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ABSTRACT

Rapidly creating effective visualizations using expressive grammars
is challenging for users who have limited time and limited skills
in statistics and data visualization. Even high-level, dedicated vi-
sualization tools often require users to manually select among data
attributes, decide which transformations to apply, and specify map-
pings between visual encoding variables and raw or transformed
attributes. In this paper we introduce Data2Vis, an end-to-end train-
able neural translation model for automatically generating visualiza-
tions from given datasets. We formulate visualization generation as
a language translation problem where data specifications are mapped
to visualization specifications in a declarative language (Vega-Lite).
To this end, we train a multilayered attention-based encoder-decoder
network with long short-term memory (LSTM) units on a corpus
of visualization specifications. Qualitative results show that our
model learns the vocabulary and syntax for a valid visualization
specification, appropriate transformations (count, bins, mean) and
how to use common data selection patterns that occur within data
visualizations. Data2Vis generates visualizations that are compara-
ble to manually-created visualizations in a fraction of the time, with
potential to learn more complex visualization strategies at scale.

Index Terms: Human-centered computing—Visualization—Visu-
alization techniques—Treemaps; Human-centered computing—
Visualization—Visualization design and evaluation methods

1 INTRODUCTION

Users create data visualizations using a range of tools with a range of
characteristics (Figure 1). Some of these tools are more expressive,
giving expert users more control, while others are easier to learn
and faster to create visualizations, appealing to general audiences.
For instance, imperative APIs such as OpenGL and HTML Canvas
provide greater expressivity and flexibility but require significant
programming skills and effort. On the other hand, dedicated visual
analysis tools and spreadsheet applications (e.g., Microsoft Excel,
Google Spreadsheets) provide ease of use and speed in creating
standard charts based on templates but offer limited expressivity and
customization.

Declarative specification grammars such as ggplot2 [71], D3 [10],
Vega [58], and Vega-Lite [57] provide a trade-off between speed
and expressivity. However, these grammars also come with steep
learning curves, can be tedious to specify depending on the syntax
and abstraction level adopted, and can suffer from reusability issues.
In fact, there is little known about the developer experience with
visualization grammars, beyond the degree with which they are used.
For example, ggplot2 can be difficult for users who are not familiar
with R. Vega, which is based on a JSON schema, can be tedious even
for users who are familiar with JSON. Even tools with higher-level
abstractions such as the ones based on chart templates often require
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Figure 1: Axis of visualization specification. Data visualizations are
created with a spectrum of tools with a spectrum of speed and expres-
sivity. Some of these tools are faster but others are more expressive
to create visualizations.

the user to manually select among data attributes, decide which sta-
tistical computations to apply, and specify mappings between visual
encoding variables and either the raw data or the computational sum-
maries. This task can be daunting with complex datasets especially
for typical users who have limited time and limited skills in statistics
and data visualization. To address these challenges, researchers
have proposed techniques and tools to automate designing effective
visualizations [14, 19, 39, 40, 47, 54] and guide users in visual data
exploration [2, 18, 25, 48, 54, 61, 63, 69, 75, 77, 78].

Prior techniques and tools for automated visualization design and
visualization recommendation are based on rules and heuristics. The
need to explicitly enumerate rules or heuristics limits the application
scalability of these approaches and does not take advantage of exper-
tise codified within existing visualizations. Automated and guided
visualization design and exploration can significantly benefit from
implicitly learning these rules from examples (i.e., data), effectively
incorporating both data and visualization design context.

In this work, we formulate visualization design as a problem of
translation between data specification and visualization specifica-
tion. To operationalize our formulation, we train an LSTM-based
neural translation model (Data2Vis) on a corpus [52] of Vega-Lite
visualization specifications, taking advantage of Vega-Lite’s (and of
similar grammars’) design motivation to support programmatic gen-
eration. We demonstrate the model’s use in automatically generating
visualizations with applications in easing the visualization authoring
process for novice users and helping more experienced users jump
start visualization design. Our contributions include 1) formulating
visualization design as a sequence to sequence translation problem,
2) demonstrating its viability by training a sequence to sequence
model, Data2Vis, on a relatively small training dataset and then
effectively generating visualizations of test data, and 3) integrating
Data2Vis into a web-based application that has been made publicly
available at http://hci.stanford.edu/˜cagatay/data2vis.
Our work is the first in applying deep neural translation to visual-
ization generation and has important implications for future work,
opening the way to implicitly learn visualization design and visual
analysis rules from examples at scale.

