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This article presents a hybrid animation approach that combines example-based
and neural animation methods to create a simple, yet powerful animation regime
for human faces. Example-based methods usually employ a database of
prerecorded sequences that are concatenated or looped in order to synthesize
novel animations. In contrast to this traditional example-based approach, we
introduce a light-weight auto-regressive network to transform our animation-
database into a parametric model. During training, our network learns the
dynamics of facial expressions, which enables the replay of annotated sequences
from our animation database as well as their seamless concatenation in new order.
This representation is especially useful for the synthesis of visual speech, where
coarticulation creates interdependencies between adjacent visemes, which affects
their appearance. Instead of creating an exhaustive database that contains all
viseme variants, we use our animation-network to predict the correct appearance.
This allows realistic synthesis of novel facial animation sequences like visual-
speech but also general facial expressions in an example-based manner.

nimation and rendering of human faces play
Aan important role in many application fields

like virtual reality (VR), video-games, or movie-
productions. Especially VR requires high-quality ani-
mation of 3-D human faces to ensure a high level of
realism. While recent approaches for modeling and
animating human faces show impressive results, auto-
matic animation is still a challenging task. This is
mainly caused by the fact that the human face is a
complex structure composed of different materials
like bones, muscles, tissue layers, and skin, which
results in complex reflective properties (that even
include subsurface scattering) but also complex
dynamics and motion. At the same time, humans
are very sensitive to deviations from expected
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appearance/behavior of faces such that even small
errors may reduce the acceptance of users.

Therefore, we follow a data-driven approach for
facial animation, which focuses on the synthesis of real-
istic faces based on real measurements and animation
from a sequence of discrete labels. These labels are a
high-level description of the desired facial animation
and represent, for example, visemes or general expres-
sions (e.g., neutral, smile, open mouth). The advantage
of our approach is that it requires only a minimal
description of the target content, which allows even
untrained users or other software modules to produce
plausible facial animations in real-time. A typical use-
case for our system is, for example, the synthesis of
visual speech (mouthings) during sign-language pro-
duction with a virtual human signer. Visual speech syn-
thesis refers to the process of generating plausible
mouth animations according to an input speech signal
(e.g. text/visemes). Mouthings and facial expressions
in general are an integral part of sign-languages as they
help comprehending ambiguous signs or gestures, they
provide functions like indexing/spatial referencing (e.g.,
via eye gaze) and convey emotions. In contrast to other
animation methods (e.g., the paper by Zhou et al,
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the main challenge of this approach is to generate real-
istic facial animations (appearance as well as dynamics)
from a few semantic labels that do not provide detailed
information of the concrete facial expressions or the
dynamics.

We solve this task by employing two neural net-
works. First, we create a neural face model that is
capable of synthesizing realistic facial expressions
from a low-dimensional latent expression vector. This
face modeling network is implemented as a variational
auto-encoder (VAE) and jointly reconstructs 3-D face
geometry as well as texture, see Figure 1.

The second neural network is responsible for syn-
thesizing a sequence of latent expression vectors
given the current and next animation label as well as a
style vector. Intuitively, our approach transforms the
animation-database into a parametric model. Instead
of querying suitable animation samples from the data-
base, we synthesize them using the animation net-
work. This approach is especially advantageous for
the synthesis of visual speech, where coarticulation (a
phenomenon in human speech where successive
sounds are articulated together) strongly affects the
appearance of visemes. Instead of creating an exhaus-
tive database that contains all possible instances of
each viseme, our network learns to predict the correct
appearance from semantic animation labels. This
reduces the number of necessary prerecorded
sequences and enables us to synthesize realistic
visual speech as well as general facial animation
sequences from a rather small animation database.
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Moreover, we train the network to learn style informa-
tion for each training sequence based on a unique ID.
This style vector captures natural variations of facial
expressions with the same label. Figure 8 illustrates
this effect: our training data contains different instan-
ces of the smile expression and instead of creating a
new semantic label for each instance, we encourage
our animation network to learn continuous style vec-
tors that capture natural variations of facial expres-
sions with the same semantic label. The main
contributions of the proposed system are as follows:

» automatic generation of realistic face anima-
tions from high-level semantic labels;

» pronunciation of new words, which are not part
of the training data;

» capture and reproduction of effects like coarti-
culation and natural variations of facial expres-
sions with the same semantic label.

