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A nalysing set data encompasses consideration
of the sets themselves, the elements within
the sets, and attributes of both the sets and

the elements. Take for example academic courses
at a university (e.g., Biology, Mathematics) as sets,
and the students enrolling in those courses as the
set elements. Set visualizations aim to express such
set-type data visually to support analysis and better
understanding. Relevant set analytical questions in-
volve set memberships (i.e., who is enrolled in which
course), set cardinality (i.e., how many students are
in a course), or set intersections (i.e., which course
combinations are favored by students). Such kinds of
set analytical questions can be answered, for example,
with the help of Euler diagrams, Venn diagrams, and
bipartite node-link representations. While set visualiza-
tions themselves are an active research frontier [2],
there are far fewer research activities focusing on the
implications of uncertainty for set visualization [5], [19],
[6]. For our courses-and-students example, we might
not know exactly how many students are enrolled in a
course or how old they are.

In fact, it is challenging to design visual represen-
tations of sets where uncertainty is involved. This is
because both the set data themselves and also the in-
formation about their uncertainty need to be communi-
cated to a reader. The interpretation of this uncertainty
has a major impact on decisions that are made based
on the data, not only for simple applications such as
course planning, but also for more complex scenarios
like comparison of ensemble forecasting models or
gene-to-phenotype mapping.

So far, the literature offers little insight into the
implications of uncertainty for set visualization [5]. In

particular, a distinction of classes of uncertainty in
the context of set-type data is missing. Only if we
know, however, what types of uncertainty are relevant
for set-type data can we design expressive visual
representations. Therefore, the main objective of this
paper is to systematize uncertainty considerations for
set visualization. We propose a conceptual framework
that brings together (a) different facets of set data that
might be affected by uncertainty, and (b) different types
of uncertainty that might influence the visualization
design. As the primarily relevant data facets in sets, our
framework contains: set membership, set attributes,
and element attributes. In terms of different types
of (un)certainty, we distinguish: certainty, undefined
uncertainty as a binary fact, and defined uncertainty
as quantifiable measure.

From this proposed framework, we derive inter-
esting combinations of data facets and types of un-
certainty that are calling for dedicated visualization
strategies. While some cases can be addressed with
existing visualization approaches, others seem to be
more intricate to deal with and lack suitable solutions.
We discuss exemplary cases with the goal to identify
concrete gaps in the literature and to sketch initial
thoughts on how these gaps can be closed.

Before developing our framework, we will next in-
troduce basic set and uncertainty terminology.

Sets & Uncertainty
Set theory has been investigated in mathematical logic
in the nineteenth century by Cantor [9] to describe
collections of objects, called sets, and their elements.
Sets do not impose any ordering on their elements.
Sets may overlap, making well-defined relations be-
tween sets possible, including containment, exclusion,
and intersection. Moreover, both sets and elements
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Visualizing Uncertainty in Sets

may have various attributes associated with them.
Accordingly, the primarily relevant data characteris-
tics (D) for set-type data are: (i) set membership, (ii)
set attributes, and (iii) element attributes.

Uncertainty (U) relates to information that is un-
known, vague, or of varying accuracy. So, a good
starting point is to think about what is known and what
is unknown. In a perfect world, we know the data and
assume they are accurate. There is no uncertainty,
which we denote as U = 0. For set-type data this
means that we know for certain the sets and the
elements, their membership, and their attributes.

However, in the real world, uncertainty is commonly
encountered in everyday life [25]. It is inherent to any
piece of information and thus also present in any
dataset, data model, or visualization and has been
studied in many scientific disciplines and academic
fields [13], [26], [27], [33], [31]. Given the universal rel-
evance of uncertainty, it is not surprising to find various
notations and categorizations in different fields. Terms
like aleatoric uncertainty or stochastic uncertainty are
relevant in mechanical engineering [31]. But also more
common terms such as incertitude, probability, or ig-
norance appear in the context of uncertainty.

The common theme behind the heterogeneous
landscape of terminology is that uncertainty is present
in all parts of the data-driven scientific research pro-
cess [38], starting with measurement and data capture,
data transformations and processing, data modeling
and visualization, and finally human inference and
decision making with visual data displays [33], [28].
Uncertainty in data sources can be of locational, tem-
poral, and/or semantic nature [38]. Uncertainty issues
in data capturing can stem from, e.g., data provenance,
acquisition methods, and measurement inaccuracies.
Uncertainty also arises and gets further propagated
in data transformations and processing, including data
modeling. Uncertainty can also occur in data por-
trayal methods, and lead to perceptual issues of the
viewer of uncertainty-depicting visualizations. Finally,
uncertainty might arise in human interpretations and
decision making. As a result, we argue that uncertainty
should always be also considered in sets and their
visualization.

An important question to ask is how much do
we actually know about the uncertainty in our set-
type data? Here, we distinguish two scenarios. One
scenario is that we know that there is uncertainty, but
we cannot tell accurately where it is, what it is, or how
much of it exists. In other words, we know for a fact that
uncertainty is present in our data, but no further details.
We denote this as U > 0. In the second scenario,
we also know that uncertainty exists, and we know

with certainty where, what, and how much of it is in
our data. For the sake of simplicity, we denote this as
U = p. The letter p is a strong simplification of what
could be known about the uncertainty and p can take
different forms. When set membership of an element
a and a set X is certain, one can say either a ∈ X or
a /∈ X . Under uncertainty, p might denote a probability
of a being a member of X , P(a, X ) = p, which is a
notation known from fuzzy sets. We could also say
that p denotes a more complex probability distribution
(e.g., p = N (µ, σ2)) based on which set membership is
decided. In relation to the data attributes of elements or
sets, we may understand p as the probability value or
probability distribution of an attribute taking a particular
data value. Additionally, it is common for uncertain
attribute values to specify them via a range of possible
values, in which case p = [l , u] is some interval with a
lower and upper bound of l and u.

