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Automatic Generation of Typographic Font from a Small Font
Subset
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Abstract—This paper addresses the automatic generation of a typo-
graphic font from a subset of characters. Specifically, we use a subset of
a typographic font to extrapolate additional characters. Consequently, we
obtain a complete font containing a number of characters sufficient for
daily use.The automated generation of Japanese fonts is in high demand
because a Japanese font requires over 1,000 characters. Unfortunately,
professional typographers create most fonts, resulting insignificant
financial and time investments for font generation. The proposed method
can be a great aid for font creation because designers do not need to
create the majority of the characters for a new font. The proposed method
uses strokes from given samples for font generation. The strokes, from
which we construct characters, are extracted by exploitinga character
skeleton dataset. This study makes three main contributions: a novel
method of extracting strokes from characters, which is applicable to
both standard fonts and their variations; a fully automated approach for
constructing characters; and a selection method for samplecharacters.
We demonstrate our proposed method by generating 2,965 characters in
47 fonts. Objective and subjective evaluations verify thatthe generated
characters are similar to handmade characters.

Index Terms—Font generation, Active shape model, Computer aided
manufacturing, Kanji character.

I. I NTRODUCTION

Automatic generation of Japanese font is important for lowering the
costs associated with creating kanji1 characters. All of the characters
in a font need to be designed in a particular style and size, a
process generally performed by humans. Moreover, font creation is
professional and time-consuming work.

The cost problem is especially crucial in languages that contain
a very large number of characters, such as Chinese, Korean, and
Japanese. Most commercial fonts contain at least 1,006 kanji charac-
ters, which are defined as those in daily use by the Japanese Industrial
Standards Committee2. Chinese and Korean each use more than 6,000
characters. These numbers are far greater than those of other major
languages, e.g., 26 characters in English, 27 in Spanish, 49in Hindi,
28 in Arabic, and 33 in Russian. Thus, it takes a few years evenfor
a professional designer to create a font.

Previous work on character generation is shown in Table I. We
categorized previous studies by their inputs and outputs into three
problem settings. The first problem setting is to generate a font using
parameters for handwritten [1]–[6] or typographic fonts [7]–[12]. The
second problem setting is to generate a font by blending several
complete fonts3 for handwritten [13]–[15] or typographic fonts [16]–
[19]. The third problem setting is to generate a font by extrapolating
characters given a subset of handwritten [20]–[27] or typographic
fonts [28]. Each problem setting has been an important research topic.

In this study, we address the problem of generating a typographic
font from a given subset of characters. From a subset of a typographic
font that includes only a small number of characters, we generate

1Kanji are Chinese characters adapted for the Japanese language.
2http://www.jisc.go.jp
3A complete font contains a sufficient number of characters for daily use,

e.g., 26 for English and over a thousand for Japanese.

missing characters to obtain a complete typographic font. Although
the proposed method requires a subset of a particular typographic
font, the burden of creating a subset of a font is much less than creat-
ing an entire font. This benefit is highlighted in languages containing
many characters, such as Chinese and Japanese.The proposed method
uses sample characters to extract strokes and constructs characters
by deploying them. Fig. 1 illustrates an overview of the proposed
method, which begins with stroke extraction from sample characters.
Strokes are extracted using the skeletons of the samples. Wetake the
skeletons of a target character from the skeleton dataset and transform
it into the structure of the target font. Finally, we select some strokes
and deploy them to the target skeletons.

The proposed method accepts samples in an image format. For
practicality, the ideal font generation method must acceptcharacters
in an image format and require only a small subset of the font
as input. First, we consider the image format. For the purpose of
character recognition, character generation from samplesin an image
format is far more useful than from those in a vector format. Image
formats are more convenient for sample collection. For example,
when users encounter text in an unknown font, it is difficult to
find samples in a vector format, whereas an image is available
immediately upon taking a photo of the text. Likewise, sample
collection is time-consuming work and could be an obstacle for the
popularization of a font generation method if too many samples are
needed.

Our automatic generation framework makes three main contribu-
tions, each of which is briefly introduced below and described in
detail in subsequent sections.

The first contribution of this study is a stroke extraction method.
We propose a method that extracts character strokes by applying a
novel active contour model that determines the boundaries of strokes
to extract. Some strokes are damaged because of the complexity of
characters; therefore, we incorporate a restoration process for fixing
these damaged strokes.

The second contribution of this study is a method for the automatic
construction of characters in two phases: modifying skeletons in the
target font and deploying strokes to them. The proposed method
extracts the transformation parameters. With these parameters, we
can unify the skeletons in size and geometry. Because our method
transforms skeletons from a standard font (such as Mincho) to fit
the target font, it is unnecessary to build skeleton datasets for a
large number of fonts. This approach helps us with variety and
scalability. We can generate as many characters as the skeletons in
the dataset will allow (210,000 characters are available atthis time).
For automation, we define an energy function to deploy a stroke so
that an appropriate one can be added to the skeleton.

The third contribution of this study is a sample selection method.
We address which characters are suitable for the proposed method
and how we can select them based on the energy function used in
character generation. Finding samples is combinatorial problem, and
it is difficult to obtain a solution analytically. Therefore, we apply a

http://arxiv.org/abs/1701.05703v1
http://www.jisc.go.jp


TABLE I
CATEGORIES OF RELATED WORK

Handwriting font Typography font

[16] [17] [18]

An incomplete font

Input
Output

Parameters [1] [2] [3]

[4] [5] [6]

[7] [8] [9]

[11] [12]

[20] [21] [22]

[23] [24] [25]

[26] [27]

[13] [14] [15]

[10]

[28]

[This paper]

Complete fonts

[19](Font blending methods)

(Character extrapolation methods)

(Parameter-based methods)
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Fig. 1. Overview of the proposed method.

genetic algorithm to find an approximate solution.