The remainder of this document is structured as
follows: after presenting important related works, we
will give a high-level overview of the proposed system
followed by a detailed presentation of the facial
modeling and the animation approach. In the last two
sections, we will present animation samples and dis-
cuss the results as well as the limitations.

Modeling and animation of human faces have a long
history in computer graphics and computer vision. For

B
B

FIGURE 1. Results of the facial performance capture process. Each row shows a different facial expression. From left to right, we

show the dynamic face texture, the underlying face geometry, the rendered face model, and the original video frame.
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a long time, dynamic face models were typically built
by computing a linear basis that allowed reconstruct-
ing 3-D face geometry depending on facial expression
and identity parameters. More sophisticated models,
as, for example, proposed by Thies et al.,? were even
able to capture albedo and diffuse light by incorporat-
ing more model parameters. However, while these
models are computationally efficient and easy to use,
employing only linear relations for a complex object
such as the human face leads to well-known problems
like the fact that an unregularized linear model can
easily generate implausible facial expressions, while at
the same time it lacks the expressiveness to capture
important details. One approach to circumvent these
limitations is using hybrid models like, for example,
presented in the paper by Paier et al.® By incorporating
high-resolution dynamic textures, it is possible to cap-
ture and reproduce important facial details that can-
not be efficiently represented by geometry alone.
While this approach improves the visual quality of the
rendered model, it also increases the memory require-
ments and limits its editing capabilities.

With the advent of deep neural networks, more
powerful generative models have been developed. For
example, Lombardi et al.* and Paier et al.’ propose an
architecture based on a VAE® that learns a manifold of
facial expression and is capable of jointly reconstruct-
ing face geometry and texture with a deep neural net-
work. While Lombardi et al.* use a highly specialized
face capture rig to generate detailed face geometry
and view dependent textures from 40 different camera
views, Paier et al.® propose a practical approach with
less hardware requirements based on an approximate
PCA geometry model. Potential inaccuracies in geom-
etry are compensated with a graph-cut-based multi-
view texture extraction method that extracts highly
detailed dynamic textures. An additional adversarial
loss forces the VAE to generate sharp and detailed
face textures. While the two previous approaches are
restricted to a single person, Li et al.” and Chandran
et al.® propose deep neural face models, which are
capable of representing facial expression and identity.
Chandran et al.? train their neural face model with reg-
istered and textured face meshes of 224 subjects that
show 24 predefined expressions. They use two sepa-
rate VAE to extract identity and expression informa-
tion. The identity VAE processes the neutral
expression of each subject, while the expression VAE
receives only blend-shape weights. A joined decoder
uses the latent identity and expression vector to
reconstruct the target geometry as well as a low-reso-
lution albedo map. Using a super resolution network,
they compute the final high-resolution albedo map.
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Li et al.” build their neural face model using two gener-
ative adversarial networks (GAN) based on the style-
GAN architecture. An identity GAN generates low-
resolution (256x256) albedo and geometry maps in
texture space. The synthesized albedo and geometry
maps are evaluated by three discriminators. One dis-
criminator checks the albedo map, another one evalu-
ates the geometry map, and a joint discriminator
ensures that the generator learns the correct correla-
tion between geometry and albedo. The second GAN
generates an expression offset map from a latent
expression vector. Again, a discriminator evaluates
the synthesized expression map. Additionally, they
use an expression code regressor that predicts the
latent expression code from the synthesized expres-
sion map and minimizes the L1 loss between predicted
and true expression code. With two more upscaling
steps, they finally generate 4 K albedo, specular and
displacement maps from the synthesized low-resolu-
tion albedo and expression-geometry map.

