turns around e◦ to actually complete the cycle, that continuously

goes through the two closed-edges-uses.

2. The second topological operator is UnglueAtClosedEdge(e◦), that actually changes the topo-

logical space X by “disconnecting” the two closed-edges-uses of e◦. Similarly to the cut-

torus example (Figure D.2, top), this is achieved by “duplicating the geometry” of e◦. How-

ever, unlike the cut-torus example where this duplicated geometry is distributed among two

closed edges e◦1 and e◦2, the duplicated geometry belongs to the same closed edge e◦2, making

the closed edge twice as long as it was initially (cf. Figure D.2, bottom-right). Combinato-

rially, this duplication of geometry is conceptual, and it simply means that the simple cycle

γ◦i that uses multiple times e◦ is transformed into a simple cycle γ◦i that uses only once a

new closed edge.

Note that it is also possible to have Ni ≥ 3. For instance, take three rectangles glued together

along a long edge, then glue their short edges in the same way you would construct a Möbius

strip, but with a third-twist instead of a half-twist. With this understanding, we can �nally de�ne

the topological operator UnglueAtClosedEdge(e◦): for every simple cycle γ◦i = [(e◦i , βi)Ni] that

uses e◦ (possiblyNi > 1 times), we create a new closed edge e◦i and change γ◦i into [(e◦i , βi)].

Finally, to unglue at a vertex, the important di�erence is that for this operation to be valid, all cells

in the star of vmust be unglued �rst. Then, we handle independently the di�erent use cases.

188

D.6. UnGlue Cells

UnGlueAtClosedEdge (e◦ ∈ E◦)
1 if star(e◦) = ∅ then
2 Do nothing.

3 else
4 for all face f ∈ star(e◦) do
5 for all simple cycle γ◦i ∈ ∂̂f do
6 if e◦(γ◦i) = e◦ then . Found closed-edge-uses©e◦ f,i,1 to©e◦ f,i,N(γ◦i)

7 e◦(γ◦i)← CreateClosedEdge()
8 N(γ◦i)← 1

9 HardDelete(e◦)

UnGlueAtVertex (v ∈ V)

1 if star(v) = ∅ then
2 Do nothing.

3 else
4 for all edge e ∈ star(v) do . Unglue at all (necessarily open) star edges of v

5 UnGlueAtOpenEdge(e)

6 for all edge e ∈ star(v) do
7 if star(e) = ∅ then
8 if vstart(e) = v then . End-vertex-use©v e,start

9 vstart(e)← CreateVertex()

10 if vend(e) = v then . End-vertex-use©v e,end

11 vend(e)← CreateVertex()

12 for all face f ∈ star(v) do
13 for all Steiner cycle γ•i = [vi] ∈ ∂̂f do
14 if vi = v then . Steiner-vertex-use©v f,i
15 v(γ•i (f))← CreateVertex()

16 for all non-simple cycle γi ∈ ∂̂f do
17 for all halfedges hj ∈ γi do
18 if vend(hj) = v then . Corner-vertex-use©v f,i,j
19 vf,i,j ← CreateVertex()
20 vend(hj)← vf,i,j

21 vstart(hj+1)← vf,i,j

22 HardDelete(v)

189

D.7. Cut Cells

v1

v2

e1

e2

f

v1

v2

e1

e2

ecut

f1 f2

v1
v2

e1 = (v1, v2)
e2 = (v2, v1)

f = (�, 0, [[•
v1

(e1,>) •
v2

(e2,>) •
v1

]])

CutFace[...]−−−−−−−→

v1
v2

e1 = (v1, v2)
e2 = (v2, v1)
ecut = (v2, v1)

f1 = (�, 0, [[•
v1

(e1,>) •
v2

(ecut,>) •
v1

]])
f2 = (�, 0, [[•

v2
(e2,>) •

v1
(ecut,⊥) •

v2
]])

Figure D.3: An abstract PCS complex is transformed into another abstract PCS complex, as a result of the cut
topological operator CutOrientableFaceAtDisconnectingOpenEdge(f ,1,1,2,0,0,[]).

D.7 Cut Cells

Given a (non-abstract) PCS complex, a cut is de�ned as partitioning a cell c into new cells {ccut, c1,

c2, . . . }, where ccut is a proper subset of c and where {c1, c2, . . . } are the connected components of

c\ccut. We say that “c is cut at ccut”. A valid cut is a cut such that the resulting cell decomposition

is a valid PCS complex. For instance, if a face f is cut at an open edge ecut ⊂ f , then ecut must

start and end at vertices in ∂f . From now on, whenever we say “a cut”, we mean a valid cut. It

can be shown that a cut necessarily satis�es dim(ccut) < dim(c). Subsequently, it can be shown

that c \ ccut is either connected or made of two connected components, thus c is partitioned into

either two components {ccut, c
′} or three components {ccut, c1, c2}. This intuitive result should

become clear with the di�erent examples illustrated in this section.

The cut topological operator on abstract PCS complex that we describe in this section is the combi-

natorial counterpart of the pointset de�nition given above. This means that a given abstract PCS

complex P is transformed into another abstract PCS complex P ′ such that the PCS complex |P ′|
could have been obtained by cutting a cell c of |P| at some subcell ccut ⊂ c. Interestingly, this

means that the abstract cell ccut of P ′ is actually an output of the cut topological operator, as illus-

trated in Figure D.3, whereas it is more easily interpreted as an input with the pointset de�nition

(i.e.: “cut here”). Because an abstract PCS complex is a purely combinatorial object, its faces are

purely abstract and not assumed to be realized as pointsets (or even as abstract triangulations), and

therefore it is not possible to say “cut here”, and we should instead say “cut this way”. For instance,

in Figure D.3, it would be along the lines of “cut f at an open edge starting at v2 and ending at v1”.

However, while this sentence entirely speci�es the cut in the simple example in Figure D.3, things

are actually much more complicated in the general case because:

190

D.7. Cut Cells

• If f uses v1 or v2 more than once, then the sentence is ambiguous: the actual vertex-uses

must be speci�ed instead of “just” the vertices.

• If f contains several cycles, then the sentence is ambiguous: it is necessary to specify which

cycles must be transferred to f1 and which cycles must be transferred to f2.

• If the genus of f is non-zero (e.g., a torus with a hole), then the sentence is ambiguous: a

cut from v2 to v1 may or may not disconnect f , depending on the actual path of ecut in a

pointset sense, and this information has to be speci�ed combinatorially somehow.

• Other ambiguities that are detailed later.

To exhaustively cover all the possible cases, and �nd out what combinatorial input is necessary

and su�cient to fully determine the cut, we have to classify all the di�erent ways a cell can be

cut. Only then we can rigorously de�ne “cut this way”, and make sure that we are not missing

any way to cut a cell. For instance, the cut topological operator performed in Figure D.3 can be

more accurately expressed as “cut the orientable face f at an open edge starting at the vertex-use

©v f,1,1, ending at the vertex-use©v f,1,2, disconnecting f into two (necessarily orientable) faces,

both of genus zero, and both receiving no cycles from f”. To do this, you would call the method

CutOrientableFaceAtDisconnectingOpenEdge(f ,1,1,2,0,0,[]).

We provide below an informal overview of the di�erent cases to consider. The exhaustive list is

provided by the following sections, and in particular the di�erent ways to cut a face at an edge are

illustrated in Figure D.5 and D.6.

• Cutting an open edge (at a vertex)
An open edge e becomes a vertex v and two open edges e1 and e2.

• Cutting a closed edge (at a vertex)
A closed edge e◦ becomes a vertex v and the open edge e′ = e◦ \ v.

• Cutting a face at a vertex
A face f becomes a vertex v and the face f ′ = f \ v.

• Cutting a face at a closed edge, disconnecting it
A face f becomes a closed edge e◦ and two faces f1 and f2. The holes, handles or crosscaps

of f are distributed among f1 and f2. The cycle [(e◦,>)] is added to f1 and the cycle [(e◦,⊥)]
is added to f2.

• Cutting a face at a closed edge, not disconnecting it
A face f becomes a closed edge e◦ and the face f ′ = f \ e◦. If f is orientable, its genus is

decreased by one, and the two cycles [(e◦,>)] and [(e◦,⊥)] are added. If f is non-orientable,

it may become orientable or not, its genus may be decreased by one or more, and either the

191

D.7. Cut Cells

cycle [(e◦,>)] is added twice, or the single cycle [(e◦,>)2] is added.

• Cutting a face at an open edge starting/ending at the same hole, disconnecting it
A face f becomes an open edge e and two faces f1 and f2. The handles or crosscaps of f

are distributed among f1 and f2. All cycles except one are distributed among f1 and f2. The

last cycle γi = [π1, π2] is split by adding [π1, (e,>)] to f1 and adding [π2, (e,⊥)] to f2.

• Cutting a face at an open edge starting/ending at the same hole, not disconnecting
it
A face f becomes an open edge e and the face f ′ = f \ e. If f is orientable, its genus is

decreased by one, and the cycle γi = [π1, π2] is split into [π1, (e,>)] and [π2, (e,⊥)]. If f

is non-orientable, it may become orientable or not, its genus may be decreased by one or

more, and either the two cycles [π1, (e,>)] and [π2, (e,>)] are added, or the single cycle

[π1, (e,>), π2, (e,>)] is added.

• Cutting a face at an open edge starting/ending at di�erent holes
A face f becomes an open edge e and the face f ′ = f \ e. Two cycles γi1 and γi2 are merged

into the single cycle [γi1 , (e,>), γi2 , (e,⊥)].

D.7.1 Cutting an Open Edge (at a Vertex)

Cutting an open edge e is a very simple operation that consists in splitting e in half by inserting

a vertex in its interior, resulting in two open edges e1 and e2 and one vertex v. One only has to

take care of replacing the halfedges using e by two halfedges using respectively e1 and e2 with

the appropriate direction. The reason we put “at a vertex” in parenthesis in the title of this section

(and the reason why “AtAVertex” is not part of the topological operator name) is that cutting an

open edge is necessarily done at a vertex due to the requirement dim(ccut) < dim(c).