II. RELATED WORK

In this section we review the relevant work illustrated in Table I.
Parameter-based methods:The methods in this category use

parameters acquired by analyzing fonts. One of the most famous
methods is Metafont [7], which use the shapes of pen tips and
pen-movement paths as parameters for character generation. [8] was
inspired by Metafont. Further, [9], [10] analyzed characters in the
Times font family to extract parameters. Character properties, such
as thickness and aspect ratio, are changed using these parameters. A
method for generating Japanese characters was addressed byTanaka
et al. [11], who created a database of skeletons of Japanese characters,
including kanji. The characters were generated by placing thick lines

in the skeleton data. A famous noncommercial font4 was created
by applying this method. Kamichi extended the skeleton database in
[12].

There have been attempts to analyzing handwritten characters.
Bayoudh et al. used Freeman chain-code to analyze alphabetical
characters [1]. Djioua and Plamondon used a Sigma lognormalmodel
supported by the kinematic theory [2]. An interactive system was
developed so that the user can easily fit a Sigma-lognormal model
to alphabetical characters. Wadaet al. extracted the trajectories of
alphabetical characters and replaced them using a genetic algorithm
[3]. Zheng and Doermann adopted a thin plate spline to model an
alphabetical character and generated a new alphabetical character by
calculating the intermediate of the two [4]. Handwriting models for
robot arms were developed in [5], [6].

4https://www.tanaka.ecc.u-tokyo.ac.jp/ktanaka/Font/

https://www.tanaka.ecc.u-tokyo.ac.jp/ktanaka/Font/


Parameter-based methods generate clean characters. However, they
are only applicable to particular fonts that are analyzed byhumans.
For instance, the method in [11] accepts only two fonts: Mincho
and Gothic. This drawback comes from the method’s requirement
for precise analysis. In addition, the methods cannot be applied
to Japanese fonts, since over a thousand of characters need to be
parameterized. Moreover, special equipment is required toaccurately
parameterize alphabetical characters, such as an interactive system or
device for acquiring trajectories. Unlike these methods, the method
proposed in this study generates characters without requiring precise
analysis. Thus, only a few character sample images are required. As
we discussed in the previous section, preparing sample images is a
simple task.

Font blending methods:Methods in this category receive several
complete fonts and generate a font by blending them. Xuet al.
generated Chinese calligraphy characters using a weightedblend of
strokes in different styles [13]. They decomposed samples into radi-
cals and single strokes based on rules defined by expert knowledge.
An improved method [14] considers the spatial relationshipof strokes.
Choi et al.generated handwriting Hangul characters using a Bayesian
network trained with a given font [15].

Suveeranont and Igarashi addressed a generation of alphabetical
characters for typographic fonts [16]. They generated characters by
blending predefined characters from miscellaneous complete fonts.
This method is based on a vector format, in contrast with the proposed
method, which accepts an image format. Campbell and Kautz learned
a manifold of standard fonts of alphabetical characters [17]. Locations
on the manifold represent a new font. Fenget al. used a wavelet
transform to blend two fonts [18]. Tenenbaum and Freeman used
complete fonts as references to form characters from the generation
results [19].

The methods in this approach require human supervision to gener-
ate a desired font; since they automatically blend fonts, the result
is not always the desired font. In order to avoid this problem,
blending weights [13] or an interactive system [16] are implemented.
However, sweeping the weights and using the system require human
supervision.

In contrast, the proposed method generates a typographic font with
little human supervision. Instead of blending fonts, we construct
characters with strokes extracted from sample characters in the
desired font. Therefore, the proposed method can directly provide
the user with the desired font.

Character extrapolation methods:The aim of methods in this
category is to extrapolate characters not included in a given subset.
Attempts to complete this process on handwritten fonts can be
found in [20]–[27]. Lin et al. generated characters with components
extracted from given characters [20] using an annotated font in
which the positions and sizes of components were labeled. The
extraction of the components was performed on electronic devices so
that characters can be easily decomposed. Zong and Zhu developed
a character generation method using machine learning [21].They
decomposed the given characters into components by analyzing the
orientation of strokes. Components were assigned to a reference font
with a similarity function trained by a semi-supervised algorithm.
Wang et al. focused on the spatial relationships of the character
components for decomposition and generation [22]. An active contour
model was used for decomposition [23].

Character component decomposition is a crucial technique for the
methods in this category. However, most use naive decomposition
that rely on spatial relationships [22]–[26] or special devices [20],
[27]. It is difficult to extract components when they are connected or

(a) (b)

Fig. 2. Visualization of the GlyphWiki data and our dataset.(a) Data from
GlyphWiki drawn in Mincho. The red triangles represent the control points.
The line types of the left and right strokes are “curve” and “straight” in the
middle. All start and end shapes are different. (b) The skeletons in our dataset.
The control points, line type, start shape, and end shape areattributes.

decorated. To the best of our knowledge, the method in [28] isthe
only method that is applicable to characters in fonts with decorations.
Saitoet al. applied a patch transform [29] to samples and generated
alphabetical characters in wide range of fonts [28]. However, the
generated results did not meet the criteria for practical use. In this
paper, we propose an adaptive active contour model for component
extraction. With the proposed method, we can obtain naturalcharacter
strokes even in decorated characters.