Apart from learning latent representations of tex-
tured face meshes, neural networks can be used also
for the animation process itself. For example, Lom-
bardi et al.? implement a video-driven and a control-
point-based animation approach that allows animat-
ing the deep face model from three integrated cam-
eras in a VR headset or by dragging control points of
the face model. While such approaches allow direct
control over the face model, they also require an expe-
rienced animator. Other approaches for facial anima-
tion predict parameters from audio signals. Cudeiro
et al.® for example, use time convolutions to predict
3-D vertex offsets for a neutral reference mesh based
on DeepSpeech audio features. Similarly, Yang et al.’
presents an audio-based approach for mouth anima-
tions. They use a voice conversion network to disen-
tangle speech content and identity information. Using
LSTMs, they map voice content embeddings to 2-D
facial landmark positions, which allow warp-based ani-
mation of cartoon images or animating natural human
images using an existing image-to-image translation
network. In contrast to previously mentioned meth-
ods, we aim at performing realistic and automatic
mouth animation only from semantic labels, like the
paper by Paier et al.’® They present an approach for
visual speech animation using graph-cuts to select an
optimal sequence of visual speech samples from an
annotated animation database. While their approach
works well in general, it still depends on the size of the
animation database. For example, if certain combina-
tions of visemes are not available, transitions between
concatenated speech samples may contain artifacts
(due to coarticulation), which results in an unnatural
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facial animation sequence. We circumvent this prob-
lem by training an auto-regressive neural network that
learns the dynamics of visual speech and is able to
synthesize realistic transitions even if certain viseme
combinations are not available in the training data.

Our animation method builds upon a deep neural
face model, which is created from captured multiview
video. This face model allows synthesizing textured
face meshes from a low-dimensional latent expression
vector. Using this latent representation, we train an
auto-regressive animation model that synthesizes
sequences of latent expression vectors, given a
semantic label (which describes the target facial
expression/motion). The auto-regressive approach fur-
ther simplifies the resulting animation procedure,
since we are able to synthesize parameter sequences
without further data structures or the need for blend-
ing between concatenated sequences.

This section gives a high-level overview of the pro-
posed framework, which consists of three stages that
are detailed in the remainder of this document. To per-
form example-based animation, we create a database
of relevant facial expressions from a captured multi-
view video footage.

In a second step, we compute an animatable face
model from the captured data. This face model is
based on linear blend-shapes to represent the approx-
imate face geometry for each captured video frame.
As the blend-shapes capture only rigid motion and
large-scale deformations, we additionally extract
dynamic face textures to represent small motions and
details as well as complex areas like the oral cavity
and the eyes. The reconstruction of geometry and tex-
ture is an important step, as it provides a robust way
for changing head-pose and expression during anima-
tion. In order to efficiently use the extracted face per-
formance data, we train a neural face model (i.e., a
VAE) that is capable of jointly synthesizing geometry
as well as texture from a low-dimensional facial
expression vector.*1°

Using the neural face model, we represent high-
dimensional geometry and texture data with a single
low-dimensional latent expression vector. Apart from
compressing high-dimensional data, the latent repre-
sentation also allows easy sampling and interpolation
of realistic facial expressions without introducing arti-
facts in texture or geometry.'® While our neural face
model is capable of reconstructing, sampling, and
interpolating captured facial expressions, it does not
capture the dynamics.
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Therefore, as a third step, we train an animation
network, which is capable of learning the dynamics of
facial expressions. This network is trained on sequen-
ces of latent expression vectors, which we annotate
with textual labels that describe the displayed viseme
or the facial expression. During training, the animation
network learns an embedding for each label and a rule
how to predict the successive facial animation param-
eters from the previous parameter, a given sequence
label, and a style vector. The style vector allows repre-
senting different ways of showing the same action.
For example, smiling with or without visible teeth.

After training, we are able to synthesize realistic
facial animations from a sequence of semantic expres-
sion labels. This enables us to:

> animate visual
visemes;

» perform simple and fast facial animation based
on a high-level description of the content;

» capture and adjust the style of facial expressions
by modifying the low-dimensional style vector.

speech directly from text/

The synthesized animation parameters are used to
reconstruct sequences of textured face meshes that
can be rendered with existing graphic APls (e.g.,
OpenGL) or game engines.

This section presents the neural face model (i.e., a
VAE), which we use in our experiments to synthesize
face geometry as well as texture from a low-dimen-
sional expression vector as in the paper by Lombardi
et al.* and Paier et al>'® We choose this method,
because it yields high visual quality without the need
for manual intervention. For the creation of the face
model, we captured an actress in a volumetric video
studio. During the capture session, we asked her to
show several facial expressions like opening the
mouth, smiling or being sad as well speaking in order
to capture different visemes that allow synthesizing
visual speech. Based on the captured data, we com-
pute a parametric representation of the actress’ face.
For this purpose, we estimate rigid motion T and
blend-shape weights b to describe the head pose as
well as the facial expression. The head pose T is repre-
sented by a 6-D parameter vector, which consists of a
translation vector as well as three rotation angles.
PCA weight vector b is a 15-D column vector contain-
ing the shape weights and B represents the PCA-basis
of facial expressions. These PCA shape weights will
also be used later for training our neural face model:
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Xep = T(Xo + Bb). )