192

D.7. Cut Cells

CutOpenEdge (e ∈ E|)

1 v ← CreateVertex()

2 e1 ← CreateOpenEdge(vstart(e), v)

3 e2 ← CreateOpenEdge(v, vend(e))

4 for all face f ∈ star(e) do
5 for all non-simple cycle γi ∈ ∂̂f do
6 γ′i ← []
7 for all halfedges hj ∈ γi do
8 if e(hj) = e then
9 if β(hj) = > then

10 Append (e1,>) to γ′i
11 Append (e2,>) to γ′i
12 else
13 Append (e2,⊥) to γ′i
14 Append (e1,⊥) to γ′i

15 else
16 Append hj to γ′i

17 γi(f)← γ′i

18 HardDelete(e)

D.7.2 Cutting a Closed Edge (at a vertex)

Cutting a closed edge e◦ follows the same idea, resulting in one open edge e and one vertex v.

CutClosedEdge (e◦ ∈ E◦)
1 v ← CreateVertex()

2 e← CreateOpenEdge(v, v)

3 for all face f ∈ star(e◦) do
4 for all simple cycle γ◦i = [(e◦i , βi)Ni] ∈ ∂̂f do
5 if e◦i = e◦ then
6 γi(f)← [•

v
(e, βi) •

v
· · · •

v
(e, βi) •

v
] .

Replace the simple cycle by a non-simple cy-

cle that repeats Ni times the open edge e

7 HardDelete(e◦)

193

D.7. Cut Cells

D.7.3 Cutting a Face at a Vertex

A trivial way to cut a face is via a vertex. This means that we decompose the face f into a new

vertex v and the new face f \ v.

CutFaceAtVertex (f ∈ F)

1 v ← CreateVertex()

2 AddSteinerCycleToFace(f ,v)

D.7.4 Cutting a Face at an Edge

Cutting a face at an open or closed edge is a much harder operation because there are many

non-trivial and non-equivalent ways a face can be cut (cf. Figure D.4): the face may become dis-

connected or not, its orientability and genus may change or not, and di�erent cycles may be added,

split, or merged together. If the abstract PCS complex is realized as a triangulation, and the cut

edge is given as a subset of the edges in the triangulation, then it is possible to compute in which

case we are, and perform the appropriate operation. However, at the combinatorial level of the

abstract PCS complex, no such realization as triangulation is assumed, therefore “how” the face is

cut has to be speci�ed somehow. For instance, if a face f is a sphere with k holes, and we cut it

at a closed edge e◦, then we know for sure that this disconnects f into two faces f1 and and f2.

However, without more information, there is no way to know combinatorially which holes of f

must be transferred to f1, and which holes must be transferred to f2. Hence, this information has

to be given as input of the topological operator. In this case, the operator could be:

CutSphereAtClosedEdge (f ∈ F , I ⊆ N)

Require: ε(f) =� and g(f) = 0

1 e◦ ← CreateClosedEdge() . Create the cut edge e◦ and the two faces f1 and f2

2 f1 ← CreateFace(�, 0)

3 f2 ← CreateFace(�, 0)

4 for all cycle γi of f do . Distribute the cycles of f among f1 and f2

5 if i ∈ I then
6 AddCycleToFace(f1,γi(f))

7 else
8 AddCycleToFace(f2,γi(f))

9 AddSimpleCycleToFace(f1,e◦,>,1) . Add cycle [(e◦,>)] to f1 and cycle [(e◦,⊥)] to f2

10 AddSimpleCycleToFace(f2,e◦,⊥,1)

11 HardDelete(f) . Delete f

194

D.7. Cut Cells

If ε =�
f ′

f1, f2

If ε = 6�

f ′

f1, f2

ε′ =�

ε′ = 6�
k′ = k + 2

k′ = k + 1

ε1 =�
ε2 = 6�

ε′ =� g′ = g − 1 k′ = k + 2
ε1 =�
ε2 =� g1 + g2 = g k1 + k2 = k + 2

ε′ =� g′ = g−1
2 k′ = k + 1

ε′ =� g′ = g−2
2 k′ = k + 2

ε′ = 6� g′ = g − 1 k′ = k + 1
ε′ = 6� g′ = g − 2 k′ = k + 2

ε1 =�
ε2 = 6� 2g1 + g2 = g k1 + k2 = k + 2

ε1 = 6�
ε2 =� g1 + 2g2 = g k1 + k2 = k + 2

ε1 = 6�
ε2 = 6� g1 + g2 = g k1 + k2 = k + 2

If g is odd:

If g is even:

ε1 = 6�
ε2 =�

ε1 = 6�
ε2 = 6�

If ε =�
f ′

f1, f2

If ε = 6�

f ′

f1, f2

ε′ =�

ε′ = 6�
k′ = k + 2

k′ = k + 1

ε1 =�
ε2 = 6�

ε′ =� g′ = g − 1 k′ = k + 1
ε1 =�
ε2 =� g1 + g2 = g k1 + k2 = k + 1

ε′ =� g′ = g−1
2 k′ = k

ε′ =� g′ = g−2
2 k′ = k + 1

ε′ = 6� g′ = g − 1 k′ = k

ε′ = 6� g′ = g − 2 k′ = k + 1

ε1 =�
ε2 = 6� 2g1 + g2 = g k1 + k2 = k + 1

ε1 = 6�
ε2 =� g1 + 2g2 = g k1 + k2 = k + 1

ε1 = 6�
ε2 = 6� g1 + g2 = g k1 + k2 = k + 1

If g is odd:

If g is even:

ε1 = 6�
ε2 =�

ε1 = 6�
ε2 = 6�

ecut is a

closed edge

CutFaceAtEdge()

ecut is an

open edge starting

and ending at

the same hole

ecut is an

open edge starting

and ending at

di�erent holes ε′ = ε g′ = g k′ = k − 1

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

(m)

(n)

(o)

(p)

(q)

(r)

(s)

Figure D.4: Exhaustive classi�cation of the 19 di�erent ways a face can be cut at an edge. The branching
“if”s represent known information about the abstract PCS complex that is about to be cut. The branching arrows
represent information about ecut that cannot be algorithmically determined, and hence that has to be given as
input to the PCS topological operator (either as parameters or by calling di�erent methods). We only show here
the unknown information that leads to di�erent orientabilities, genus formulas, number of faces, or number of
cycles (e.g.: is ecut closed or not? Does ecut disconnect the face?). Additional parameters to give to the topological
operators include: if ecut disconnects f , which cycles to transfer to f1 or f2? What are the new genuses g1 and
g2? If ecut is open, at which vertex-uses does it start and end? Should some cycles be �ipped?

195

D.7. Cut Cells

(a)

∂̂f = [· · ·] ∂̂f ′ =

[
· · ·

[(e◦,>)]
[(e◦,⊥)]

]g ≥ 1 g′ = g − 1
ε =� ε′ =�

f f ′

e◦

g = 1 g′ = 0

g = 2 g′ = 1

g = 2 g′ = 1

g = 2 g′ = 1

(b)

∂̂f1 =
[

· · ·1
[(e◦,>)]

]
∂̂f =

[
· · ·1
· · ·2

]
∂̂f2 =

[
· · ·2

[(e◦,⊥)]

]

g = 2

g = 2

g1 = 2

g2 = 0
g1 = 1

g2 = 1

f f1
f2

e◦

g1 + g2 = gg ≥ 0
ε =� ε1 =� ε2 =�

g = 1 g1 = 0
g2 = 1

(c)
ε = 6�
g ≥ 1

ε′ =�
g′ = g−1

2

∂̂f ′ =
[

· · ·
[(e◦,>)2]

]
∂̂f = [· · ·]

ε′ =�
g′ = 0

ε =6�
g = 1

ε =6�
g = 3

ε′ =�
g′ = 1

(d)

∂̂f ′ =

[
· · ·

[(e◦,>)]
[(e◦,>)]

]
∂̂f = [· · ·]

ε =6�
g ≥ 2

ε′ =�
g′ = g−2

2

ε =6�
g = 2

ε′ =�
g′ = 0

(e)
ε = 6�
g ≥ 2

ε′ =6�
g′ = g − 1

∂̂f ′ =
[

· · ·
[(e◦,>)2]

]
∂̂f = [· · ·]

ε =6�
g = 3

ε′ =6�
g′ = 2

ε = 6�
g = 2

ε′ = 6�
g′ = 1

(f)

∂̂f ′ =

[
· · ·

[(e◦,>)]
[(e◦,>)]

]
∂̂f = [· · ·]

ε = 6�
g ≥ 3

ε′ =6�
g′ = g − 2

ε =6�
g = 3

ε′ =6�
g′ = 1

(g), (h), (i)

e◦
ε1 = 6�
g1 = 1ε = 6�

g = 1 ε2 =�
g2 = 0

∂̂f1 =
[

· · ·1
[(e◦,>)]

]
∂̂f =

[
· · ·1
· · ·2

]
∂̂f2 =

[
· · ·2

[(e◦,⊥)]

]

ε =6�
g = 1

ε1 =�
g1 = 0
ε2 =6�
g2 = 1

ε =6�
g = 3

ε1 =�
g1 = 1
ε2 =6�
g2 = 1

ε =6�
g = 3

ε1 =�
g1 = 1
ε2 =6�
g2 = 1

ε =6�
g = 3

ε1 =6�
g1 = 1
ε2 =�
g2 = 1

2g1 + g2 = gg ≥ 1
ε =6� ε1 =� ε2 =6�

g1 + 2g2 = g
ε1 = 6� ε2 =�

(g)

(h)
g ≥ 1
ε =6�

g1 + g2 = g
ε1 =6� ε2 =6�

(i)
g ≥ 2
ε =6�

g = 2
ε = 6�

g1 = 1
ε1 = 6�

g2 = 1
ε2 =6�

(i)

(g) or (h)

g = 3
ε =6�

g1 = 1
ε1 =6�

g2 = 2
ε2 =6�

Figure D.5: The di�erent ways to cut a face at a closed edge. The labelling letters refer to the classi�cation
provided in Figure D.4.