In what follows, we first summarize related work followed by de-
tails of the Data2Vis model and its training process. We then present
our results, providing several visualization examples automatically
generated using the trained model. Next we discuss the potential
impact of Data2Vis and its current limitations and provide an agenda
for future work. We conclude by summarizing our contributions and
insights.

ar
X

iv
:1

80
4.

03
12

6v
3 

 [
cs

.H
C

] 
 2

 N
ov

 2
01

8

http://hci.stanford.edu/~cagatay/data2vis


AAPL

AMZN

GOOG

IBM

MSFT

symbol

2000 2002 2004 2006 2008 2010

date

    {

        "data": {

            "url": "data/stocks.csv"},

        "mark": "line",

        "encoding": {

            "x": {

                "field": "date",

                "type": "temporal",

                "axis": {

                    "format": "%Y" }

            },

            "y": {

                "field": "price",

                "type": "quantitative" },

            "color": {

                "field": "symbol",

                "type": "nominal" }

        }

    }

Figure 2: A Vega-Lite specification (left) and the generated visualiza-
tion (right). Users can succinctly specify selections, transformations
and interactions using the Vega-Lite grammar formatted in JSON [57].

2 RELATED WORK

Our work is related to earlier efforts in effective visualization speci-
fication, automated visualization design, and deep neural networks
(DNNs) for synthesis and machine translation.

2.1 Declarative Visualization Specification

Earlier data visualization work proposes grammars and algebraic
operators over data as well as visual encoding and design variables
to specify visualizations (Figure 1). Wilkinson’s seminal work [72]
introduces a grammar of graphics and its implementation (VizML),
greatly shaping the subsequent research on visualization specifica-
tion. Polaris [64] (commercialized as Tableau) uses a table algebra
drawn from Wilkinson’s grammar of graphics. The table algebra of
Polaris later evolved to VizQL [30], forming the underlying represen-
tation of Tableau visualizations. Wickham introduces ggplot2 [71],
a widely-popular package in the R statistical language, based on
Wilkinson’s grammar. Similarly, Protovis [9], D3 [10], Vega [58],
Brunel [74], and Vega-Lite [57] all provide grammars to declara-
tively specify visualizations. Some of them require more complete
specifications than others. For instance, Protovis, D3 and Vega sup-
port finer control over visualization specification with incurred cost
of verbosity.

Wongsuphasawat et al. [77] introduce Vega-Lite (Figure 2) to sup-
port Voyager, a faceted browser for visualization recommendations.
Vega-Lite is a high-level grammar built on top of Vega to facilitate
clarity and conciseness with some loss in expressivity. The expres-
sivity of Vega-Lite is a strict subset of Vega. We train our model on
a Vega-Lite corpus [52], which contains datasets and corresponding
visualizations specified in Vega-Lite.

Declarative grammars eschew chart templates typically used in
dedicated visualization tools or spreadsheet applications such as Mi-
crosoft Excel and Google Spreadsheets, which have limited support
for customization. Conversely, these grammars facilitate expressiv-
ity by enabling a combinatorial composition of low-level building
blocks such as graphical marks, scales, visual encoding variables,
and guides. However, increased expressivity often decreases the
speed with which visualizations can be created and makes the learn-
ing more difficult, limiting the number of users who can effectively
use the specification method. One of our aims with Data2Vis is to
bridge this gap between the speed and expressivity in specifying
visualizations.

2.2 Automated Visualization

Prior work proposes desiderata and tools (e.g., [14,19,40,47,54]) to
automatically design effective visualizations, building on Bertin’s

study [7] of visual encoding variables and earlier graphical percep-
tion research, e.g., [1,5,17,41,47,62]. Earlier research also develops
interactive systems and recommendation schemes [11, 27, 48, 61, 63,
67–69, 73, 75, 77, 78] to guide users in exploratory data analysis and
visualization design. PRIM-9 [25], GrandTour [2] SeeDB [69], Zen-
visage [63], ShowMe [48], Voyager [77], Voyager 2 [78], SAGE [54]
and VizDeck [39] prioritize charts according to one or more eval-
uation measures such as data saliency, data coverage, perceptual
effectiveness, user task, and user preferences. Similarly, Rank-by-
Feature [61], AutoVis [75], and Foresight [18] use statistical criteria
over data attributes and instances in recommending and ranking
visualizations.