The column vector x, contains all vertex coordi-
nates of the deformed mesh. xq corresponds to the
mean face geometry and T represents the rigid
transform that is applied as a last step on all
deformed vertices. Our facial performance capture
pipeline uses calibrated multiview video streams
and facial landmarks as input data.” Initially, we
register the linear face model to one video frame,
where the actress shows a neutral face and use it
as a reference for all subsequent pose and shape
estimations:

Em(t,b) =

ZZ!mc,—mc, : 2

The reprojection error (2) corresponds to the pro-
jected distance between detected 2-D landmark posi-
tions (m.;) and the corresponding location (m,;) on
the face model:

Eimg(t,b) = ~Ten(p)) 3)

ZZIJc

¢ pel

5tracking(t: b) = Eimg + AEim + ’Y|b|2~ 4

For the initial registration, we minimize only the repro-
jection error (2). For all other frames, we minimize (2)
as well as the intensity difference (3) between cap-
tured images and the rendered face model. The regis-
tration process is implemented as a nonlinear
optimization task (4) that is solved using the Gauss—
Newton method. In order to make the estimation of
the shape weights b more stable, we include an L2 reg-
ularization term in the objective function (4). A and ~
are weight factors to control the influence of the land-
mark data term (2) and shape regularization. For more
details on the face geometry tracking, please refer to
the paper by Paier et al.®

Texture Extraction

The texture extraction process selects a source cam-
era c for texturing each triangle f; in each frame t of a
captured multiview sequence. This allows the compu-
tation of the color of all texels that belong to a certain
triangle f; given the captured image of camera c, the
current face geometry, and the camera calibration of
c. The challenge, however, is the simultaneous selec-
tion of the optimal source camera for all triangles at
all-time steps. In our case, the optimal choice maxi-
mizes the visual texture quality for each triangle and
minimizes, at the same time, the visibility of seams
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(e.g., visible edges in the texture where adjacent trian-
gles are textured from different cameras) and tempo-
ral artifacts (e.g., sudden changes of the texture over
time caused by changing source cameras).

Therefore, we rely on a graph-cut based approach®
that simultaneously optimizes all three terms in (5) to
create a visually pleasing sequence of textures from
each multiview video:

=iy (ﬁc,f)
A i jen Vij(ef, ) (5)
+nT (ct,ct).

Erex(C)

C denotes the set of source camera IDs for all mesh
triangles. The first term D(f;, ¢;) defines a measure for
the visual quality of a triangle f; textured by camera c;.
It uses a heuristic related to the area of f; projected on
the image plane of camera c;.

Vij(ci,cj) represents a spatial smoothness con-
straint, which relates to the sum of color differences
along the common edge of two triangles f; and f; that
are textured from different cameras c; and c;. The last
term 7 (c;, ¢;) ensures temporal smoothness by penal-
izing changes of the source camera c; of a triangle f;
between consecutive time steps. Without such a
term, the extracted dynamic textures are not tempo-
rally consistent, i.e., the source camera of a triangle
can change arbitrarily between two consecutive tex-
ture frames, which causes temporal artifacts in the
resulting texture sequence. We solve the selection of
source cameras C for all mesh-triangles in all frames
simultaneously using the a-expansion algorithm."? For
more details on the dynamic texture extraction, please
refer to the paper by Paier et al.®

The advantage of this approach is that we gener-
ate high-quality textures even with an approximate
geometry model. Since each triangle is textured only
from a single source camera, our approach does not
suffer from blur or ghosting artifacts. Moreover, the
extracted dynamic textures capture all information
that is not represented by geometry like fine
motions and deformations, changes in texture, and
occlusions/dis-occlusions (e.g., eyes and oral cavity).
Together, dynamic geometry and texture represent
almost the full appearance of the actress’ face in
each frame.