196

D.7. Cut Cells

(j)

∂̂f =
[

· · ·
[•

v1
π1 •

v2
π2 •

v1
]

]

∂̂f ′ =

 · · ·
[•

v1
π1 •

v2
(e,>) •

v1
]

[•
v2

π2 •
v1

(e,⊥) •
v2

]

ε =�
g ≥ 1

ε′ =�
g′ = g − 1

v1

π1
v2

π2

f f ′

e

(k)

g ≥ 0

∂̂f1 =
[

· · ·1
[•

v1
π1 •

v2
(e,>) •

v1
]

]
∂̂f =

 · · ·1
· · ·2

[•
v1

π1 •
v2

π2 •
v1

]

∂̂f2 =
[

· · ·2
[•

v2
π2 •

v1
(e,⊥) •

v2
]

]

v1

π1
v2

π2 e

f f1 f2

ε =�
g1 + g2 = g
ε′ =�

(m)

e

ε =6�
g = 2

ε′ =�
g′ = 0

v2

π1

π2v1

ε =6�
g ≥ 2

ε′ =�
g′ = g−2

2

∂̂f ′ =

 · · ·
[•

v1
π1 •

v2
(e,>) •

v1
]

[•
v1

π2 •
v2

(e,>) •
v1

]

∂̂f =

[
· · ·

[•
v1

π1 •
v2

π2 •
v1

]

]

(n)
ε =6�
g ≥ 2

ε′ = 6�
g′ = g − 1

∂̂f =
[

· · ·
[•

v1
π1 •

v2
π2 •

v1
]

]

∂̂f ′ =

 · · ·
[•

v1
π1 •

v2
(e,>) •

v1
π2 •

v2
(e,>) •

v1
]

ε =6�
g = 3

ε′ = 6�
g′ = 2

ε =6�
g = 2

ε′ =6�
g′ = 1v1

v2

π1
π2

e

v1
v2

π1
π2

e

(o)
ε =6�
g ≥ 3

ε′ = 6�
g′ = g − 2

ε =6�
g = 3

ε′ = 6�
g′ = 1

v2

π1

π2v1

∂̂f ′ =

 · · ·
[•

v1
π1 •

v2
(e,>) •

v1
]

[•
v1

π2 •
v2

(e,>) •
v1

]

∂̂f =

[
· · ·

[•
v1

π1 •
v2

π2 •
v1

]

]

(p), (q), (r)

ε1 = 6�
g1 = 1ε =6�

g = 1 ε2 =�
g2 = 0

v2
v1

π2
π1

e

∂̂f1 =
[

· · ·1
[•

v1
π1 •

v2
(e,>) •

v1
]

]
∂̂f =

 · · ·1
· · ·2

[•
v1

π1 •
v2

π2 •
v1

]

∂̂f2 =
[

· · ·2
[•

v2
π2 •

v1
(e,⊥) •

v2
]

]

ε =6�
g = 3

ε1 =6�
g1 = 1
ε2 =�
g2 = 1

v1
v2 π2

π1

e

ε =6�
g = 3

ε1 =�
g1 = 1
ε2 = 6�
g2 = 1

v2

π2

v1
π1

e

g = 2
ε =6�

g1 = 1
ε1 = 6�

g2 = 1
ε2 =6�

2g1 + g2 = gg ≥ 1
ε =6� ε1 =� ε2 = 6�

g1 + 2g2 = g
ε1 = 6� ε2 =�

(p)

(q)
g ≥ 1
ε =6�

g1 + g2 = g
ε1 = 6� ε2 =6�

(r)
g ≥ 2
ε =6�

(r)

(p) or (q)(l)

∂̂f =
[

· · ·
[•

v1
π1 •

v2
π2 •

v1
]

]

∂̂f ′ =

 · · ·
[•

v1
π1 •

v2
(e,>) •

v1
π2 •

v2
(e,>) •

v1
]

ε =6�
g ≥ 1

ε′ =�
g′ = g−1

2

e ε′ =�
g′ = 0

ε′ =6�
g = 1

v1 v2

π1
π2

ε =6�
g = 3

ε′ =�
g′ = 1

v1

v2 π2

π1

e

(s)

∂̂f =

 · · ·
[•

v1
γ1 •

v1
]

[•
v2

γ2 •
v2

]

∂̂f ′ =

 · · ·
[•

v1
γ1 •

v1
(e,>) •

v2
γ2 •

v2
(e,⊥) •

v2
]

γ2

v1
v2γ1 e

ε ∈ {�, 6�} ε′ = ε
g ≥ 0 g′ = g

Figure D.6: The di�erent ways to cut a face at an open edge. The labelling letters refer to the classi�cation
provided in Figure D.4.

197

D.7. Cut Cells

The above topological operator is quite simple, but things get much more complicated when f is

not a sphere, and especially when f is non-orientable. In order to cover all the di�erent cases with

a �nite but exhaustive set of topological operators, it is necessary to classify all these di�erent

cases. We call this the face-cut classi�cation, summarized in Figure D.4, illustrated in Figure D.5

and Figure D.6, and detailed in the following subsections.

D.7.5 Cutting an Orientable Face at a Closed Edge

The �rst way to cut a face is via a closed edge included in the face. We recall that the geometric

realization of a face is int(Fε,g,k), and all the possibilities are illustrated in Figure A.3. As can be

seen in Figure D.4, there exist many ways to choose a closed edge e◦ inside the interior of a face

f . In this section and the following, we classify all of them.

First, let us consider the case where f is orientable. Let e◦ be a closed edge included in f . Thus,

the pointset f \e◦ is either connected or it is not. If f \e◦ is connected, this completely determines

the cut, i.e. any choice of e◦ included in an orientable face f such that f \ e◦ is connected leads to

the same PCS complex up to homeomorphism, i.e. they have the same abstract PCS complex. This

abstract PCS complex is obtained from the abstract PCS complex before the cut by decreasing the

genus of f by one, and adding the two cycles [(e◦,>)] and [(e◦,⊥)] to f . This is performed by the

topological operator below:

CutOrientableFaceAtNonDisconnectingClosedEdge (f ∈ F)

Require: ε(f) =� and g(f) ≥ 1

1 g(f)← g(f)− 1
2 e◦ ← CreateClosedEdge()

3 AddSimpleCycleToFace(f ,e◦,>,1)

4 AddSimpleCycleToFace(f ,e◦,⊥,1)

If, on the contrary, f \ e◦ is not connected, then this means that it has two connected components

f1 and f2, both orientable and satisfying g(f) = g(f1) + g(f2), where the cycles of f are dis-

tributed among f1 and f2, the cycle [(e◦,>)] is added to f1, and the cycle [(e◦,⊥)] is added to f2.

However, the actual values of g(f1) and g(f2), as well as which cycles are transferred to f1 and

which cycles are transferred to f2 cannot be determined combinatorially without an underlying

triangulation, and must therefore be an input of the following PCS topological operator. We note

that the “CutSphereAtClosedEdge” operator that we have presented as a motivating example is

redundant with this operator and therefore is not part of the classi�cation.

198

D.7. Cut Cells

CutOrientableFaceAtDisconnectingClosedEdge (f ∈ F , g1 ∈ N, g2 ∈ N, I ⊆ N)

Require: ε(f) =� and g(f) = g1 + g2

1 e◦ ← CreateClosedEdge() . Create the cut edge e◦ and the two faces f1 and f2

2 f1 ← CreateFace(�, g1)

3 f2 ← CreateFace(�, g2)

4 for all cycle γi of f do . Distribute the cycles of f among f1 and f2

5 if i ∈ I then
6 AddCycleToFace(f1,γi(f))

7 else
8 AddCycleToFace(f2,γi(f))

9 AddSimpleCycleToFace(f1,e◦,>,1) . Add cycle [(e◦,>)] to f1 and cycle [(e◦,⊥)] to f2

10 AddSimpleCycleToFace(f2,e◦,⊥,1)

11 HardDelete(f) . Delete f

D.7.6 Cutting a Non-Orientable Face at a Closed Edge

In this section, let us consider the case where a non-orientable f is cut at a closed edge e◦. The

pointset f ′ = f \ e◦ is either connected or it is not, and let us �rst consider the case where it is

connected. On the contrary to the orientable case presented in the previous section, the informa-

tion “f \ e◦ is connected” does not fully determine the cut, unless g(f) = 1. More speci�cally, it is

in fact always possible to choose e◦ such that f ′ becomes orientable, but if g(f) ≥ 2 then it is also

possible to choose e◦ such that f ′ stays non-orientable. Reasoning with the Euler characteristic,

it can be shown that if f ′ is orientable, then this information fully determines the cut, which is

given by the following topological operator:

199

D.7. Cut Cells

CutNonOrientableFaceAtNonDisconnectingOrientingClosedEdge (f ∈ F)

Require: ε(f) =6�

1 if g(f) is odd then
2 ε(f)←�
3 g(f)← g−1

2
4 e◦ ← CreateClosedEdge()

5 AddSimpleCycleToFace(f ,e◦,>,2)

6 else
7 ε(f)←�
8 g(f)← g−2

2
9 e◦ ← CreateClosedEdge()

10 AddSimpleCycleToFace(f ,e◦,>,1)

11 AddSimpleCycleToFace(f ,e◦,>,1)

However, if f ′ is non-orientable, then there still remains some ambiguity. Speci�cally, whenever

g ≥ 2 it is possible to cut by preserving non-orientability and adding only one boundary (i.e.,

adding the cycle [(e◦,>)2]), and whenever g ≥ 3 it is also possible to cut by preserving non-

orientability and adding two boundaries (i.e., add the cycle [(e◦,>)] twice). In the �rst scenario,

it can be shown that the genus is decreased by one, and in the second scenario it can be shown

that the genus is decreased by two. Therefore, this leads to the following two topological opera-

tors:

CutNonOrientableFaceAtNonDisconnectingNonOrientingOddClosedEdge (f ∈ F)

Require: ε(f) =6� and g ≥ 2

1 g(f)← g − 1
2 e◦ ← CreateClosedEdge()

3 AddSimpleCycleToFace(f ,e◦,>,2)

CutNonOrientableFaceAtNonDisconnectingNonOrientingEvenClosedEdge (f ∈ F)

Require: ε(f) =6� and g ≥ 3

1 g(f)← g − 2
2 e◦ ← CreateClosedEdge()