Data2Vis represents a departure from rule-based approaches of
prior work both in conceptual formulation and technical approach
taken. It makes contributions by specifying how automated visual-
ization can be cast as a learning problem, providing a concrete im-
plementation of a deep learning model for visualization generation.
Data2Vis emphasizes the creation of visualizations specifications
using rules learned from examples, without resorting to a predefined
enumeration of rules or heuristics, complementing earlier work. Re-
searchers recently recognized the potential of machine learning in
automating visualization design and visual analysis [56], applying
machine learning for recommending visualizations [32, 43, 55] and
refining visualization recommendations [49]. Data2Vis differs from
this exciting line of recent work, which relies on feature extraction
and manual constraint specification, in learning to automatically
generate visualizations from data with an end-to-end approach.

Adopting a learning approach to designing automated visualiza-
tion systems holds potential for improving the maintenance and
scalability of such systems. Existing approaches are limited by a de-
pendence on a set of manually created (interdependent) rules which
can be voluminous, tedious update, and may not sufficiently cover
edge cases necessary to generate good visualizations. By using a
learning approach, we avoid these limitations as a learned model can
better represent the visualization rule space given sufficient exam-
ples. Further more, the performance and capabilities of the system
can be improved by improving the dataset of examples used to train
models within learning based systems. As more users author visu-
alizations, the system can leverage experiences and rules encoded
within these visualizations, to increase it’s coverage and scale its
performance. The visualization generation capabilities of Data2Vis
can also be integrated into existing higher-level recommendation sys-
tems of visual data exploration and used in tandem with rule-based
techniques to drive these systems. We published the current work
earlier as a preprint [22] and made the source code for the Data2Vis
model publicly available [21].

2.3 Deep Neural Networks for Synthesis

Prior deep neural network (DNN) research studies adopt generative
approaches to learn human-like cognitive and creative capabilities.
Examples include the use of models to synthesize music, drawings,
images from textual descriptions, code from hand-drawn sketches or
interface screenshots. Ha et al. [29] train a recurrent neural network
(RNN) to predict and generate stroke-based drawings of common
objects. Reed et al. [53] present a DNN architecture and generative
adversarial network (GAN) formulation to “translate” textual visual
concepts to pixels. Others learn how to generate code from user
interface screenshots [6] and how to compose music using purely
sequential models [24, 34] and cascading a sequential model with
a restricted Boltzman machine [12]. All these approaches aim to
simplify the creative process for both novices and experts. In this
sense, our work here shares a motivation with prior work. We also
use a variation of sequential neural network models, a sequence to
sequence model, to generate visualization specifications from given
data.
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Figure 3: Data2Vis is a sequence to sequence model with encoder-decoder architecture and attention module. To simplify learning, we perform
simple forward and backward transformations on the source (dataset in JSON format) and target sequence (Vega-Lite visualization specification)
which are then converted to character tokens.

2.4 Deep Neural Networks for Machine Translation
Recent work introduces DNN models, e.g., [3,16,35,45,66] that sig-
nificantly improves [33,46,60,79] the performance of machine trans-
lation systems, surpassing the preceding phrase-based approaches.
Deep neural translation models eschew hand engineering the fea-
tures, in large part, by using large training data, enabling the end-to-
end learning in practice. Sequence to sequence models (e.g., [3, 45])
are a particularly successful and popular class of deep learning
models applied in machine translation (see [13] for an evaluation
of alternative architectures). Akin to autoencoders, these models
have also a symmetric, encoder-decoder architecture. Sequence to
sequence models are composed of encoder-decoder layers which
consist of recurrent neural networks (RNNs) and an attention mech-
anism that aligns target tokens with source tokens.