Neural Face Representation

The result of the facial performance capture is a
sequence of textured meshes. Each frame is repre-
sented by a rigid motion T, blend-shape weights b, and
an RGB image as texture. In order to use these
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FIGURE 2. Animated region of interest. We select the modi-
fied area in texture space by defining a rectangle.

textured mesh sequences in a learning-based anima-
tion scheme, we train a deep generative face model®
that is capable of reconstructing PCA weights and
face textures from a low-dimensional parameter vec-
tor. To simplify the training, we select a region of inter-
est in texture space (see Figure 2) that will be
represented by the neural face model. Figure 3 shows
the architecture of our neural face model based on a
VAE.® The auto-encoder receives PCA face shape
weights as well as the textures from the performance
capture stage as input and transforms them into a
1024-D latent representation of the facial expression.
Based on the latent expression vector, we reconstruct
face shape weights as well as texture. We use an
adversarial training strategy based on a discriminator
network, which is trained simultaneously with the
auto-encoder. The purpose of the discriminator is clas-
sifying, whether a texture is synthesized or real. By
incorporating the classification error during training,
we can improve the visual quality of reconstructed
textures. The full training objective function consists
of the absolute difference between predicted texture
and target texture, the adversarial texture loss and
the mean-squared error between the predicted PCA
weights and the target PCA weights. For a more
detailed presentation of our neural facial model please
refer to the papers by Paier et al.>"°

After training the neural face model, we represent the
reconstructed meshes and dynamic textures with
sequences of latent expression vectors. Additionally, we
annotate these sequences by adding semantic labels
describing the presented content. We annotate general
facial expressions as well as speech. Table 1 describes all
13 visemes that we use for annotating speech. General
facial expressions are marked with one of the six
following labels: < openmouth>, <sad>, <smile>,
< disgust >, <blowcheeks>, and <idle>. With the
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annotated data, we train an auto-regressive network that
enables us to synthesize sequences of latent expression
vectors given a single label or a sequence of labels. The
generated latent expression vectors are then used to
reconstruct animated and textured meshes, which can
be rendered with common graphic APIs or game-engines.
In order to synthesize animation parameters, the
network receives the last animation parameter/time-
stamp as well as the current sequence label, the next
sequence label, and a style vector. Providing the cur-
rent and the next sequence label helps resolving ambi-
guities when animating visual speech, because the
appearance of visemes does not only depend on the
current viseme itself but also on its neighbors (see
Figure 5). This is caused by an effect called coarticula-
tion, which refers to a phenomenon in speech when
two successive sounds are articulated together.
Similar effects can occur when animating general
facial expressions, as they can be performed in many
different ways (e.g., smiling with or without showing
the teeth, Figure 8). Therefore, we condition our net-
work on a style vector that is learned automatically
during training. Label and style are zero-based indices
that are transformed to a 32-D feature vector by sepa-
rate embedding layers. We use 19 different feature
vectors to represent labels and 514 different style vec-
tors (one style vector for each annotated sequence).
We follow a similar approach as Cuderio et al.® who
condition their network on a subject ID to represent the
speaking styles of different people. However, since we
want to learn different styles of the same action, we
have to estimate a separate style vector for each anno-
tated training sequence, as we can only assume that
style remains constant within the sequence. Since this
assumption is less restrictive as in the paper by
Cuderio et al.,® we have to further constrain the learning
of style vectors by keeping the style feature dimension-
ality as low as possible. Moreover, we encourage the
network to make full use of information that is stored in
labels by reconstructing animation parameters not only
from the final feature map but also from the feature
map, which is produced by the second residual block
(i.e., before introducing style information). Therefore,
style embedding and the last residual block are only
responsible for reconstructing a small expression-resid-
ual that represents different styles of the same expres-
sion (e.g., smiling with or without showing teeth). This
forces the network to generate plausible animation
parameters also without style information and, hence,
prevents the network from memorizing expression
parameters only through style information. Figure 4
shows the architecture of our animation network. The
network is based on a simple residual architecture.
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FIGURE 3. Network architecture of the neural face model. The network consists of five parts: a convolutional texture encoder/

decoder (blue), a geometry decoder (green), a fully connected bottleneck (yellow) that combines information of texture and

geometry into a latent code vector (1), and deviation (o). A texture discriminator network (orange) classifies textures as real or

as synthetic. This figure is taken from the paper by Paier et al.™

Each residual block consists of two fully connected
layers (linear layer, batch-norm, leaky-ReLU) that com-
pute a residual, which is added to the input feature vec-
tor. A time-stamp is represented by a scalar between 0
and 1. A value equal to 0 marks the beginning of the
sequence, and a value equal or above 1 marks the end
of the sequence. As this network considers previous
animation parameters as well, the resulting animation
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stream is free of jumps/artifacts, and we do not need to
perform any kind of additional blending between conse-
cutive sequences. We use a batch-size of 32, a leakiness
of 0.01 for all ReLUs in our network, and use the Adam
optimizer with default parameters to train our network
for approximately 175 epochs with an initial learning
rate of 0.005 and exponential learning rate scheduling
(v = 0.95).