3 AddSimpleCycleToFace(f ,e◦,>,1)

4 AddSimpleCycleToFace(f ,e◦,>,1)

Now that we have �nished to consider all the cases where f \ e◦ was connected, we are about to

consider the cases where f \ e◦ is not connected, and therefore has two connected components f1

200

D.7. Cut Cells

and f2. In this case, as with the orientable case, the cycles of f must be distributed among f1 and f2,

the cycle [(e◦,>)] is added to f1, and the cycle [(e◦,⊥)] is added to f2. Since f is non-orientable,

it can be shown that f1 and f2 cannot be both orientable, but all three other combinations are

possible: f1 orientable and f2 non-orientable; f1 non-orientable and f2 orientable; or both f1 and

f2 non-orientable (however, the latter is only possible if g(f) ≥ 2). Reasoning with the Euler

characteristic, it can be shown that for each of these three cases, we have the genus relation,

respectively: g(f) = 2g(f1) + g(f2); g(f) = g(f1) + 2g(f2); and g(f) = g(f1) + g(f2). However,

whether f1 and f2 are orientable and the actual values of g(f1) and g(f2) cannot be determined

algorithmically without an underlying triangulation. Therefore, they are all input to the following

topological operator that spans all the three cases:

CutNonOrientableFaceAtDisconnectingClosedEdge (f ∈ F , ε1, ε2 ∈ {�, 6�}, g1, g2 ∈ N, I ⊆ N)

Require: ε(f) =6�
Require: ε1 =6� or ε2 =6�
Require: (ε1 =� and ε2 =6�)⇒ (g2 ≥ 1 and g(f) = 2g1 + g2)

Require: (ε1 =6� and ε2 =�)⇒ (g1 ≥ 1 and g(f) = g1 + 2g2)

Require: (ε1 =6� and ε2 =6�)⇒ (g1 ≥ 1, g2 ≥ 1, and g(f) = g1 + g2)

1 e◦ ← CreateClosedEdge() . Create the cut edge e◦ and the two faces f1 and f2

2 f1 ← CreateFace(ε1, g1)

3 f2 ← CreateFace(ε2, g2)

4 for all cycle γi of f do . Distribute the cycles of f among f1 and f2

5 if i ∈ I then
6 AddCycleToFace(f1,γi(f))

7 else
8 AddCycleToFace(f2,γi(f))

9 AddSimpleCycleToFace(f1,e◦,>,1) . Add cycle [(e◦,>)] to f1 and [(e◦,⊥)] to f2

10 AddSimpleCycleToFace(f2,e◦,⊥,1)

11 HardDelete(f) . Delete f

201

D.7. Cut Cells

D.7.7 Cutting a Face at an Open Edge Starting and Ending at the Same
Hole

As illustrated in Figure D.4, this case is very similar to cutting at a closed edge, and follows the

same classi�cation. The di�erence is that instead of adding the two cycles [(e◦,>)] and [(e◦,⊥)]
(resp., twice the cycle [(e◦,>)], or the single cycle [(e◦,>)2]), we remove one cycle γi (the cycle

corresponding to the starting/ending hole), split it into two paths π1 and π2, then add the two

cycles [π1, (e,>)] and [π2, (e,⊥)] (resp., the two cycles [π1, (e,>)] and [π2, (e,>)], or the single

cycle [π1, (e,>), π2, (e,>)]).

As illustrated in Figure D.7, one issue is that the same vertex may be used several times by the

same cycle, and hence knowing vstart(e) and vend(e) is in general not enough information to

combinatorially determine at which two indices the cycle γi must be split. Therefore, these indices

must be explicitly provided as input of the topological operator, in the form of two integers jstart

and jend, in addition to the integer i specifying γi. Finally, we note that the same vertex-use©v f,i,j
can be speci�ed as both start and end vertex-use of the cut (cf Figure D.7, bottom-left), in which

case either π1 or π2 is empty, while the other is equal to the whole cycle γi. To disambiguate which

is which, the caller of the operator must indicate either jend = jstart (to get π1 = γi and π2 = []),
or jend = jstart + N(γi) (to get π1 = [] and π2 = γi). In the special case where γi is a Steiner

cycle, then jstart and jend are not necessary and are simply ignored. We note that γi cannot be a

simple cycle, since a simple cycle do not have any vertex-use.

Combining the above observations with the classi�cation already given for cutting at a closed

edge, we obtain six topological operators that are reported in this section. But �rst, we de�ne the

helper method SplitCycle() splitting a cycle γ into two paths π1 and π2, given two indices jstart

and jend indicating where to split γ:

202

D.7. Cut Cells

SplitCycle (γ ∈ Γ, jstart ∈ N, jend ∈ N)

Require:

γ is a Steiner cycle, or

γ is a non-simple cycle, and

jstart ∈ [1..N(γ)], and
jend = jstart, or

jend = jstart +N(γ), or

jend ∈ [1..N(γ)] and jstart 6= jend

1 if γ is a Steiner cycle then . γ = [v]

2 vstart ← v(γ)
3 vend ← v(γ)
4 π1 ← [v(γ)]
5 π2 ← [v(γ)]

6 else
7 if jend = jstart then . γ = [h1 · · · hjstart •

vjstart
hjstart+1 · · · hN]

8 vstart ← vjstart(γ)
9 vend ← vjstart(γ)

10 π1 ← [hjstart+1 · · · hN h1 · · · hjstart]
11 π2 ← [vjstart(γ)]

12 else if jend = jstart +N(γ) then
13 vstart ← vjstart(γ)
14 vend ← vjstart(γ)
15 π1 ← [vjstart(γ)]
16 π2 ← [hjstart+1 · · · hN h1 · · · hjstart]

17 else if jstart < jend then . γ = [h1 · · · hjstart •
vjstart

hjstart+1 · · · hjend •
vjend

hjend+1 · · · hN]

18 vstart ← vjstart(γ)
19 vend ← vjend(γ)
20 π1 ← [hjend+1 · · · hN h1 · · · hjstart]
21 π2 ← [hjstart+1 · · · hjend]

22 else . γ = [h1 · · · hjend •
vjend

hjend+1 · · · hjstart •
vjstart

hjstart+1 · · · hN]

23 vstart ← vjstart(γ)
24 vend ← vjend(γ)
25 π1 ← [hjend+1 · · · hjstart]
26 π2 ← [hjstart+1 · · · hN h1 · · · hjend]

27 return (vstart, vend, π1, π2)

203

D.7. Cut Cells

∂̂f =
[

[(e◦4,>)]
[•
v

(e1,>) •
v

(e2,>) •
v

(e3,>) •
v

]

]

f
e1

e2e3

e◦4

v

©v f,2,1 ©v f,2,2 ©v f,2,3

©v f,2,1

©v f,2,2

©v f,2,3
f1

e
e2e3

e◦4f2

e1

v

∂̂f1 =
[

[(e◦4,>)]
[•
v

(e1,>) •
v

(e2,>) •
v

(e,>) •
v

]

]

∂̂f2 =
[

[•
v

(e3,>) •
v

(e,⊥) •
v

]
]

f1

e
e2e3

e◦4

f2

e1

v

∂̂f1 =
[

[(e◦4,>)]
[•
v

(e3,>) •
v

(e1,>) •
v

(e,>) •
v

]

]

∂̂f2 =
[

[•
v

(e2,>) •
v

(e,⊥) •
v

]
]

f1

e

e2e3

e◦4f2

e1

v

∂̂f1 =
[

[(e◦4,>)]
[•
v

(e3,>) •
v

(e1,>) •
v

(e2,>) •
v

(e,>) •
v

]

]

∂̂f2 =
[

[•
v

(e,⊥) •
v

]
]

Figure D.7: Three di�erent cuts that start and end at the same vertex, but with di�erent vertex-uses.

We now report all the six di�erent methods that can be used to cut a face at an open edge starting

and ending at the same hole. In addition to speci�c parameters, all these methods have in common

the parameters f ∈ F , i ∈ N, jstart ∈ N, jend ∈ N with the following requirement that we report

here for conciseness:

i ∈ [1..k(f)], and

γi(f) is a Steiner cycle, or

γi(f) is a non-simple cycle, and

jstart ∈ [1..N(γi(f))], and
jend = jstart, or

jend = jstart +N(γi(f)), or

jend ∈ [1..N(γi(f))] and jstart 6= jend

(D.18)

204

D.7. Cut Cells

CutOrientableFaceAtNonDisconnectingOpenEdge (f ∈ F , i ∈ N, jstart ∈ N, jend ∈ N)

Require: ε(f) =� and g(f) ≥ 1
Require: Equation D.18

1 (vstart, vend, π1, π2)← SplitCycle(γi(f), jstart, jend)

2 g(f)← g(f)− 1
3 e← CreateOpenEdge(vstart, vend)

4 AddNonSimpleCycleToFace(f , [π1, (e,>)])
5 AddNonSimpleCycleToFace(f , [π2, (e,⊥)])
6 RemoveCycleFromFace(f ,i)

CutOrientableFaceAtDisconnectingOpenEdge (f ∈ F , i ∈ N, jstart, jend ∈ N, g1, g2 ∈ N, I ⊆ N)

Require: ε(f) =� and g(f) = g1 + g2

Require: Equation D.18

1 (vstart, vend, π1, π2)← SplitCycle(γi(f), jstart, jend)

2 e← CreateOpenEdge(vstart, vend) . Create the cut edge e and the two faces f1 and f2

3 f1 ← CreateFace(�, g1)

4 f2 ← CreateFace(�, g2)

5 for all cycle γi′ of f , i′ 6= i do . Distribute the cycles of f , except γi, among f1 and f2

6 if i′ ∈ I then
7 AddCycleToFace(f1,γi′(f))

8 else
9 AddCycleToFace(f2,γi′(f))

10 AddNonSimpleCycleToFace(f1, [π1, (e,>)]) . Add cycle [π1, (e,>)] to f1 and [π2, (e,⊥)] to f2

11 AddNonSimpleCycleToFace(f2, [π2, (e,⊥)])

12 HardDelete(f) . Delete f

205

D.7. Cut Cells

CutNonOrientableFaceAtNonDisconnectingOrientingOpenEdge (f ∈ F , i ∈ N, jstart ∈ N, jend ∈ N)