III. SKELETON DATASET

First, we address the character skeleton dataset used in this study.
We created the dataset based on GlyphWiki [30], which contains data
from more than 210,000 of characters5. GlyphWiki utilizes a wiki
format, allowing anybody to contribute to and maintain the database.
Each stroke of a character is stored in KAGE format [12] whichuses
four attributes: control points, line type, start shape, and end shape.
There are six line types, seven start shapes, and 15 end shapes. The
number of control points depends on line type and is at most four.
The control points and line types lead to a rough stroke, thenthe
start and end shapes provide details of a stroke. Fig. 2 (a) illustrates
a character in KAGE format in Mincho.

We created skeletons of the strokes in a character using GlyphWiki
data. Fig. 2(b) illustrates the skeletons of a character in our dataset.
We draw a line of a skeleton from the first control point to the last
control point. An additional line of a skeleton is drawn according to
start shape and end shape. For example, the end shape is drawnin
the middle stroke in Fig. 2(b). We draw a line according to theline
type and the number of control points. A straight line is drawn when
the line type is straight and two control points are given. A B-spline
curve is drawn when the line type is curved and three control points
are given. A straight line and B-spline curve are drawn when the
line type is vertical and four control points are given. We include
the attributes with each skeleton. We extract points on a skeleton by
regular sampling from the start point to the end point. Therefore, a
skeleton is composed of a set of sampling points. By using sampling
points, we define a skeletonS as

S =





· · · xi · · ·
· · · yi · · ·
· · · 1 · · ·



 , (1)

wherexi andyi represent thex- andy-coordinates ofith sampling
point, respectively. We adopted homogeneous coordinates.P =
[x, y, 1]T denotes a vector that represents a sampling point. Then,
S = [· · · , Pi, · · · ]. We denote a skeleton in our dataset byS, a

5It includes characters created by users that are not used publicly.



Fig. 3. Stroke extraction. The black pixels represent the extracted strokes.

(a) (b)

Fig. 4. Skeleton adjustment GUI. (a) Screenshot of the GUI initiating an
adjustment. Note that the skeleton is not matched to the sample at this point
because the skeletons are in Mincho. (b) Adjustment result.

skeleton in the samples bŷS, and a transformed skeleton6 by S̃ (See
Fig. 1).

IV. STROKE EXTRACTION

When the proposed method receives samples as an input, we extract
the strokes of the samples. Fig. 3 shows examples of extracted strokes.

A. Adjusting skeletons to samples

The proposed method maximally exploits the skeletons of sample
characters, however, the skeletons of samples are not given. The
skeletons can be easily extracted if strokes are separated;however,
strokes often overlap. Quality skeleton extraction is essential for
the proposed method. Therefore, inspired by accurate segmentation
applications, such as Grabcut [31], we adopt user interaction to adjust
skeletons in our dataset to the samples so that accurate skeletons of
the samples can be obtained.

We developed a graphical user interface (GUI) for adjusting
skeletons, as illustrated in Fig. 4. Skeletons are displayed with control
points on the sample. The operator adjusts a skeleton by dragging the
control points and the GUI shows these changes in real time.

In order to assist the operator, we implemented three automation
techniques: scale adjustment, rotation adjustment, and cooperative
move. Firstly, a scale of skeletons is adjusted to fit the sample. We
calculate a scaling factor from rectangles around the skeleton and
sample. The second technique is rotation adjustment. We extract
points from the skeleton by sampling. Likewise, we extract points
from the medial axis of the sample, which is obtained by a morpho-
logical operation. With these points, we use iterative closest point
matching [32] to calculate the rotation matrix. Thirdly, control points

6We described the details of the transformed skeletion in Section V-A.

move cooperatively when the start point is moved by hand, e.g.,
if the start point moves up, the other control points also move up.
The scale and rotation adjustments are performed only once,before
manual adjustment.

We emphasize that skeleton adjustment is not difficult and can be
completed in minutes. It is unnecessary to adjust all of the skeletons in
the dataset. According to our experimental results, approximately 15
samples are sufficient for the proposed method. Therefore, skeleton
adjustment is significantly less work than creating thousands of
characters by hand.

B. Skeleton relation assignment

We determine the connectivity of the skeletons in the samples. We
define relations between two skeletons as follows:

• continuous: the start or end of a skeleton is connected to the
start or end of another.

• connecting: the start or end of a skeleton is connected to the
body of another.

• connected: the body of a skeleton is connected to the start or
end of another.

• crossing: the skeleton crosses over another.
• isolated: the skeleton is isolated from others.

The body is the part of a skeleton without start or end parts. Examples
of each relation are illustrated in Fig. 5.

Two skeletons are in contact when the distance between them is
small. Therefore, we measure the distanced betweenS andS′ as

d =

{

min
i,j

‖Qi,j − Pi‖2 + ‖Qi,j − P ′
j‖2 if Q exists,

∞ otherwise.
(2)

Qi,j is the point at which two lines cross, which are vertical toS and
S′ and throughPi andP ′

j , respectively. Fig. 6 illustrates an example
of Q. Using theī and j̄ that minimized, we can determine which
part ofS is in contact withS′, e.g., the start ofS is in contact with
the part ofS′ when ī is small and̄j is large. We use three functions
to indicate contact:Is for the start,Ie for the end, andIb for the
body. Forn points of a skeleton, the functions calculate true or false,
as follows.Is(̄i) = True if ī

n
< .05, otherwise False.Ie(̄i) = True if

ī
n
> .95, otherwise False.Ib(̄i) = True if .05 ≤ ī

n
≤ .95, otherwise

False. The parameters.05 and .95 were determined experimentally.
We assign a relationR to S againstS′ as follows:

R =































































continuous ifd < 2(τ + τ ′)
∧ (Is (̄i) ∨ Ie (̄i))
∧ (Is(j̄) ∨ Ie(j̄)) ,

connecting ifd < 2(τ + τ ′)
∧ (Is (̄i) ∨ Ie (̄i)) ∧ Ib(j̄),

connected ifd < 2(τ + τ ′)
∧Ib (̄i) ∧ (Is(j̄) ∨ Ie(j̄)) ,

crossing ifd < 2(τ + τ ′)
∧Ib (̄i) ∧ Ib(j̄),

isolated otherwise,

(3)

whereτ represents a thickness of a stroke in a sample. We can draw
a character image withτ . Fig. 7 illustrates the skeletons and created
character with various values ofτ . We empirically determinedτ by
creating character images with variousτ and choosing theτ that
minimizes the hamming distance between the created and sample
character images.

We reconsider the relations obtained above. Since the relations are
based on the skeletons, it is necessary to verify that they are consistent
with the sample images. The relations may occasionally be different
from the samples because of human error during adjustment and the



(a) (b) (c) (d) (e)

Fig. 5. Skeleton relations of the red skeletons to the black skeletons: (a)
continuous, (b) connecting, (c) connected, (d) crossing, and (e) isolated.

Pi
j,4

Pi
k,4

Q4,4

Sij Sik

Fig. 6. Measurement of the distance between two skeletons. The sampling
points are drawn with black circles.

parameters. The parameter2(τ+τ ′) in Eq. (3) is set to a severe value
in order to detect all stroke contacts without omission. Consequently,
an incorrect relation may be assigned.

The procedures for reconsideration are as follows. We classify all
pixels of the sample to the nearest skeleton within the Euclidean
distance. Fig. 8 (a) illustrates the segmentation results.Subsequently,
we choose a connected component from the sample using these
results. Then, we determine the number of connected components
obtained. If the relation is isolated, there must be two connected
components. Likewise, if the relation is connecting, connected, or
crossing, there must be only one connected component. This check
complements Eq. (3).

C. Adaptive active contour model

We propose an adaptive active contour model (AACM) for charac-
ter stroke extraction. The AACM is able to distinguish even strokes
that have contact with others, determining the boundary of each
stroke. Inspired by Snake [33], we seek the boundary by optimizing
a spline curve. In addition, we incorporate constraints andadaptive
energy modification into the AACM so that strokes can be extracted
from complex characters.

The AACM is defined as a spline curve that minimizes the energy
function as

EAACM = Eint + Eimg, (4)

whereEint andEimg take into account the smoothness of the curves
and the fit to objects, respectively.Eint follows [33]. Eimg must
be determined for each task. If we setEimg to −|△I |, where△I
represents the gradient image ofI , Eimg pulls the AACMs to the
edges. For our purposes, it is unnecessary for a boundary to be very
close to its stroke, and instead, may be rather relaxed. If the boundary
is too close, it may cross the stroke. Consequently, the extracted
strokes are damaged. Therefore, in this paper, we defineEimg as

Eimg = Gv ∗ ISMP+ ISK, (5)

where Gv is a Gaussian kernel with variancev, and ISMP and
ISK are the grayscale images7 of the sample and its skeletons,

7Pixel values are 0 if they are background, and 255 otherwise.

(a) (b)

Fig. 7. (a) Skeletons and (b) created characters withτ = 1, 10, 20, 40.

(a) (b)

Fig. 8. Relation check. (a) Skeleton of segmentation results. (b) Sample of
the segmentation results. Focusing on the two segments indicated by the red
circle, the relation is isolated in (a), but there is only oneconnected component
in (b).

respectively.Eimg has a high energy8 around the strokes, thus, the
boundary remains separated from them. We use the boundariesof
the segmentation results as the initial AACMs. We adaptively modify
Eimg and set some points that the AACMs must pass through.

In the case where the relation of the target stroke is isolated, which
is the simplest case, we directly apply an AACM. Fig. 9 illustrates
the results of the extraction of an isolated stroke.

In the case where the relation of the target stroke is connecting
or continuous, we force an AACM to go through the point at which
the strokes are in contact. Then, we decreaseEimg by 1/β1 within
the range of the lengthβ2τ from the point, except forISK. This
decrease operation encourages the AACM to pass through the stroke
intersection.β1 and β2 are constant values that were determined
empirically. With the modifiedEimg and the constraints, we minimize
the AACM and extract the target. Fig. 10 demonstrates the extraction
for this case. The AACM naturally passes through the intersection
due to the decreased energy.

Where the relation of the target stroke is crossing or connected, we
decreaseEimg by 1/β1 within the range ofβ2τothers from the other
strokes. Then, we minimize the AACM with the modifiedEimg and
extract the target along the minimized AACM.

D. Stroke restoration

We reshape extracted strokes, which often have defects at points
where contact occurs; see Fig. 11(a). An intuitive method for restora-
tion is the removal of contours around defects and the connection with
cubic Bézier curves. A cubic Bézier curve is drawn with four points
(P1, P2, P3, P4). The curve starts fromP1 and ends atP4. P2 and
P3 serve as control points that provide a direction to the curve.

We apply cubic Bézier curves to a stroke using POTRACE [34],
generating a number of curves that represent the short partsof the
contour. Then, we remove the curves within a distance ofτ from
the extracted stroke; see Fig. 11(c). We create a cubic Bézier curve
between two curves so that the contour can be continuous; see

8The pixel value represents the energy: 0 is the lowest and 255is the
highest.