After training, we are able to synthesize an anima-
tion sequence according to a given label and style by
iteratively evaluating the network with the previous
animation parameter, time-stamp, and the desired
label as well as style parameters. The last parameter
and time-stamp are stored in separate variables that
are updated after each network evaluation. While we
initialize the last parameter vector only once with
zeros, we have to reset the time-stamp to zero every
time after finishing the parameter generation for an
expression label. Using our neural face model, we are
able to reconstruct face geometry and textures from
the synthesized animation parameter sequences. The
animated face model is then rendered and displayed
with a standard graphics pipeline (e.g., OpenGL).

This section presents still images of the proposed ani-
mation technique, while an accompanying video can
be found in the supplementary material. Figure 9
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FIGURE 4. Animation network architecture. It transforms previous animation parameters and time-stamps into a 64-D feature map.

After the first residual block, we integrate label information followed by another residual block. Using a linear layer, we reconstruct the

next animation parameter and time-stamp from the resulting feature map. Moreover, we add style information to the feature map that

allows the reconstruction of similar facial expressions that only differ in style. After adding style information, we process the resulting

feature map with a third residual block and reconstruct the next animation parameter as well as the time-stamp.

shows synthesized visual speech as well as general
facial expressions.

For our experiments, we captured a German-
speaking actress with 16 synchronized video camera
pairs that were equally placed around her. We cap-
tured different facial expressions as well as speech.
We asked her to present single words and short sen-
tences that are related to weather forecasts. We
annotated facial expression and viseme sequences
manually. The neural face model was trained with
approximately 9200 frames. The animation network
was trained with approximately 3500 frames. The
effective capturing resolution for the head is approxi-
mately 520 x 360 pixel. Four camera pairs were
located on the ground, eight camera pairs were placed

Temperatur

Restfeuchtigkeit

FIGURE 5. Visually different examples of German visemes for
the letter “t."
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at the eye level, and four more camera pairs were
placed above the actress.

Additionally, we captured static facial expressions
with 14 synchronized D-SLR cameras (Canon 550D)
that were placed around the actress as well. Based on
these still images and the proposed method in the
paper by Paier et al.’ we compute the animatable
head geometry model for 3-D pose and expression
tracking. While using high-quality hardware during
data acquisition, our method is not restricted to this
exact configuration. A low-cost setup could consist of
three video cameras that capture the subject’s face
from left, right, and frontally. Figure 1 demonstrates
the advantages of our neural face representation as it
can realistically reproduce different facial expressions,
for example, with almost closed mouth, opened
mouth, visible tongue, and teeth. The simple geometry
accounts only for large-scale deformations (i.e., the
jaw movement), while details like tongue or teeth are
captured in texture space (see Figure 1, left column).
Figure 6 shows the evolution of the parameter predic-
tion error on the training (blue) and test (orange) set.
The optimization is stopped after approximately 175
epochs, since the error does not decrease anymore.
The final training and test errors (RMSE) are 0.28 and
0.35, respectively. Target animation parameters are
normalized to have zero mean and a standard devia-
tion of 1. The test set consists of complete sequences
that have been randomly selected (approx. 25% of the
dataset). All preprocessing steps, network training,

IEEE Computer Graphics and Applications

59



REAL VIRTUAL REALITY

60

= train_loss
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FIGURE 6. Evolution of parameter and time-stamp prediction
error on the training (blue) and test set (orange). After
approximately 175 epochs, the loss does not improve any-

more and we stop optimization.

and experiments have been carried out on a regular
desktop computer with 64 GB Ram, 2.6 Ghz CPU (14
cores with hyperthreading), and one GeForce RTX2070
graphics card. Animation and rendering runs at a rate
of approximately 40 fps.

Figure 7 demonstrates the capability of our anima-
tion network to reproduce effects like coarticulation,
where the appearance of visemes depends on the

neighboring visemes as well. Therefore, we synthe-
sized the German word lItalien (ltaly) in two different
ways. First (middle row), we provide the current and
the next viseme label, while the second version (bot-
tom row) was synthesized with an alternative network
architecture that receives only the current viseme
label. The animation in the middle row is clearer, more
expressive, and visually closer to ground truth (top
row). This is most probably caused by the fact that
providing only the current viseme forces the anima-
tion network to learn the average appearance/dynam-
ics of each viseme, which results in a less natural
pronunciation.