Require: ε(f) =6�
Require: Equation D.18

1 (vstart, vend, π1, π2)← SplitCycle(γi(f), jstart, jend)

2 if g(f) is odd then
3 ε(f)←�
4 g(f)← g−1

2
5 e← CreateOpenEdge(vstart, vend)

6 AddNonSimpleCycleToFace(f , [π1, (e,>), π2, (e,>)])
7 RemoveCycleFromFace(f ,i)

8 else
9 ε(f)←�

10 g(f)← g−2
2

11 e← CreateOpenEdge(vstart, vend)

12 AddNonSimpleCycleToFace(f , [π1, (e,>)])
13 AddNonSimpleCycleToFace(f , [π2, (e,>)])
14 RemoveCycleFromFace(f ,i)

CutNonOrientableFaceAtNonDisconnectingNonOrientingOddOpenEdge (f ∈ F , i, jstart, jend ∈ N)

Require: ε(f) =6� and g ≥ 2
Require: Equation D.18

1 (vstart, vend, π1, π2)← SplitCycle(γi(f), jstart, jend)

2 g(f)← g − 1
3 e← CreateOpenEdge(vstart, vend)

4 AddNonSimpleCycleToFace(f , [π1, (e,>), π2, (e,>)])
5 RemoveCycleFromFace(f ,i)

206

D.7. Cut Cells

CutNonOrientableFaceAtNonDisconnectingNonOrientingEvenOpenEdge (f ∈ F , i, jstart, jend ∈ N)

Require: ε(f) =6� and g ≥ 3
Require: Equation D.18

1 (vstart, vend, π1, π2)← SplitCycle(γi(f), jstart, jend)

2 g(f)← g − 2
3 e← CreateOpenEdge(vstart, vend)

4 AddNonSimpleCycleToFace(f , [π1, (e,>)])
5 AddNonSimpleCycleToFace(f , [π2, (e,>)])
6 RemoveCycleFromFace(f ,i)

CutNonOrientableFaceAtDisconnectingOpenEdge (f ∈ F , i, jstart, jend, ε1, ε2, g1, g2, I ⊆ N)

Require: ε(f) =6�
Require: ε1 =6� or ε2 =6�
Require: (ε1 =� and ε2 =6�)⇒ (g2 ≥ 1 and g(f) = 2g1 + g2)

Require: (ε1 =6� and ε2 =�)⇒ (g1 ≥ 1 and g(f) = g1 + 2g2)

Require: (ε1 =6� and ε2 =6�)⇒ (g1 ≥ 1, g2 ≥ 1, and g(f) = g1 + g2)

Require: Equation D.18

1 (vstart, vend, π1, π2)← SplitCycle(γi(f), jstart, jend)

2 e← CreateOpenEdge(vstart, vend) . Create the cut edge e and the two faces f1 and f2

3 f1 ← CreateFace(ε1, g1)

4 f2 ← CreateFace(ε2, g2)

5 for all cycle γi′ of f , i′ 6= i do . Distribute the cycles of f , except γi, among f1 and f2

6 if i ∈ I then
7 AddCycleToFace(f1,γi′(f))

8 else
9 AddCycleToFace(f2,γi′(f))

10 AddNonSimpleCycleToFace(f1, [π1, (e,>)]) . Add cycle [π1, (e,>)] to f1 and [π2, (e,⊥)] to f2

11 AddNonSimpleCycleToFace(f2, [π2, (e,⊥)])

12 HardDelete(f) . Delete f

207

D.7. Cut Cells

D.7.8 Cutting a Face at an Open Edge Starting and Ending at Different
Holes

Finally, the last case to consider is when the cut edge e is an open edge that starts and ends at

di�erent holes, represented by di�erent cycles γi1 and γi2 of f . Fortunately, this case is actually

very easy to handle, as it can be shown that it never disconnects f , and preserves its orientability

and genus. Therefore, its only action is to merge the two cycles γi1 and γi2 into a single cycle, by

joining them with e, as per the algorithm below:

RotatedCycle (γ ∈ Γ, j ∈ N)

Require: γ is a Steiner cycle, or a non-simple cycle with j ∈ [1..N(γ)]

1 if γ is a Steiner cycle then . γ = [v]
2 v′ ← v(γ)
3 γ′ ← γ

4 else . γ = [h1 · · · hj •
vj
hj+1 · · · hN]

5 v′ ← vj(γ)
6 γ′ ← [hj+1 · · · hN h1 · · · hj]

7 return (v′, γ′)

CutFaceAtOpenEdge (f ∈ F , i1 ∈ N, i2 ∈ N, j1 ∈ N, j2 ∈ N)

Require: (i1, i2) ∈ [1..k(f)]2

Require: γi1(f) is a Steiner cycle, or a non-simple cycle with j1 ∈ [1..N(γi1(f))]
Require: γi2(f) is a Steiner cycle, or a non-simple cycle with j2 ∈ [1..N(γi2(f))]

1 (v1, γ1)← RotatedCycle(i1, j1)

2 (v2, γ2)← RotatedCycle(i2, j2)

3 e← CreateOpenEdge(v1, v2)

4 AddNonSimpleCycleToFace(f , [γ1, (e,>), γ2, (e,⊥)])
5 RemoveCyclesFromFace(f ,{i1, i2})

D.7.9 Flipping Cycles of Non-Orientable Faces

When cutting a non-orientable face, there is one additional subtlety that has been omitted for

clarity. It starts with the observation that directions of cycles matter for orientable faces, but do

not matter for non-orientable faces. This means that it is always possible to �ip the direction of

any cycle of any non-orientable face, and this will result in a homeomorphic abstract PCS complex

(i.e., their geometric realization is homeomorphic). Therefore, the topological operator below is

208

D.7. Cut Cells

essentially a null operation, and can be performed at any time without changing what PCS complex

it represents:

FlipCycle (f ∈ F , i ∈ N)

Require: ε(f) =6� and i ∈ [1..k(f)]

1 γi(f)← γi(f)

However, it cannot be performed for orientable faces since it could lead to non-homeomorphic

PCS complexes. For instance, consider two abstract PCS complexes, each of them being made of

one closed cycle e◦ and one face f . In the �rst abstract PCS complex, the face is

f = (�, 0, [[(e◦,>)], [(e◦,>)]]), (D.19)

while in the second abstract PCS complex, the face is

f = (�, 0, [[(e◦,>)], [(e◦,⊥)]]). (D.20)

In both cases, it is possible to uncut at e◦, but the resulting PCS complexes are not homeomorphic:

one leads to a Klein bottle while the other leads to a torus, as formalized below:

f = (�, 0,
[

[(e◦,>)]
[(e◦,>)]

]
) UnCutAt(e◦)−−−−−−−−→ f ′ = (6�, 2, []) (D.21)

f = (�, 0,
[

[(e◦,>)]
[(e◦,⊥)]

]
) UnCutAt(e◦)−−−−−−−−→ f ′ = (�, 1, []) (D.22)

This has to be compared with the non-orientable case, where indeed direction does not matter, as

illustrated by the examples below:

f = (6�, 1,
[

[(e◦,>)]
[(e◦,>)]

]
) UnCutAt(e◦)−−−−−−−−→ f ′ = (6�, 3, []) (D.23)

f = (6�, 1,
[

[(e◦,>)]
[(e◦,⊥)]

]
) UnCutAt(e◦)−−−−−−−−→ f ′ = (6�, 3, []) (D.24)

Therefore, when a non-orientable face f generates an orientable face f ′, f1 or f2 under the action

of a cut, in addition to give as input which cycles to transfer to the orientable face, it is also

necessary to give as input what directions to give to these cycles, directions that could be computed

209

D.8. Uncut Cells

if ecut was given as edges of an underlying triangulation. Also, in the case where a non-orientable

face is cut at an open edge starting and ending at the same hole, there are in fact two possible

non-homeomorphic outcomes of the cut: either merging γi1 and γi2 into [γi1 , (e,>), γi2 , (e,⊥)],
or merging them into [γi1 , (e,>), γi2 , (e,⊥)].

Instead of making the input of the topological operators more complicated that it already is, this

can simply be achieved by calling FlipCycle() as many times as necessary before calling one of the

CutNonOrientableFace[. . .] methods (or CutFaceAtOpenEdge() if f is non-orientable), and this

sequence can be seen as the whole cut operator.

D.8 Uncut Cells

We now present the uncut topological operator, which is the reverse of the cut operator. Since

all the important ideas have already been covered in the previous section, we provide here the

algorithm but do not comment it extensively. Nevertheless, here are two important observa-

tions:

• Given a cell c, it is not always possible to “uncut at c”. More speci�cally, it is possible to

uncut at c if and only if cmay have been created as the cut cell of a cut topological operator.

• On the contrary to the cut operator, the uncut operator is not ambiguous. This means that

indicating which cell to uncut at is the only necessary input. One way to interpret this

fundamental di�erence between cut and uncut is that before the cut, we do not know yet

ecut, and hence we have to fully specify combinatorially how it cuts a given face. However,

for the reverse operation, ecut does exist, and hence we know exactly how it is used, e.g. as

a frontier between two known faces. Merging back these two faces into one face is a non-

ambiguous process, but during which information about ecut is lost, reason why the reverse

process is ambiguous.

CanUnCutAt (c ∈ C)

1 if c ∈ V then
2 return CanUnCutAtVertex(c)

3 else if c ∈ E◦ then
4 return CanUnCutAtClosedEdge(c)

5 else if c ∈ E| then
6 return CanUnCutAtOpenEdge(c)

7 else if c ∈ F then
8 return false

210

D.8. Uncut Cells

CanUnCutAtVertex (v ∈ V)

1 if star(v) = ∅ then
2 return false

3 else

. Count the number of end-vertex-uses, including edges with incident faces (unlike

UnGlue).