(a) (b)

Fig. 9. Extraction of an isolated stroke. (a) Initial AACM (blue) and
minimized AACM (orange) onEimg. (b) Extracted stroke.

(a) (b)

Fig. 10. Stroke extraction for connecting or continuous stroke relations. (a)
Initial AACM (blue) and minimized AACM (orange) onEimg. (b) Extracted
stroke.

Fig. 11(d). We setP1 and P4 of the new curve toP4 and P1,
respectively, of the remaining curves. Fig. 12 illustratesthe new
curve. We calculateP2 andP3 by

P2 = P1 + γ(P1 − P ′

1), (6)

P3 = P4 + γ(P4 − P ′

4), (7)

whereγ is a constant value.P ′
1 andP ′

4 represent the nearest control
points fromP1 andP4 in the remaining curves, respectively.P1−P ′

1

and P4 − P ′
4 represent local gradients. Hence,P2 and P3 are the

points moved along the local gradients fromP1 andP4, resulting in
a smooth curve.

V. STROKE DEPLOYMENT

We generate characters by deploying strokes on skeletons. Our
character generation method consists of two phases: skeleton modi-
fication and stroke deployment.

A. Skeleton modification

The results of character generation would be strange—even with
perfect strokes— if the style of the skeleton dataset were different
from the target font. Thus, we modify the skeletons to be similar to
the target font. A feasible method for modification is the useof a
transformation matrix. We estimate the transformation matrix from
the skeletons of the samples. Specifically, we seek two transformation
matrices:Tsz andTaff. Tsz adjusts the size of the skeletons and centroid
translation, andTaff adjusts the affine transformation of the skeletons.
Modification is carried out by applyingTsz andTaff to the dataset.

We estimateTsz from the rectangles of the skeletons. LetH andW
denote the height and width of a character in the dataset, respectively.
Likewise, let Ĥ and Ŵ be the height and width of the skeleton of
a sample character, respectively. With output image sizeIw and Ih,
we calculateTsz by averaging size transformation over the sample
charactersC = {· · · , ci, · · · } as:

Tsz =
1

|C|

∑

ci∈C









Ŵci

Wci

0 Iw
Ŵci

2Wci

0
Ĥci

Hci

Ih
Ĥci

2Hci

0 0 1









. (8)

(a) (b)

(c) (d)

Fig. 11. Restoration of an extracted stroke. (a) Damaged stroke. (b) Restored
stroke. (c) Contours removed with cubic Bézier curves; redrectangles repre-
sentP1 andP4, and pink circles representP2 andP3. Cyan lines represent
contours. (d) The created curves, indicated by red lines.

P1

P2 P3

P4

P’1

P’4

Fig. 12. Points of a new Bézier curve. The red curve represents a new curve
and the green curves represent those remaining.

We estimateTaff using the skeletons of the sample and dataset.
However, it is difficult to estimateTaff directly from the skeletons
because of the complex structure of the characters. If the characters
are complex, they have many skeletons. The affine transformations
of skeletons cancel each other. Eventually,Taff becomes a trivial
matrix, such as an identity matrix. To avoid these problems,we
divide the characters into groups and calculateTaff by averaging
the affine transformation matrices obtained from each group. We
divide a character using the relations of skeletons. Groupsconsist
of skeletons whose relations are continuous, connecting, connected,
and crossing. Fig. 13 illustrates the grouping results. We use function
fT to calculate the affine transformation matrix, which fits stroke S
to strokeS′. We formulatefT based on the least-squares method, as
Eq. (9), which can be solved analytically as Eq. (10).

fT (S, S
′) = arg min

T∈T

‖S − TS′‖2, (9)

= (S⊤S)−1S⊤S′, (10)

whereT represents a set of all possible affine transformation ma-
trices. We calculateTaff by averaging affine transformation matrices
from S to Ŝ as

Taff =
1

nstrokes

∑

i∈C

ni

groups
∑

k=1

∑

j∈Gi

k

fT (S
i
j , Ŝ

i
j), (11)

wherenstrokes is the number of total strokes inC. The number of
groups in characteri is ni

groups. G
i
k is a set of stroke indices in group

k of characteri, such as:Gi
k = {j | Si

j ∈ groupk}.



(a) (b) (c) (d)

Fig. 13. Groups of skeletons: (a) skeleton and (b), (c), and (d) groups.

Finally, we modify the skeletons by applyingTsz and Taff. A
transformed stroke is obtained using the equation

S̃ = TaffTszS. (12)

B. Stroke deployment

Here, we describe the framework for selecting a stroke that is
the most suitable for a target skeletoñS. Stroke deployment has an
impact on the appearance of the generated characters; therefore, the
appropriate stroke must be chosen for each target skeleton.

First, we selectŜ, which fits to S̃, from a set of the extracted
strokesŜ. Then, we determine the strokêI corresponding to the
selectedŜ.

Î = fimg(Ŝ), (13)

Ŝ = arg min
Ŝi∈Ŝ

E(Ŝi, S̃), (14)

wherefimg is a function that gives a stroke corresponding toŜ and
E is an energy function associated with skeletonsŜ and S̃. OnceÎ
is determined, we applyfT (Ŝ, S̃) to Î and deploy the transformed
Î on S̃. We repeat the selection until strokes for all target skeletons
are determined. Finally, a character is generated by integrating the
selected strokes.