Figure 9 shows that the proposed system is capa-
ble of producing correct mouth expressions according
to different label sequences. The upper two examples
show an animated face while speaking words that are
not part of the training database. For the synthesis of
visual speech, we use a zero style vector. While the
resulting animation deviates slightly from the ground-
truth, the produced visemes are clear and well
recognizable.

To demonstrate the animation of general facial
expressions, we produced another facial animation
sequence that starts with a neutral expression,
changes to smiling, and goes back to neutral. While a

I T A L I E N

FIGURE 7. Synthesized visemes for the animation of the German word Italien (Italy). The upper row shows the ground truth. The

middle row was generated using the labels of the current and the next viseme, while the bottom row was synthesized based

only on the current viseme. The animation in the middle row is clearer and more expressive. This demonstrates another impor-

tant aspect of visual speech production, which is caused by coarticulation. The appearance of visemes is not only determined

by the viseme itself, but also its neighbors. Knowing the next viseme/label allows the network to adapt the appearance

accordingly.

|IEEE Computer Graphics and Applications
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FIGURE 8. Impact of the learned style parameter. We show nine versions of the viseme “O” and the smile expression. Columns

and rows correspond to the first and second dimension of a 2-D style vector. For this animation, we use styles coordinate values

between —2 and +2. All renderings show the facial expression at the middle of the animation sequence.

zero style vector results in a smile with visible teeth
(Style B), we can modify the appearance of this
expression by only changing the style vector, which
creates a different smile sequence, where teeth are
not visible anymore (Style A). Figure 8 demonstrates
the capability of our system to modify the style of
an animated facial expression, while keeping the
expression label constant. For this experiment, we
trained our animation network with 2-D style vec-
tors to capture differences in appearance that can-
not be explained by semantic labels alone. The
learned style vectors are regularized such that dis-
tribution of all style vectors corresponds to a stan-
dard normal distribution. We visualize the impact
of the style parameter, by varying the style coordi-
nate values between —2 and +2 and render the
facial expression at the middle of the animated
sequence. The results show that we can successfully
modify the style of the animation sequence, while
keeping the semantics. This enables, for example, a
human editor to modify a generated animation
sequence in a postprocessing step by simply fine-tun-
ing a1-D or 2-D style parameter.

While our system is, in general, able to synthe-
size realistic animation sequences based only on
semantic labels, there are certain limitations as
well. For example, our architecture is able to model

July/August 2021

short-term relations in the input sequence since we
provide the current and the following semantic
label. This is sufficient to capture effects like coar-
ticulation, but it does not allow modeling long-term
relations (e.g., processing a complete sentence),
which could be helpful to predict additional anima-
tion parameters for eyes, the overall facial expres-
sion/emotion or global motions like head
movement. Apart from that, our animation model
predicts all parameters from a static semantic label
without the need for further input. While this
simplifies the animation-process, it also reduces the
ability to control, timings, or duration of an anima-
tion sequence. However, it is possible to specify a
speed-factor, which can be used during the auto-
regressive decoding to scale the animation-time. A
speed-factor below 1 would result in a longer anima-
tion sequence, while a value above 1 would result in
faster animation.

We present a new method for example-based facial
animation using auto-regressive neural networks.
Our approach is based on a high-quality neural
face model that can reconstruct realistic facial
expressions from a low-dimensional latent feature
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Style A
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FIGURE 9. Synthesized visual speech as well as a general facial expressions. The two upper examples show an image sequence

for two German words that are not part of the training data. Each face picture represents one viseme. The third example shows

a synthesized smile sequence with two different styles that appear in training data.

vector. Based on an annotated database of
dynamic facial expressions, we train an auto-regres-
sive network that successfully learns the dynamics
of facial expressions. After training, we are able to
synthesize realistic facial animations from a

|IEEE Computer Graphics and Applications

sequence of semantic labels that act as a high-
level descriptor of the target content. Moreover, we
present a robust approach that disentangles style
and content, which enables capturing and reproducing
facial expressions (with the same semantic label) that

July/August 2021



differ only in style, for example, smiling with or without
showing the teeth.
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