4 Nincident−edges ← 0
5 Nend−vertex−use ← 0
6 for all edge e ∈ star(v) do
7 Nincident−edges ← Nincident−edges + 1
8 if vstart(e) = v then . End-vertex-use©v e,start

9 Nend−vertex−use ← Nend−vertex−use + 1

10 if vend(e) = v then . End-vertex-use©v e,end

11 Nend−vertex−use ← Nend−vertex−use + 1

. Count the number of Steiner-vertex-uses.

12 NSteiner−vertex−use ← 0
13 for all face f ∈ star(v) do
14 for all Steiner cycle γ•i = [vi] ∈ ∂̂f do
15 if vi = v then . Steiner-vertex-use©v f,i
16 NSteiner−vertex−use ← NSteiner−vertex−use + 1

. Check if v could have been created via CutFaceAtVertex().

17 if NSteiner−vertex−use = 1 and Nend−vertex−use = 0 then
18 return true

. Check if v could have been created via CutClosedEdge(). This requires v to have a single

incident edge e = (v, v), and cycles using e must be of the form [(e, β)N].

19 if NSteiner−vertex−use = 0 and Nend−vertex−use = 2 and Nincident−edges = 1 then
20 e← only edge in star(v)
21 for all face f ∈ star(v) do
22 for all non-simple cycle γi ∈ ∂̂f do
23 if γi uses e and @(β,N) s.t. γi = [(e, β)N] then
24 return false

25 return true

211

D.8. Uncut Cells

. Check if v could have been created via CutOpenEdge(). This requires v to have exactly

two incident edges e1 and e2 each using v once, and cycles using v must not do any

“switch-back” at v.

26 if NSteiner−vertex−use = 0 and Nend−vertex−use = 2 and Nincident−edges = 2 then
27 (e1, e2)← the two edges in star(v)
28 for all face f ∈ star(v) do
29 for all non-simple cycle γi ∈ ∂̂f do
30 for all j ∈ [1..N(γi)] do
31 if vj = v and ej(γi) = ej+1(γi) then
32 return false

33 return true

. All other cases mean that v could not have been created via a cut

34 return false

CanUnCutAtClosedEdge (e◦ ∈ E◦)
1 if star(e◦) = ∅ then
2 return false

3 else
4 Nincident−faces ← 0
5 Ncycles−using−e ← 0
6 Nclosed−edge−use ← 0
7 for all face f ∈ star(e◦) do
8 Nincident−faces ← Nincident−faces + 1
9 for all simple cycle γ◦i ∈ ∂̂f do

10 if e◦(γ◦i) = e◦ then . Closed-edge-uses©e◦ f,i,1 to©e◦ f,i,N(γ◦i)

11 Ncycles−using−e ← Ncycles−using−e + 1
12 Nclosed−edge−use ← Nclosed−edge−use +N(γ◦i)

13 if Nclosed−edge−use = 2 then
14 return true

15 else
16 return false

212

D.8. Uncut Cells

CanUnCutAtOpenEdge (e ∈ E|)

1 if star(e) = ∅ then
2 return false

3 else
4 Nincident−faces ← 0
5 Ncycles−using−e ← 0
6 Nopen−edge−use ← 0
7 for all face f ∈ star(e) do
8 Nincident−faces ← Nincident−faces + 1
9 for all non-simple cycle γi ∈ ∂̂f do

10 CycleAlreadyCounted← false

11 for all j ∈ [1..N(γi)] do
12 if ej(γ) = e then . Open-edge-use©e f,i,j
13 Nopen−edge−use ← Nopen−edge−use + 1
14 if not CycleAlreadyCounted then
15 Ncycles−using−e ← Ncycles−using−e + 1
16 CycleAlreadyCounted← true

17 if Nopen−edge−use = 2 then
18 return true

19 else
20 return false

UnCutAt (c ∈ C)

1 if c ∈ V then
2 UnCutAtVertex(c)

3 else if c ∈ E◦ then
4 UnCutAtClosedEdge(c)

5 else if c ∈ E| then
6 UnCutAtOpenEdge(c)

7 else if c ∈ F then
8 Do nothing

213

D.8. Uncut Cells

UnCutAtVertex (v ∈ V)

1 if NOT CanUnCutAtVertex(v) then
2 Do nothing

3 else

. Handle case where v could have been created via CutFaceAtVertex().

4 if NSteiner−vertex−use = 1 and Nend−vertex−use = 0 then
5 f ← only face in star(v)
6 i← index of Steiner cycle of f using v

7 RemoveCycleFromFace(f ,i)

. Handle case where v could have been created via CutClosedEdge().

8 if NSteiner−vertex−use = 0 and Nend−vertex−use = 2 and Nincident−edges = 1 then
9 e◦ ← CreateClosedEdge()

10 e← only edge in star(v)
11 for all face f ∈ star(v) do
12 for all non-simple cycle γi ∈ ∂̂f do
13 if γi uses e then
14 (β,N)← values such that γi = [(e, β)N]
15 γi(f)← [(e◦, β)N]

16 HardDelete(e)

. Handle case where v could have been created via CutOpenEdge().

17 if NSteiner−vertex−use = 0 and Nend−vertex−use = 2 and Nincident−edges = 2 then

. Compute h1 and h2, the two halfedges such that
h1−→ v• h2−→.

18 (e1, e2)← the two edges in star(v)
19 if vend(e1) = v then β1 ← > else β1 ← ⊥
20 if vstart(e2) = v then β2 ← > else β2 ← ⊥
21 h1 ← (e1, β1); h2 ← (e2, β2)

. Create the new open edge e = (vstart(h1), vend(h2)).

22 e← CreateOpenEdge(vstart(h1),vend(h2))

. Replace every occurrence of
h1−→ v• h2−→ by (e,>) and every occurrence of

h2←−
v• h1←− by (e,⊥).

23 for all face f ∈ star(v) do
24 for all non-simple cycle γi ∈ ∂̂f do
25 γ′i ← []

214

D.8. Uncut Cells

26 for all j ∈ [1..N(γi)] do
27 if ej(γi) = e1 then
28 Do nothing.

29 else if ej(γi) = e2 then
30 if βj(γi) = β2 then
31 Append (e,>) to γ′i
32 else
33 Append (e,⊥) to γ′i

34 else
35 Append hj(γi) to γ′i

36 γi(f)← γ′i

. Delete e1 and e2.

37 HardDelete(e1)

38 HardDelete(e2)

. In any of the previous cases, delete v.

39 HardDelete(v)

UnCutAtClosedEdge (e◦ ∈ E◦)
1 if NOT CanUnCutAtClosedEdge(e◦) then
2 Do nothing

3 else
4 if Nincident−faces = 1 then . 1 face f ′: Case (a), (c), (d), (e), or (f) (cf. Figure D.5)

5 f ′ ← face using e◦

6 if Ncycles−using−e = 1 then . 1 cycle γi = [(e◦, β)2]: Case (c) or (e)

7 i← index of cycle of f ′ using e◦

8 RemoveCycleFromFace(f ′,i)

9 if ε(f ′) =6� then . f ′ non-orientable: Case (e)

10 g(f ′)← g(f ′) + 1
11 else . f ′ orientable: Case (c)

12 ε(f ′)←6�
13 g(f ′)← 2g(f ′) + 1

14 else . 2 cycles γi1 = [(e◦, β1)] and γi2 = [(e◦, β2)]: Case (a), (d), or (f)

15 (i1, i2)← indices of cycles of f ′ using e◦

16 β1 ← β(γi1(f ′))
17 β2 ← β(γi2(f ′))

215

D.8. Uncut Cells

18 RemoveCyclesFromFace(f ′,{i1, i2})
19 if ε(f ′) =6� then . f ′ non-orientable: Case (f)

20 g(f ′)← g(f ′) + 2
21 else if β1 = β2 then . f ′ orientable, β1 = β2: Case (d)

22 ε(f ′)←6�
23 g(f ′)← 2g(f ′) + 2
24 else . f ′ orientable, β1 6= β2: Case (a)

25 g(f ′)← g(f ′) + 1

26 else . 2 faces f1 and f2, 2 cycles γi1 = [(e◦, β1)] and γi2 = [(e◦, β2)]: Case (b), (g), (h), or (i)

27 (f1, f2)← faces using e◦

28 i1 ← index of cycle of f1 using e◦

29 i2 ← index of cycle of f2 using e◦

30 β1 ← β(γi1(f1))
31 β2 ← β(γi2(f2))
32 if ε(f1) =6� and ε(f2) =6� then . ε1 =6�, ε2 = 6�: Case (i)

33 f ← CreateFace(6�, g(f1) + g(f2))

34 else if ε(f1) =6� and ε(f2) =� then . ε1 =6�, ε2 =�: Case (h)

35 f ← CreateFace(6�, g(f1) + 2g(f2))

36 else if ε(f1) =� and ε(f2) =6� then . ε1 =�, ε2 =6�: Case (g)

37 f ← CreateFace(6�, 2g(f1) + g(f2))

38 else . ε1 =�, ε2 =�: Case (b)

39 f ← CreateFace(�, g(f1) + g(f2))

40 if β1 = β2 then
41 for all i ∈ [1..k(f2)] do
42 FlipCycle(f2,i)

43 for all i ∈ [1..k(f1)], i 6= i1 do
44 AddCycleToFace(f ,γi(f1))

45 for all i ∈ [1..k(f2)], i 6= i2 do
46 AddCycleToFace(f ,γi(f2))

47 HardDelete(f1)

48 HardDelete(f2)

49 HardDelete(e◦)

216

D.8. Uncut Cells

UnCutAtOpenEdge (e ∈ E|)

1 if NOT CanUnCutAtOpenEdge(e) then
2 Do nothing

3 else
4 if Nincident−faces = 1 then . 1 face f ′: Case (j), (l), (m), (n), (o), or (s) (cf. Figure D.6)

5 f ′ ← face using e

6 if Ncycles−using−e = 1 then . 1 cycle γi = [π1, (e, β1), π2, (e, β2)]: Case (l), (n), or (s)

7 i← index of the cycle of f ′ using e

8 γi ← γi(f ′)
9 (j1, j2)← indices of the two halfedges of γi using e

10 β1 ← βj1(γi)
11 β2 ← βj2(γi)
12 π1 ← SubPath(γi,j1,j2 − 1)