We defineE as

E(Ŝ, S̃) = Es(Ŝ, S̃) + Es(fdata(Ŝ), fdata(S̃)) +

Ea(fdata(Ŝ), fdata(S̃)), (15)

wherefdata(S) gives the skeleton corresponding toS in the skeleton
dataset. The energyE utilizes three terms in inspectinĝS. The first
term measures the distance between skeletons in a sample character
and a target character. When this term is small, two skeletons are
similar. Therefore,Î will naturally fit to the target skeleton. The
second term also measures the distance between two strokes,but
only using the dataset. If the skeletons in the dataset are similar, the
stroke is favorable for the target skeleton. This term improves the
accuracy of the energy function. The third term measures distance
using adjacent skeletons, making the distance more global than when
focusing on only two skeletons.

The energyEs measures the distance between two skeletons. We
defineEs(S,S

′) as

Es(S, S
′) = ‖S′ − fT (S, S

′)S‖1

+‖S − fT (S
′, S)S′‖1

+
3

∑

k=1

Ik(S, S
′), (16)

whereIk is 1 if the three attributes of two skeletons—line type, start
shape, and end shape—are different; otherwise, it is0. Ik inspects
the line type, start shape, and end shape of the stroke whenk = 1,
2, and 3, respectively. The first term ofEs measures the distance
between two skeletons. The second term ofEs takes into account the
distortion from the transformationfT (S, S′); a less distorted skeleton

is favored. The third term ofEs incorporates attribute differences. We
defineEa as

Ea(S, S
′) =

{

‖Sst − S′
st‖1 + ‖Sed − S′

ed‖1 if Saexists

50 otherwise,
(17)

whereSa = {Sst, Sed, S
′
st, S

′
ed}, and Sst represent a skeleton con-

nected to the start point ofS. In the case where there are several
skeletons connected toS at the start point, we choose one skeleton
whose center is closest toS. Likewise, Sed represents a skeleton
connected to the end point ofS. If Sst, Sed, S′

st, or S′
ed is unfavorable,

Ea has a large value.

VI. SAMPLE SELECTION

The proposed method usesC, a font subset, to generate a large
number of characters. The generation results are deeply influenced by
C. Therefore, it is important to analyze which characters aresuitable
elements forC. With an optimalC, we are able to maximize the
capability of the proposed method. We define a process of seeking
the optimalC assample selection.

In sample selection, we use the skeleton dataset to seekC. Note
that sample images are not used. Since the skeletons in the dataset
are fundamental data, if the skeletons inC in the dataset are suitable,
C in a target font can be expected to work well.

In order to ensure sample selection feasibility, we seekC in a
subset of the dataset that we define asvalidation characters. In this
study, we adopt the 1,006 characters of kyoiku-kanji containing the
elemental characters of Japanese. Since the number of characters in
the dataset exceeds 210,000, it is time-consuming to use theentire
dataset. As we show in experimental results in Section VII, the
proposed method is able to generate acceptable results witha selected
C, verifying the effectiveness of our approach.

Sample selection is based on a genetic algorithm. There are alarge
number of candidates of optimalC even with the subset. Candidates
undergo crossover, evaluation and selection processes andan optimal
candidate can be obtained over many iterations of these processes.

We define functionfselectionthat calculates the energy of a candidate
Ci using a set of skeletonsSi of Ci. Let Sv represent a set of
skeletons of validation characters.

fselection(Si) = αfe(Si) + (1− α)fr(Si), (18)

fe(Si) =
∑

sv∈Sv

(

min
s∈Si

Es(s, sv) + Ea(s, sv)

)

, (19)

fr(Si) = |Si|+Ncross(Si) +Ncon(Si), |N | (20)

where |S| represents the cardinarity.Ncross gives the number of
skeletons whose relations are crossing.Ncon gives the number of
skeletons whose relations are continuous, connecting, andconnected.
fr measures the complexity ofC and serves as a regularization term.
We control the complexity of the samples with a constant value α.

VII. E XPERIMENTAL RESULTS

We demonstrate character generation with the proposed method
using kanji. We used five fonts as the target fonts: Ibara 43),Gcomic
44), Onryo 45), Tsunoda 46), and Zinpen 47), where the indices rep-
resent the numbers in Appendix. Fig. 14 shows the original characters
in the five fonts. The characters in each font have distinctive strokes;
for instance, two parallel lines are used in Zinpen. It is very difficult
for existing methods to generate characters in these characteristic
fonts.



Fig. 14. The Ibara, Gcomic, Onryo, Tsunoda, and Zinpen fonts(from top to
bottom).

TABLE II
SAMPLE SELECTION RESULTS.

α fselection fr samples
0.8 0.017 0.673
0.6 0.027 0.447
0.4 0.030 0.387

We created sample images by drawing characters in a 360-pt
font size using the Qt library9. The size of the images is 500 by
500 pixels. We implemented the proposed method with C++ and
experiments were carried out on a Windows machine with a dual-
core CPU. Fifteen characters were chosen as the samples in each
font. The coefficients were set as follows:β1 = 2.0 andβ2 = 1.5.
We generated 2,965 characters, which comprise the set of JISlevel-1.

For comparison, we used the existing method [28] based on patch
transformation developed by Saitoet al. To the best of our knowledge,
[28] is the only method that is applicable to characters in various
fonts. [28] divides samples into grid squares and generatescharacters
by deploying the squares. The frameworks of the proposed and[28]
are similar. Both exploit samples, extract components of characters,
and generate characters. However, the extracted components are
significantly different. The components in [28] are small pieces of
characters that lack meaning, whereas the components in theproposed
method are complete strokes.