In addition to translating between natural languages, earlier work,
e.g., [4, 15, 20, 42, 51, 81] also uses DNNs to translate between
two domain specific languages (DSLs), between a natural language
specification and a DSL (e.g. translating from natural language to
SQL [23, 82]), and between two programming languages. Similar
to the prior work translating between general or domain specific
programming languages, Data2Vis also translates between two for-
mal languages. Ling et al. [42] use a sequence to sequence model
to translate TCG (Trading Card Games) cards to their Python and
Java specifications without explicitly representing the target syntax.
Data2Vis is also a sequence to sequence model that directly uses
textual source and target specifications without representing their
syntax (e.g., using abstract syntax trees) explicitly.

3 PROBLEM FORMULATION

Building on earlier work that applies deep learning for translation
and synthesis, we formulate the data visualization problem as a
sequence to sequence translation problem, which can be readily
addressed using sequence to sequence models (seq2seq) [3, 16, 66].
Our input sequence is a dataset (fields, values in json format) and
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Figure 4: Frequency of the Vega-Lite mark types and transforms used
in our training examples.

our output sequence is a valid Vega-Lite [57, 58] visualization speci-
fication.

Existing models used for sequence translation [3, 13, 16, 44, 45,
66] belong to a family of encoder-decoder networks where the
encoder reads and encodes a source sequence into a fixed length
vector, and a decoder outputs a translation based on this vector. The
entire encoder-decoder system is then jointly trained to maximize
the probability of outputting a correct translation, given a source
sequence.

While sequence to sequence models have originally focused on
generating data that is sequential or temporally dependent e.g lan-
guage translation [3, 13, 16, 44, 45, 66], they also find applications
for problems where the output or input is non-sequential as seen
in text summarization [50, 65] and image captioning [36, 70, 80].
Two important advances that enable non-sequential use cases in-
clude the introduction of bidirectional RNN units [59] and attention
mechanisms [3, 70, 80]. An ordinary RNN (unidirectional) reads an
input sequence x from the frist token x1 to the last xm and generates
an encoding only based on the preceding tokens it has seen. On



the other hand, a Bidirectional RNN (BiRNN) consists of both a
forward RNN and a backward RNN, which enables an encoding
generation based on both the preceding and following tokens. The
forward RNN −→f reads the input sequence as it is ordered (from
x1 to xm) and calculates a sequence of forward hidden states ( −→h1 ,
... ,←−hm ). The backward RNN←−f reads the sequence in the reverse
order (from xm to x1), resulting in a sequence of backward hidden
states (←−h1 , ... ,←−hm ). Thus, when a BiRNN is used to encode an input
sequence, it generates a hidden state −→h j which is a concatenation

of both the forward and backward RNNs, h j =
[−→h j
>

;←−h j
>]>

and
contains summaries of both the preceeding and following tokens.
Attention mechanisms allow a model to focus on aspects of an input
sequence while generating output tokens. They provide the addi-
tional benefits of making translation models robust to performance
degradation while generating lengthy sequences, and enable the
model to learn mappings between source and target sequences of
different lengths [3]. For example, when used in image captioning,
attention mechanisms allow the model to focus on specific parts
of objects in an image, while generating each word or token in the
image caption. Furthermore, attention mechanisms improve our
ability to interpret and debug sequence to sequence models as they
provide valuable insights on why a given token is generated at each
step. Taken together, these two important advances enable us to use
a sequence translation model that first takes into consideration the
entire data input (dataset) and then focus on aspects of the input
(fields) in generating a visualization specification.

Seq2seq models for language translation are trained using embed-
dings of the source and target tokens which can be generated based
on words, subword or per character units [3, 16, 66]. We select a per
character unit tokenization given our source and target sequences
consist of symbols as opposed to learnable word groups seen in
related problems like language translation.

4 MODEL

Our model (Figure 3) is based on an encoder-decoder architecture
with attention mechanism that has been previously applied in ma-
chine translation [3,44,45]. The encoder is a bidirectional recurrent
neural network (RNN) that takes in an input sequence of source to-
kens x= (x1, ...,xm) and outputs a sequence of states h= (h1, ...,hm).
The decoder is also an RNN that computes the probability of a target
sequence y = (y1, ...,yk) based on the hidden state h. The probabil-
ity of each token in the target sequence is generated based on the
recurrent state of the decoder RNN, previous tokens in the target
sequence and a context vector ci. The context vector (also called
the attention vector) is a weighted average of the source states and
designed to capture the context of source sequence that help predict
the current target token.