13 π2 ← SubPath(γi,j2,j1 − 1)

14 RemoveCycleFromFace(f ′,i)

15 if β1 = β2 then
16 AddCycleToFace(f ′,[π1, π2])
17 if ε(f ′) =6� then . β1 = β2, f ′ non-orientable: Case (n)

18 g(f ′)← g(f ′) + 1
19 else . β1 = β2, f ′ orientable: Case (l)

20 ε(f ′)←6�
21 g(f ′)← 2g(f ′) + 1

22 else . β1 6= β2: Case (s)

23 AddCycleToFace(f ′,[π1))

24 AddCycleToFace(f ′,[π2))

25 else . 2 cycles γi1 = [π1, (e, β1)] and γi2 = [π2, (e, β2)]: Case (j), (m), or (o)

26 (i1, i2)← indices of the cycles of f ′ using e

27 γi1 ← γi1(f ′)
28 γi2 ← γi2(f ′)
29 j1 ← index of the halfedge of γi1 using e

30 j2 ← index of the halfedge of γi2 using e

31 β1 ← βj1(γi1)
32 β2 ← βj2(γi2)
33 π1 ← SubPath(γi1 ,j1,j1 − 1)

34 π2 ← SubPath(γi2 ,j2,j2 − 1)

35 RemoveCyclesFromFace(f ′,{i1, i2})

217

D.8. Uncut Cells

36 if ε(f ′) =6� then . f ′ non-orientable: Case (o)

37 if β1 = β2 then
38 AddCycleToFace(f ′,[π1, π2])
39 else
40 AddCycleToFace(f ′,[π1, π2])

41 g(f ′)← g(f ′) + 2
42 else if β1 = β2 then . f ′ orientable, β1 = β2: Case (m)

43 AddCycleToFace(f ′,[π1, π2])
44 ε(f ′)←6�
45 g(f ′)← 2g(f ′) + 2
46 else . f ′ orientable, β1 6= β2: Case (j)

47 AddCycleToFace(f ′,[π1, π2])
48 g(f ′)← g(f ′) + 1

49 else . 2 faces f1 and f2, 2 cycles γi1 = [π1, (e, β1)] and γi2 = [π2, (e, β2)]: Case (k), (p), (k), or (r)

50 (f1, f2)← faces using e

51 i1 ← index of cycle of f1 using e

52 i2 ← index of cycle of f2 using e

53 γi1 ← γi1(f1)
54 γi2 ← γi2(f2)
55 j1 ← index of the halfedge of γi1 using e

56 j2 ← index of the halfedge of γi2 using e

57 β1 ← βj1(γi1)
58 β2 ← βj2(γi2)
59 π1 ← SubPath(γi1 ,j1,j1 − 1)

60 π2 ← SubPath(γi2 ,j2,j2 − 1)

61 if ε(f1) =6� and ε(f2) =6� then . ε1 =6�, ε2 =6�: Case (r)

62 f ← CreateFace(6�, g(f1) + g(f2))

63 else if ε(f1) =6� and ε(f2) =� then . ε1 =6�, ε2 =�: Case (q)

64 f ← CreateFace(6�, g(f1) + 2g(f2))

65 else if ε(f1) =� and ε(f2) =6� then . ε1 =�, ε2 =6�: Case (p)

66 f ← CreateFace(6�, 2g(f1) + g(f2))

67 else . ε1 =�, ε2 =�: Case (k)

68 f ← CreateFace(�, g(f1) + g(f2))

69 if β1 = β2 then
70 for all i ∈ [1..k(f2)] do
71 FlipCycle(f2,i)

72 for all i ∈ [1..k(f1)], i 6= i1 do

218

D.8. Uncut Cells

73 AddCycleToFace(f ,γi(f1))

74 for all i ∈ [1..k(f2)], i 6= i2 do
75 AddCycleToFace(f ,γi(f2))

76 if β1 = β2 then
77 AddCycleToFace(f ,[π1, π2])
78 else
79 AddCycleToFace(f ,[π1, π2])

80 HardDelete(f1)

81 HardDelete(f2)

82 HardDelete(e◦)

219

Appendix E

Simplification of PCS Complexes

star

c

Sc S−c S−c ∪ {c} C �c C′

reduced

star extension

simpli�cation

at c

Figure E.1: Reduced star and atomic simpli�cation.

In this appendix, we de�ne the concept of simpli�cation of PCS complexes, which is used to de�ne

the uncut topological operator, and to de�ne the concept of minimal decomposition. We conjecture

that given a PCS complex K = (X, C), then X has a unique minimal PCS decomposition Km =
(X, Cm). However, we leave the proof for future work. Once idea to prove it might be to triangulate

the PCS complex, and show that any sequence of simpli�cations leads to the unique decomposition

discussed in [De Floriani et al. 2003].

E.1 Simplification of Cell Complexes

In this section, we de�ne the concept of simpli�cation, intuitively an operation transforming a

cell complex K = (X, C) into another complex K′ = (X, C′), decomposing the same space with

strictly fewer cells. We recall that a PCS complex is de�ned as a cell complex whose dimension is

at most two (see Appendix B). We also recall that Sc denotes the star of c, that is, the set of cells

whose boundary contain c. Finally, we recall that the notation < C > is used to represent the

union of cells in C.

Reduced star Let K = (X, C) be a cell complex and c ∈ C. The reduced star of c is de�ned as:

S−c =

∅ if Sc = ∅

{c′ ∈ Sc | dim c′ = n−c } otherwise, where n−c = minc′∈Sc(dim c′)
(E.1)

220

E.1. Simpli�cation of Cell Complexes

In other words, the reduced star of c is de�ned as the cells of lowest dimension among the cells in

the star of c, as illustrated in Figure E.1. Note that n−c is not necessarily equal to dim(c) + 1. For

example, the reduced star of a Steiner vertex of a PCS complex is equal to the face(s) surrounding

the Steiner vertex (in this case, the reduced star is in fact equal to the star).

Extension The extension of a cell c is de�ned as its reduced star extended by c itself:

Ŝ−c = {c} ∪ S−c (E.2)

ĉ = < Ŝ−c > = < c,S−c > (E.3)

Atomic simplification Let K = (X, C) be a cell complex and c ∈ C. We say that K can be

simpli�ed at c if and only if the following constraints are satis�ed:

• Sc 6= ∅

• K′ = (X, C′) is a cell complex, where C′ = (C\Ŝ−c) ∪ {ĉ}

In this case, we write K �c K′. For the dimension two or less, checking whether “K can be simpli-

�ed at c” can be done combinatorially with the algorithm CanUnCut(c). If yes, thenK′ is obtained

by the algorithm UnCut(c).

Let K = (X, C) and K′ = (X ′, C′) be two cell complexes. We say that K can be atomically

simpli�ed into K′, which we denote K �• K′, if they satisfy the relation de�ned below:

K �• K′ ⇔ ∃c ∈ C, K �c K′ (E.4)

It follows directly that if (X, C) �• (X ′, C′) then X ′ = X . Therefore, as an abuse of notation, we

will often write C �• C′ instead of K �• K′.

Proposition 8. If C �• C′, then |C| > |C′|, where |C| denotes the number of cells in C.

Proof. If C �• C′, then ∃c ∈ C, C �c C′ and we have C′ = (C\Ŝ−c)∪{ĉ}, thus |C′| = |C| − |Ŝ−c |+ 1.

Since C can be simpli�ed at c, this means Sc 6= ∅, thus S−c 6= ∅, thus Ŝ−c contains at least two

cells: c and one belonging to S−c . Thus |Ŝ−c | ≥ 2, thus |C′| ≤ |C| − 2 + 1, thus |C′| ≤ |C| − 1.

Simplification We de�ne the binary relation� to be the transitive closure of�• (i.e., the minimal

transitive relation containing �•). In other words, C � C′ if and only if a �nite sequence of atomic

simpli�cation transforms C into C′. In this case, we say that C can be simpli�ed into C′. This

221

E.1. Simpli�cation of Cell Complexes

relation can be equivalently de�ned as:

C0 � C′ ⇔

∃k ∈ N+,

∃C1, . . . , Ck−1 decomposing X,

∀i ∈ [0..k − 1], ∃ci ∈ Ci,
C0 �c0 C1 �c1 · · · �ck−2 Ck−1 �ck−1 C′

(E.5)

Proposition 9. If C � C′, then |C| > |C′|.

Proof. If C � C′, then C �c0 C1 �c1 · · · �ck−2 Ck−1 �ck−1 C′, then |C| > |C1| > · · · > |Ck−1| > |C′|,
then |C| > |C′|.

Proposition 10. � is a strict partial order.

Proof. We verify below that it is irre�exive, transitive and asymmetric:

• Irre�exivity: we have ¬(|C| > |C|), thus ¬(C � C).

• Transitivity: by de�nition.

• Asymmetry: If C � C′ then (|C| > |C′|) then ¬(|C′| > |C|) then ¬(C′ � C).

Minimal complex Let Ω be a set of cell complexes. A cell complexK ∈ Ω is said to be a minimal

element of Ω if it is minimal for �, i.e. if there are no K′ ∈ Ω such that K � K′. In other words, a

cell complex is said to be minimal if it cannot be simpli�ed to another cell complex in Ω. Formally:

K minimal in Ω ⇔ ∀K′ ∈ Ω, ¬(K � K′) (E.6)

By extension, if no set Ω is speci�ed, K is said to be minimal, or simple, if it cannot be simpli�ed:

K = (X, C) minimal ⇔ ∀c ∈ C, ∀K′ = (X, C′), ¬(K �c K′) (E.7)

Proposition 11. � is a well-founded strict partial order, i.e. every non-empty set of cell complexes

Ω has a minimal element.

Proof. Let nm = min{|C| | C ∈ Ω} (exists because < on N is well-founded), and Cm such as

|Cm| = nm. By de�nition of nm, we have ¬(|C′| < |Cm|) for each C′ in Ω, thus ¬(Cm � C′), thus

Cm is a minimal element of Ω.

Corollary 2. There are no in�nite descending chains:

C0 � C1 � · · · � Ck � · · · (E.8)

222

E.2. Equivalence of Cell Complexes

Proof. Well-founded strict partial orders do not have in�nite descending chains.