We have employed our method for sample selection, the results
of which are summarized in Table II. We extracted strokes of
the validation characters from the 1,006 characters from kyoiku-
kanji that are for elementary school students, as determined by the
Japanese Ministry of Education. The initial candidates arerandomly
generated. We fixed the number of elements in a candidate to 15
characters. In each iteration of the algorithm, 20 candidates survive as
good candidates and 150 new candidates are created. The maximum
number of iterations is set to 1,000. We variedα and carried out
sample selection. The minimumfselectionandfr are listed in Table II.
The obtained samples are complex characters at high values of α and
simpler at lowα values. We use samples atα = 0.6 as the sample
characters in the following experiments.
A. Character generation results

We generated characters in the five fonts using the proposed and
existing methods, which are shown in Fig. 15. We generated 2,965
characters in each font, though only 75 characters are showndue to
space limitations. Almost all characters generated by the proposed
method appear clean and have good readability. Moreover, the font
characteristics, such as the slant of the characters in Ibara, are
successfully reconstructed. It is not easy to distinguish the original
characters from those generated by the proposed method at a glance.

9http://www.qt.io/

(a)

(b)

(c)

(d)

(e)

Fig. 15. The characters generated in five fonts: (a) Ibara, (b) Gcomic, (c)
Onryo, (d) Tsunoda, and (e) Zinpen. From top to bottom in eachsubfigure,
results are shown for the original characters, the proposedmethod, and the
method of Saitoet al. [28].

In addition, we describe the complexity of the strokes of thegenerated
characters: 1 (min), 29 (max), 12.5 (avg), and 4.5 (std).

B. Similarity evaluation of the images

We evaluated the generated characters as images. We compared
the generated characters with the original images with the Cham-
fer distance [35]. Letdcham(A,B) be the Chamfer distance from
image A to imageB. The distance is defined asdcham(A,B) =
∑

p∈Â
minq∈B̂ |p − q|, whereÂ and B̂ are the sets of edge points

of A and B, respectively. We obtained̂A and B̂ by applying a
Canny edge detector [36]. In general,dcham(A,B) is not equal to
dcham(B,A); therefore, the symmetric formulation is often used

d′cham(A,B) = dcham(A,B) + dcham(B,A). (21)

We employedd′cham in this study.
A subset of the generated characters is used for this evaluation.

Specifically, we used the 1,006 characters mentioned above.We
resized the images of the original and generated charactersto 100
by 100 pixels and calculated the Chamfer distance between the
generated characters and the originals. Table III summarizes the
average Chamfer distances. The proposed method is closer for all five
fonts than the existing method. In particular, the proposedmethod
is greatly superior to the existing method for the Tsunoda font.
Tsunoda has a distinctive skeleton, as can be seen in the spaces
between strokes. Since the proposed method successfully modified
the skeleton for Tsunoda, the generated characters are close to the

http://www.qt.io/


TABLE III
AVERAGE CHAMFER DISTANCE

Ibara Gcomic Onryo Tsunoda Zinpen
Saito [28] 4.7 4.2 4.6 6.8 3.8
Proposed 4.1 3.7 4.2 4.1 3.2

TABLE IV
RECOGNITION RESULTS(%)

Ibara Gcomic Onryo Tsunoda Zinpen
Saito [28] 29.0 61.5 56.5 7.4 68.8
Proposed 48.3 77.4 67.7 28.6 77.4

originals. These results numerically demonstrate the effectiveness of
the proposed method.

C. Evaluation using character recognition

We evaluated the generated characters by using them as training
data for a character recognition system. The test data are character
images of kyoiku-kanji in each font. Therefore, the number of classes
is 1,006. A simple recognition method with Chamfer distanceis used
in this study. We calculated the Chamfer distance between the training
and test data and classified the test data as the nearest character. Test
data are created as images, including one JPEG-compressed character.
We created test data by drawing characters using a 60-pt fontsize on
100 by 100 pixel images; the background is white, and the foreground
is black. Table IV summarizes the results. The proposed method
achieved higher performance than the existing method for all fonts.

D. Subjective evaluation

We present the results of two subjective evaluations based on the
similarity of each font to the original characters and the appearance
of the generated characters. Both subjective evaluations were carried
out by 14 participants.

The first subjective evaluation is of the similarity betweenthe gen-
erated and original characters. At the beginning of the firstsubjective
evaluation, we showed the original characters to the participants.
Then, 10 idioms consisting of four characters were displayed. The
idioms were made from original characters, characters generated
by the proposed method, or characters generated by the existing
method. We use the mean opinion score (MOS) over the results.The
participants assigned scores ranging from 1 (bad) to 5 (excellent) to
the idioms according to their impression of their similarity. Table
V summarizes the results. The proposed method receives higher
MOSs than the existing method. Moreover, the MOSs of the proposed
method are relatively close to the originals.