We use a 2-layer bidirectional RNN encoder and a 2-layer RNN
decoder, each with 512 Long Short-Term Memory (LSTM) [26, 31]
units (cells). To decide which RNN unit type to use, we experi-
mented with both gated recurrent unit (GRU) [16] and LSTM, both
of which are common RNN cell variants. We found LSTM cells
provided better results (valid json, valid Vega-Lite specification)
compared to GRU cells, which concurs with earlier empirical re-
sults [13].

5 DATA AND PREPROCESSING

To generate plausible visualizations conditioned on a given source
dataset, our model should achieve several learning objectives. First,
the model must select a subset of fields to focus on when creating
visualizations (most datasets have multiple fields which cannot all be
simultaneously visualized). Next, the model must learn differences
in data types across the data fields (numeric, string, temporal, ordinal,
categorical etc.), which in turn guides how each field is specified in
the generation of a visualization specification. Finally, the model

must learn the appropriate transformations to apply to a field given
its data type (e.g., aggregate transform does not apply to string
fields). In our case, this includes view-level transforms (aggregate,
bin, calculate, filter, timeUnit) and field level transforms (aggregate,
bin, sort, timeUnit) supported by the Vega-Lite grammar.

Achieving these objectives using a character based sequence
model can be resource intensive. While character based models re-
sult in smaller vocabulary size and are more accurate for specialized
domains, they also present challenges — a character tokenization
strategy requires more units to represent a sequence and requires
a large amount of hidden layers as well as parameters to model
long term dependencies [8]. To address this issue and scaffold the
learning process, we perform a set of transformations. First, we
replace string and numeric field names using a short notation —
“str” and “num” in the source sequence (dataset). Next, a similar
backward transformation (post processing) is eplicated in the tar-
get sequence to maintain consistency in field names (see Figure 3).
These transformations help scaffold the learning process by reduc-
ing the vocabulary size, and prevents the LSTM from learning field
names (as we observed in early experiments). In turn we are able to
reduce the overall source and target sequence length, reduce training
time and reduce the number of hidden layers which the model needs
to converge. Our training dataset is constructed from 4300 Vega-Lite
visualizations examples, based on 11 distinct datasets. The exam-
ples were originally compiled by [52] where the authors use the
CompassQL [76] recommendation engine within Voyager2 [77] to
generate charts with 1-3 variables, filtered to remove problematic
instances. These charts are generated based on heuristics and rules
which enumerate, cluster and rank visualizations according to data
properties and perceptual principles [77]. While these examples
contain a simplified range of transformations and do not encode any
interactions, they represent valid Vega-Lite examples and conform to
important perceptual principles enforced by rules within Voyager2.
These characteristics make the dataset a suitable, low-complexity
test bed for benchmarking our model’s performance on the task of
learning to generate visualizations given only input data.

Similar to datasets observed in the wild, our sample dataset con-
tains charts with 6 different types of visualizations (area, bar, circle,
line, point, tick) and three different transforms (aggregate, bin, time-
Unit)(see Figure 4). Based on this similarity, we expect similar
learning performance when our model is trained with real world
data sets. To generate our training dataset, we iteratively generate a
source (a single row from the dataset) and target pair (see Figure 3)
from each example file. Each example is then sampled 50 times (50
different data rows with the same Vega-Lite specification) resulting
in a total of 215,000 pairs which are then used to train our model.

5.1 Training
We begin by generating a character vocabulary for our source and
target sequences (84 and 45 symbols, respectively). A dropout rate
of 0.5 is applied at the input of each cell and a maximum source
and target sequence length of 500 is used. The entire model is
then trained end-to-end using a fixed learning rate of 0.0001 with
Adam optimizer, minimizing the negative log likelihood of the target
characters using stochastic gradient descent. Our implementation is
adapted from an open source neural machine translation framework
by Britz et al. [13]. We train our model for a total of 20,000 steps,
using a batch size of 32. We achieve a translation performance
log perplexity metric score of 0.032, which suggests the model
excels at predicting visualization specifications that are similar to
specifications in our test set.