Corollary 3. LetX be a topological space admitting a cell complex K. Then there exists Km decom-

posing X such that Km is minimal.

Proof. Let Ω be the set of all cell complexes decomposing X . It is non-empty since K ∈ Ω, thus

there exists Km minimal using Proposition 11.

Finally, we conclude this section by de�ning the weak versions of the simpli�cation binary oper-

ators.

Weak atomic simplification Let K = (X, C) be a cell complex and c ∈ C. We conveniently

write K <c K′ to de�ne K′ as being equal to:

• K if K cannot be simpli�ed at c.

• the atomic simpli�cation of K at c otherwise.

We de�ne the relation <• to be the re�exive closure of �•:

K <• K′ ⇔
{
K = K′, or
K �• K′

(E.9)

Weak simplification We de�ne the relation < to be the re�exive closure of �:

K < K′ ⇔
{
K = K′, or
K � K′

(E.10)

E.2 Equivalence of Cell Complexes

Bi-directional atomic simplification We de�ne the relation
•↔ to be the symmetric closure of

�•, that is:

K •↔ K′ ⇔
{
K �• K′, or
K′ �• K

(E.11)

Bi-directional simplification We de�ne the relation↔ to be the transitive closure of
•↔, that

is, K ↔ K′ if and only if a �nite sequence of atomic simpli�cation or de-simpli�cation transforms

K into K′:
K ↔ K′ ⇔ K •↔ K1

•↔ · · · •↔ Kk−1
•↔ K′ (E.12)

223

E.2. Equivalence of Cell Complexes

Equivalence relation We de�ne the relation ≡ to be the re�exive closure of↔:

K ≡ K′ ⇔
{
K = K′, or
K ↔ K′

(E.13)

It is an equivalence relation, since it is symmetric, transitive and re�exive. Note that it is important

to take the transitive closure after the symmetric closure: two decompositions C and C′ can have

the same number of cells (and thus we have neither C � C′ nor C′ � C), but still could be obtained

via a de-simpli�cation followed by a simpli�cation: C ≺ C′′ � C′. In fact, we will see later that it

is always possible.

Proposition 12. Two cell complexes are equivalent if and only if they are equal or obtained from

one another via a �nite sequence of atomic simpli�cation or de-simpli�cation:

K ≡ K′ ⇔
{
K = K′, or
K •↔ K1

•↔ · · · •↔ Kk−1
•↔ K′

(E.14)

Proof. Combine De�nition E.12 with De�nition E.13.

Proposition 13. Let K = (X, C) and K′ = (X ′, C′) be two cell complexes. Then we have:

K ≡ K′ ⇒ X = X ′ (E.15)

Proof. We have K �c K′ ⇒ X = X ′ directly from the de�nition of �c, which implies that X = X ′

whenever K and K′ are related by any of a closures of �c de�ned above.

Proposition 14. Let K and K′ be two cell complexes. Then we have:

K < K′ ⇒ K ≡ K′ (E.16)

Proof. K < K′ ⇒ (K = K′ or K � K′). In the �rst case, K ≡ K′ since ≡ is re�exive. In the

second case, we have K �• · · · �• K′, hence K •↔ · · · •↔ K′, hence K ≡ K′.

Conjecture 1. Let X be a topological space, andK = (X, C) andK′ = (X, C′) be two cell complexes

decomposing X . Then they admit a common “ancestor”, i.e.:

∃K′′ = (X, C′′) such that

{
K′′ < K, and
K′′ < K′

(E.17)

We expect that a proof can be achieved by explicitly constructing C′′ as intersections of cells in C
with cells in C′. Then, we would have to prove thatK′′ = (X, C′′) is a cell complex. The following

of this Section E.2 (but no other sections) assumes that this conjecture is true.

224

E.3. Uniqueness of Minimal PCS Complex

Theorem 2 (Equivalence Theorem). Let K = (X, C) and K′ = (X ′, C′) be two cell complexes.

Then we have:

K ≡ K′ ⇔ X = X ′ (E.18)

In other words: the equivalent cell complexes are exactly those decomposing the same space.

Proof. We have already K ≡ K′ ⇒ X = X ′. Let X be a topological space and K = (X, C) and

K′ = (X, C′) be two cell complexes decomposing X . Let K′′ = CommonAncestor(K,K′). We

have K′′ < K and K′′ < K′, thus K′′ ≡ K and K′′ ≡ K′, thus K ≡ K′ by transitivity.

Corollary 4. Let X be a topological space, and K = (X, C) and K′ = (X, C′) be two cell complexes

decomposingX . Then it is possible to transformK intoK′ via a �nite sequence of atomic simpli�cation

or de-simpli�cation.

Proof. We simply combine the result of the equivalence theorem with Corollary 12.

E.3 Uniqueness of Minimal PCS Complex

We have seen, for arbitrary dimension, that if X admits a cell complex K = (X, C), then it also

admits one Km that is minimal. In fact, regardless whether Conjecture 1 is true or false, it also

admits one which is both minimal and equivalent to K (i.e., that can be obtained from a �nite

sequence of simpli�cation or de-simpli�cation):

Proposition 15 (Minimal decomposition). Let K = (X, C) be a cell complex. Then there exists

a minimal cell complex Km such that K ≡ Km.

Proof. We have seen that there exists no in�nite decreasing sequences of cell complexes. Hence,

by de�ningK0 = K, we can recursively de�neKi+1 byKi �ci Ki+1 while there exists a cell ci ∈ Ci
such that Ki can be atomically simpli�ed at ci. This procedure necessarily stops, and then there

exists N ∈ N such that KN cannot be atomically simpli�ed at any cell and K0 �c0 · · · �cN−1 KN .

Thus, KN minimal and K < KN , thus KN minimal and K ≡ KN .

In the case of the dimension two or less, we conjecture that this minimal decomposition is unique,

which would imply that performing simpli�cations in any order until it is not possible anymore

leads necessarily to this unique minimal decomposition.

Conjecture 2 (Unique minimal decomposition). LetX be a topological space, andK = (X, C)
and K′ = (X, C′) be two minimal PCS complexes decomposing X . Then K = K′.

225

	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Figures
	Acknowledgments
	Introduction
	Contributions
	Informal Definition of the Vector Graphics Complex
	Outline of Dissertation

	Background and Related Work
	Historical Background
	Related Work in Vector Graphics
	Related Work in Topological Modeling
	Related Work in Animation

	The Theoretical Foundations of Vector Graphics Topology
	First Concepts of Topology
	Topology According to Computer Scientists
	Topology According to Mathematicians
	Topology According to Computational Geometers
	Topology According to 3D Modeling Artists

	The Non-Planar Nature of Vector Graphics
	Design Decisions
	Non-Planarity and Overlapping
	Non-Orientability
	Non-Manifoldness
	N-Sided Faces
	Closed Edges
	Faces with Inner Holes
	Non-Planar Faces
	Faces without Boundary
	Cut and Glue Closed Edges
	Cut Faces at Vertices and along Closed Edges
	Cut Faces with Inner Holes
	Cut Non-Planar Faces
	The Face-Cut Classification

	PCS Complexes
	Abstract PCS complexes
	PCS complexes
	Examples and Discussions
	Vector Graphics Complexes

	Conclusion

	Vector Graphics Complexes: The Topology of Vector Illustrations
	Introduction
	Motivation and Overview
	Vector Graphics Complex
	Topology
	Geometry
	Vector Graphics Complexes as Colored Incidence Graphs
	Implementation

	Topological Operators
	Creation and Deletion Operators
	Glue and Unglue Operators
	Cut and Uncut Operators

	Depth Ordering
	User Interface
	User Feedback
	Limitations and Future Work
	Conclusion

	Vector Animation Complexes: The Topology of Vector Animations
	Introduction
	Space-Time Topology
	Animating Vertices
	Animating Stroke Graphs
	Animating Vector Graphics Complexes

	Formal Definition
	Vector Animation Complex
	Key Vertex
	Key Closed Edge
	Key Open Edge
	Key Face
	Inbetween Vertex
	Inbetween Closed Edge
	Inbetween Open Edge
	Inbetween Face
	Halfedge
	Path
	Cycle
	Animated Vertex
	Animated Cycle

	Interpolation Scheme
	User Interface
	Results
	Discussion
	Conclusion

	Conclusion
	Bibliography
	Index
	Concepts of Algebraic Topology
	Topological Spaces and Homeomorphisms
	Manifolds with Boundary and Compact Manifolds
	Points, Curves, and Surfaces
	Classification of Compact n-Manifolds for n 2
	Non-Manifold Topological Spaces
	Abstract Simplicial Complexes
	CW Complexes

	Geometric Realizations and Quotient Spaces
	Immersions vs. Embeddings

	Non-Combinatorial Definition of PCS Complexes
	Cell Complex
	Relation Between c and Bc, Compactness, and Subcomplexes
	Comparison with CW Complexes
	PCS Complex

	Equivalence between PCS-Decomposable and 2-Triangulable Spaces
	Topological Operators on PCS Complexes
	Notations
	Algebraic Operations on Halfedges, Paths and Cycles
	Paths
	Flipping Halfedges, Paths and Cycles
	Converting Open Halfedges to Paths and Paths to Cycles
	Concatenating Paths
	Rotating Non-Simple Cycles
	Extracting Subpaths from Paths and Non-Simple Cycles

	Cell Creation
	Cell Deletion
	Glue Cells
	UnGlue Cells
	Cut Cells
	Cutting an Open Edge (at a Vertex)
	Cutting a Closed Edge (at a vertex)
	Cutting a Face at a Vertex
	Cutting a Face at an Edge
	Cutting an Orientable Face at a Closed Edge
	Cutting a Non-Orientable Face at a Closed Edge
	Cutting a Face at an Open Edge Starting and Ending at the Same Hole
	Cutting a Face at an Open Edge Starting and Ending at Different Holes
	Flipping Cycles of Non-Orientable Faces

	Uncut Cells

	Simplification of PCS Complexes
	Simplification of Cell Complexes
	Equivalence of Cell Complexes
	Uniqueness of Minimal PCS Complex