The second subjective evaluation is of appearance. We askedthe
participants to select characters that may have been generated by
computers. The test data consisted of 150 characters from each font,
i.e., 50 characters each from the original characters, those generated
by the existing method, and those generated by the proposed method.
Therefore, the test data consist of a total of 750 characters. Fig.
16 illustrates the test data shown to the participants. We counted
the number of participants who believed the characters to have been
generated artificially. Then, we calculated the averages and normal-
ized the numbers. Table VI summarizes the results. A character’s
appearance is natural if the value is low and unnatural if it is high.
Natural means that the characters are likely handmade, andunnatural
means artificial. Most of characters generated by the existing method
are classified as generated characters since the results arein the range

TABLE V
RESULTS OF A SUBJECTIVE EVALUATION OF FONT SIMILARITY TO

ORIGINAL CHARACTERS

Ibara Gcomic Onryo Tsunoda Zinpen
Originals 4.5 4.8 4.5 4.9 4.9
Saito [28] 1.1 1.3 1.5 1.1 1.3
Proposed 4.3 4.4 4.6 4.3 4.6

(a)

(b)

Fig. 16. Examples of test data and answers. (a) Test data shown to the
participants. (b) Answers to the test data. Generated characters are gray.

of 0.77–0.99. The appearance of the characters generated bythe
method in [28] is far from handmade. In contrast, the resultsfor the
proposed method are much lower than those for [28]. In particular,
the characters generated by the proposed method for Ibara and Onryo
are close to the original characters. According to the results, it is
difficult to distinguish the original characters and those generated
by the proposed method, even by a human. Therefore, the proposed
method successfully generated characters with a good appearance.
E. Varied font generation

In order to demonstrate the font generation capability of the
proposed method, we performed a generation experiment with42
fonts: four standard fonts used in Windows (Gothic, Meiryo,Mincho,
and YuMincho), six calligraphy handwriting fonts 5) – 10), 17 pen
handwriting fonts 11) – 24), and 15 artificial fonts 28) – 42).The fonts
are varied, and include Mincho, Gothic, clerical, antique,personal
handwriting, professional and handwriting styles. It is worth noting
that the number of fonts used in most existing methods is small; in
particular, we used a significantly large number of handwritten fonts,
23. In this experiment, we generated 2,965 characters. We illustrate
examples of the results in Fig. 17. The results are promising. The
proposed method generated clean characters and the style ofeach
font is reproduced.

VIII. C ONCLUSION

This paper focused on the problem of generating characters for
a typographic font by exploiting a subset of a font and a skeleton
dataset. The proposed method extracts character strokes and con-
structs characters by selecting and deploying the strokes to the skele-



(a) Proposed (b) Original

Fig. 17. Generation results of the proposed method and the original characters in various fonts. Each row shows one font.

TABLE VI
RESULTS OF THE SUBJECTIVE EVALUATION OF APPEARANCE

Ibara Gcomic Onryo Tsunoda Zinpen
Originals 0.06 0.02 0.04 0.01 0.01
Saito [28] 0.96 0.9 0.86 0.98 0.94
Proposed 0.11 0.09 0.07 0.13 0.08

ton. The proposed method successfully extracts the naturalstrokes
from sample character images. It is worthwhile to emphasizethe
importance of stroke extraction from the small number of character
images. The proposed method only requires a font subset—as small as
15 samples—which is a feasible number of samples to collect.With
such a small subset, the proposed method can generate thousands of
characters. Sample collection is further eased because this method
can extract characters from image formats.

An experimental evaluation was conducted with five characteristic
fonts that are difficult to generate with existing methods. We evaluated
the generated characters by objective and subjective evaluations;
all results indicated that the characters generated by our proposed
method have a comparable appearance, usefulness, and readability to
the original characters. Furthermore, we carried out the experiments
with subsets of 42 fonts to demonstrate the generative capability
of the proposed method. In our future work, we will attempt to
automatically adjust skeleton samples and conduct experiments with
a larger number and greater variation of fonts.

APPENDIX

L IST OF FONTS

1) MS Gothic
2) MS Meiryo
3) MS Mincho
4) MS YuMincho
5) Aoyagi kouzan
6) Aoyagi reisho
7) Eishi kaisho
8) aiharahude
9) jetblack

10) riitf
11) azukifont
12) chigfont
13) gyate
14) hosofuwafont
15) KajudenB
16) KajudenR
17) kiloji
18) KTEGAKI
19) mitimasu
20) seifuu
21) setofont
22) SNsanafon
23) TAKUMISFONT-B
24) uzurafont
25) apjapanesefonth
26) KFhimaji
27) ruriiro

http://opentype.jp/aoyagikouzanfontt.htm
http://opentype.jp/aoyagireisho.htm
http://www.ac-font.com/jp/detail_jb_007.php
http://deepblue.opal.ne.jp/faraway/font.html
http://sapphirecrown.xxxxxxxx.jp/
http://aoirii.babyblue.jp/font/riitf/index.html
http://azukifont.com/
http://welina.holy.jp/font/tegaki/chif/
http://marusexijaxs.web.fc2.com/tegakifont.html
http://huwahuwa.ff-design.net/archives/35
http://ameblo.jp/fakeholic/entry-10972813360.html
http://ameblo.jp/fakeholic/entry-10972813360.html
http://www.ez0.net/distribution/font/kiloji/
http://font.spicy-sweet.com/
http://www.masuseki.com/index.php?u=my_works/121003_mitimasu.htm
http://www.geocities.jp/s318shunkasyuto/
https://osdn.jp/projects/setofont/releases/
http://sana.s12.xrea.com/2_sanafon.html
http://slimedaisuki.blog9.fc2.com/blog-entry-2475.html
http://azukifont.com/
http://www8.plala.or.jp/p_dolce/font2.html
http://www.kfstudio.net/himaji/
http://sapphirecrown.xxxxxxxx.jp/


28) AMEMUCHIGOTHIC
29) antique
30) chogokubosogothic
31) dejima-mincho
32) GenEiAntique
33) hakidame
34) IPAexg
35) IPAexm
36) jk-go-l
37) Kazesawa
38) migu-1c
39) mofuji
40) Nasu
41) Smart
42) yutapon-coding
43) Ibara
44) Gcomic
45) Onryo
46) Tsunoda
47) Zinpen
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