6 RESULTS

6.1 Examples of Automated Visualization Generation
Quantifying the performance of a generative model can be chal-
lenging. Following existing literature [34, 37, 38], we explore a



Figure 5: Example attention plots for a visualization generation case
(a) Model learns to pay attention to field name ”str” in generating the
”string” field type applied to the field. (b) Model learns to pay attention
to the field name ”num0” and its value in specifying the ”quantitative”
field type applied to the field.

qualitative evaluation of the model’s output. To evaluate the model,
we use the Rdataset repository 1 (cleaned and converted to a valid
JSON format) which was not included in our training. Figure 6
shows visualizations generated from a randomly selected dataset
in the Rdataset collection. The range of valid univariate and multi-
variate visualizations produced suggests the model captures aspects
of the visualization generation process. As training progresses, the
model incrementally learns the vocabulary and syntax for valid Vega-
Lite specifications, learning to use quotes, brackets, symbols and
keywords. The model also appears to have learned to use the right
type of variable specifications in the Vega-Lite grammar (e.g. it
correctly assigns a string type for text fields and a quantitative for nu-
meric fields). Qualitative results also suggest the use of appropriate
transformations (bins, aggregate) on appropriate fields (e.g. means
are performed on numeric fields). The model also learns about
common data selection patterns that occur within visualizations and
their combination with other variables to create bivariate plots. As
experts create visualizations, it is common to group data by geogra-
phy (country, state, sex), characteristics of individuals (citizenship
status, marital status, sex) etc. Early results suggests that our model
begins to learn these patterns and apply them in its generation of
visualizations. For example, it learns to subset data using common
ordinal fields such as responses (yes/no), sex (male/female) etc and
plots these values against other fields (Figure 7 ). Finally, in all cases,
the model generates a perfectly valid JSON file and valid Vega-Lite
specification with some minor failure cases (Figure 6 ).

6.2 Beam Search

To explore a variety of generated visualizations, a simple beam
search decoding algorithm described in Wu et al. [79] is used. As
opposed to outputting the most likely (highest probability) transla-
tion of an input sequence, beam search expands all possible next
steps during generation and keeps the k most likely, where k is a user
specified parameter known as the beam width. Unlike conventional
language translation systems where beam search is applied mainly to
improve translation quality by maximizing conditional probabilities
of generated sequences [28], we also explore beam search as a way
to generate a diverse set of candidate visualizations by outputting
all parallel beam results. With beam search, we observe the model
generates more diverse plots, exploring combinations of chart types
and the use of multiple variables. Figure 6 shows results from beam
search (beam width=15) where the model focuses on two fields from
the dataset, generates univariate plots for these fields, subsets the
plots by sex (male/female) and uses three chart types (bar, area,
line).

1Rdatasets is a collection of 1147 datasets originally distributed alongside
the statistical software environment R and some of its add-on packages.

6.3 Attention Plots
To further explore the efficacy of our model, and ascertain how well
it learns to use aspects of the input data in generating visualizations,
we examine plots of the attention weights (Figure 5) assigned to
each predicted token. Results suggest that the model assigns non-
monotonic weights to different input characters while generating the
parts of the specification such as the fields used for each visualization
axis, the data types assigned and the transformations applied to
each field. As shown in Figure 5, the model places strong weights
on the characters “num0” and its value “8” while generating the
”quantitative” data type which it has assigned to an axis.

6.4 Comparison with a Visualization Recommender
We compare results from Data2Vis with results from Voyager 2 [78].
Note that while Voyager 2 recommends visualizations, it requires
the user to select a set of data fields of interest (limited to two
selections) and additional preferences. Thus, for the purpose of
qualitative comparison, we present both tools with the same race
progression dataset, and select two fields to view recommenda-
tions from Voyager 2. Qualitative results are presented in Figure 9
which demonstrate that Data2Vis generates a richer variety of charts.
Visualizations generated by Data2Vis are not limited to specific
constraints, demonstrating its viability for the task of generating a
manageable set of visualizations based on data.

6.5 Web Application Integrating Data2Vis
To further evaluate the utility of our model, we developed a web ap-
plication prototype interface (Figure 6) that supports the use case of
an analyst exploring data similar to [77, 78]. The interface supports
three primary interactions; data import, visualization generation and
visualization update. First, the analyst is able to import a dataset into
the application. They can do this by using the “load dataset” button
which loads a randomly selected dataset from the Rdataset repository
or they can directly paste a JSON data array in the provided text field.
Next, the analyst can select the “generate” button which submits the
dataset to our model, receives a Vega-Lite specification (placed in a
text field) and renders the plot. Finally, the analyst can update the
generated specification by opening it in the Vega-Lite editor. We
showed this early prototype to two visualization researchers and our
observations suggest they were able to quickly build on the specifi-
cations generated by the model, making changes to field selections
and transformations.

7 DISCUSSION

We presented the very first attempt to transform data to visualizations
using a deep neural network and apply a neural machine translation
(seq2seq) model in automating visualization generation. Below, we
discuss the potential impact of our approach and limitations of the
current Data2Vis model along with future research directions.

7.1 Impact and Use Case
Making Visualization Authoring Easier Providing users with lit-
tle or no programming experience with the ability to rapidly create
expressive data visualizations empowers users and brings data visu-
alization into their personal workflow. Based on our early findings,
Data2Vis is able to learn patterns in data visualizations that are can
be generalized to a variety of real world datasets. For example, the
use of categorical variables like gender, sex, location (state, country)
and the tendency to focus on such variables can be learned from
data. Thus, visualizations generated which encode such principles
holds potential to make data visualization more accessible, speed-up
the visualization authoring process and augment the visualization
capabilities of all users.
Accelerating Data Exploration For visualization experts, it is
likely that visualizations created by Data2Vis may be insufficient for

https://github.com/vincentarelbundock/Rdatasets/blob/master/csv/DAAG/progression.csv
https://github.com/vincentarelbundock/Rdatasets/blob/master/csv/DAAG/progression.csv


Figure 6: Data2Vis qualitative evaluation interface with results from beam search. (a) A user can load a random dataset from the RDdataset
collection or paste a dataset (JSON format) and select “Generate.” (b) User can paste a JSON dataset and select ”Generate”(c) Data2Vis
generates Vega-Lite specifications using beam search (beam width = 15 in this case) based on the dataset. The user can modify and iterate on
any of the visualizations using the Vega-Lite editor. Highlights below each visualization represents cases of valid specifications and incomplete
specifications where the model attempts to use variables not in the dataset (phantom variables).

Figure 7: Examples of visualizations where the model has learned common selection patterns and leverages concepts such as responses (yes,
no) and sex (male, female).

their needs. This is especially true when the structure of the data be-
ing analyzed is unknown or unusual and effective exploration of the
data requires complex transforms as well as deep domain expertise.
However, Data2Vis can contribute to this process by “jumpstarting”
the visualization process—first by generating a set of valid visual-
ization specifications and seeding the creativity process with these
initial visualizations. Analysts can initialize their visualization tasks
with Data2Vis and iteratively correct its content while generating
intermediate visualizations.

7.2 Limitations

Field Selection and Transformation The current version of our
model has limitations which occur in about 15-20% of tests. First,
the model occasionally selects what we refer to as a phantom field
(a field that does not exist in the input dataset) as part of the visu-
alization spec it generates (Figure 6). While plots are still realized
in some cases despite this error (Vega-Lite incorporates good de-
faults), the affected axis is not interpretable. Another limitation of
the model is observed in selecting fields (attributes) of the input data
to visualize — the model sometime selects fields that are unintuitive
or have little information value. For example, a frequency plot of
grouped longitude and latitude values does not provide much infor-

mation. Finally, the model generates relatively simple visualizations
— univariate plots (which can serve as data field summaries) and bi-
variate plots. It is unable to apply complex transforms, use multiple
variables.

Training Data While further experimentation is required, our in-
tuition is that the limitations mentioned above reflect limitations
in both the size and diversity of our training data. Our goal with
Data2Vis was to evaluate the viability of machine translation in
generating valid visualization specifications, we have conducted our
experiments with a relatively small dataset (4300 examples up sam-
pled to 215,000 training pairs). While our current results provide
insights, we believe a larger and more diversified training dataset
will improve learning and model generalization. Another limitation
with our training data is related to our training pair generation strat-
egy. Currently, we construct our source tokens from a single row
from a dataset which is then preprocessed before training. While
this approach shortens the input sequence length, a requirement for
us to efficiently train our model, the model can only learn properties
of each field (e.g. length, content, numeric type, string type) as op-
posed to properties of the distribution of the field (e.g mean, range,
categories etc.) which encode useful signals for data visualization.



Figure 8: Examples where the model has learned to generate univariate plots that summarize fields selected from the dataset.

Figure 9: A comparison of visualizations generated by Data2vis(a) and Voyager 2(b) given the same race dataset.

7.3 Future Work

Eliciting More Training Data Naturally, addressing limitations
with our training data constitutes the next step for future work. We
plan to conduct a structured data collection aimed at generating visu-
alization examples across a large number of datasets, visualization
types (bar, point, area, chart etc), transforms, complexity (number
of variables), interactions and visualization languages. We will also
explore strategies to improve the training process that guide the
model towards learning properties of the distribution for a given
field.
Extending Data2Vis to Generate Multiple Plausible Visualiza-
tions Data2Vis is currently implemented as a sequence to sequence
translation model. Sequence models work very well for domains
where it is desirable to have fixed mappings of input sequences to
output sequences (text summarization, image captioning, language
translation, etc). It is generally expected that a sentence in one
language always maps to the same sentence in a different language,
and acceptable if a passage always maps to the same summary or
an image to the same caption. However, when applied to the task

of data visualization, it is desirable that input data maps to multi-
ple valid visualizations. In the current work, we address this by
exploiting beam search decoding to generate multiple visualizations
based on a single dataset. A related avenue for future work is to
explore generative models that can learn a probability distribution of
effective visualizations, enabling one to many sequence mappings
between data and visualization specifications through sampling.

Targeting Additional Grammars Building on results from
Data2Vis, important next steps also include efforts to train models
that can map input data to multiple different visualization specifi-
cation languages, including ggplot2, given a dataset. This line of
research may also explore training models that learn direct mappings
between different visualization specification languages, enabling vi-
sualization specification reuse across languages and platforms.

Natural Language and Visualization Specification We propose
the exploration of models that generate visualizations conditioned
on natural language text in addition to datasets. A potential approach
is to first explore how users might describe or express visualizations
for a given dataset and use this knowledge in generation of triplets—



natural language description, data sequence, and visualization speci-
fication. These data points can then be leveraged in training a model
that learns to generate visualizations based on natural language de-
scriptions. These models can extend the expressive capabilities of
existing systems that integrate multimodal interactions and visualiza-
tions for exploring data. Conversely, we can use textual descriptions
of visualizations to automatically generate captions for them, akin
to image caption generation (e.g., [36, 70, 80]).

8 CONCLUSION

The history of data visualization is rich with work that treats vi-
sualization from a linguistic perspective. Bertin systematized data
visualization as “a language for the eye” [7]. Adopting Bertin’s
analogy, Mackinlay [47] viewed visualizations as sentences of a
graphical language and formalized a model based on “expressive-
ness” and “effectiveness” criteria, borrowing concepts from formal
languages. Subsequent research also introduced various “grammars”
of visualization specification.

We significantly extend this earlier perspective and formulate data
visualization as a sequence to sequence translation problem where
we translate data specifications to visualization specifications. We
train a deep sequence to sequence model and demonstrate its efficacy
generating univariate and bivariate plots. We also identify initial
failure conditions, offer ideas for their remediation and an agenda
for future work.

It is our belief that the problem formulation and model presented
in this work represents an appropriate baseline for future work in au-
tomated generation of visualizations using deep learning approaches.
Our approach sets the stage for systems that learn to generate visu-
alizations at scale with implications for the development of guided
visual data exploration systems.
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Input Data [{ "Al": "231", "Ba": "13.2", "Br": "8", "Ca": "3602", ... , ”K”: "230", "La": "0.55", "Li": "0.6",  "River": "Grasse", "Si": "3482", "Site": “1”, … , "Zn": "10", "Zr": "0.1" }, … ]

Input Data

Input Data [{ "country": "AUSTRIA", "lcarpcap": "-9.766839569", "lgaspcar": "4.173244195", "lincomep": "-6.474277179", "lrpmg": "-0.334547613", "year": "1960" }, … ]

[{ "age": "6.9", "black": "yes", … , "hlth": "other", "hosp": "1", "maried": "yes", "medicaid": "no", "numchron": "2", "ofnp": "0", … ,”region": "other", "school": "6", "sex": "male" }, ..]

Figure 10: Examples of visualizations generated with beam search.
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