Overall, the characteristics of set data D and the
types of uncertainty U form the basis for a conceptual
framework of uncertainty in set visualization, which will
be described next.

A Framework for Uncertainty in Set
Visualization

In terms of data characteristics D, the framework
distinguishes: set membership, set attributes, and
element attributes. Related to uncertainty U, we use
the different plausible types of (un)certainty: certainty
(U = 0), undefined uncertainty as a binary fact (U >

0), and defined uncertainty as quantifiable measure
(U = p). We captured the framework in Table 1, whose
columns and rows respectively represent D and U. The
cells of the table correspond to different combinations
of data characteristic and type of uncertainty for which
adequate visualization methods are needed.

The most interesting cells in Table 1 are marked
in orange, and will be described later. For the green
cells in the table, one can resort to or draw inspiration
from established visualization methods. Three areas
are relevant in this context. First, when the data are
certain (U = 0), multivariate visualization methods
can be used to depict element attributes. Second, for
certain set memberships and set attributes, one can
use existing set visualization methods. Third, when the
attributes of data elements are uncertain (U > 0 or
U = p), we are moving into the area of uncertainty
visualization.

For the first area, multivariate visualization, we refer
to the existing visualization literature [40], [37]. For the
second and third areas, we provide some more details
below as they can inform the design of uncertain set
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TABLE 1. Framework of uncertainty in set visualization with relevant set characteristics and categories of (un)certainty. cb
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Set membership Set attributes Element attributes

Certainty
No uncertainty in the data

U = 0

Undefined uncertainty
Uncertainty in the data,

but it is undefined
U > 0

Defined uncertainty
Uncertainty in the data,

and it is well-defined
U = p

Existing set visualization methods

Existing uncertainty 
visualization 

methods
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Focus of this work:
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FIGURE 1. Common visual representations of sets include
Euler/Venn diagrams (a), bipartite node-link diagrams (b), and
matrices (c), all representing the same data. cb

visualizations.

Set Visualization
The survey by Alsallakh et al. [2] provides a compre-
hensive overview of general set visualization meth-
ods. Common examples for visualizing fundamental
set data are Euler/Venn diagrams, bipartite node-line
diagrams and matrix visualizations (see Figure 1).
Other visualization methods are based on overlays,
aggregation, and scatterplots.

Different set visualization techniques support dif-
ferent set-analytic tasks, which can be structured ac-
cording to the data values and data dimensions they
are tackling [2]. Examples are tasks related to ele-
ments (find, count, filter), sets (cardinality, count), set
relations (intersection, union), and element attributes
(determining the highest attribute value in set), as
well as combinations thereof, such as finding/selecting
elements that belong to a specific set, deriving the
number of sets in a set family, analyzing intersection
relations, e.g., find out if a certain pair of sets overlap,
or if a certain group of sets overlap, i.e., have a non-
empty intersection, or find out the attribute values of a
certain element.

Uncertainty Visualization
Designing visual representations of uncertain data is
challenging, mainly due to the fact that not only the
data D themselves need to be encoded visually, but
also the information about their uncertainty U needs to
be communicated. Above all, visualization users must
be able to extract all the encoded information (both the
data and their uncertainty) from the visualization, which
can be formulated abstractly as a pipeline, inspired by
algebraic visualization design [21]:

(D, U) m−−−−→ V i−−−→ (D′, U ′).

The visualization designer defines a mapping m of
data D and uncertainty U to create a visual repre-
sentation V . Through an interpretation i of the visual
representation V , human observers extract their own
versions of data D′ and uncertainty information U ′. The
scientific challenge, in this auto-encoder-like pipeline,
is to understand the cognitive process of i and to
devise mappings m so that ideally D = D′ and U = U ′

for all human observers. The congruence of D and D′,
as well as U and U ′, can serve as a guiding principle
for the visualization of uncertain data.

There are many ways to depict data uncer-
tainty [13], [15], [8], [28], [6], [11], [19]. Much
empirically-grounded research on the representation
of uncertainty exists in geospatial visualization [26],
[27], [22], [29], [32], graph visualization [17], statistical
visualization [18], and temporal visualization [16], [20],
[7].

The empirically validated uncertainty visualiza-
tion framework proposed by MacEachren and col-
leagues [26], [27] is an attractive candidate to directly
transfer more broadly to the depiction of uncertainty.
MacEachren et al. first empirically assessed the intu-
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(a) (b) (c) (d)

FIGURE 2. Prior work on visualizing defined uncertainty and set membership in (a) Venn diagrams [41] and (b) node-link
diagrams [39] as well as visualizing uncertainty and set size in (c) treemaps [36] and (d) with circle packing [14].

itiveness of a visual variable (e.g., location of symbol,
size, color value, color hue, color saturation, texture,
orientation, etc.) to judge the suitability of abstract
or iconic point symbols for depicting data variation
in a given category of uncertainty. Second, they also
measured the relative performance of the most intuitive
point symbol depiction of uncertainty with a focus on
symbol effectiveness for a typical use task: assess-
ing and comparing the aggregate uncertainty in two
regions of a graphic display. Their stimuli are generic
enough so that findings can be transferred to many
data visualization types and use cases, including the
visualization of set elements.

Based on their studies, MacEachren et al. pro-
posed generalizable design guidelines including the
visual variables fuzziness and relative location and
distance (from a known location in the center of a
cross-hairs) to work particularly well for the depiction
of uncertainty in point symbols. Color value and ar-
rangement are also rated highly by their study par-
ticipants. Both size and transparency are potentially
usable. Color saturation of the point symbol, often
cited as intuitively related to uncertainty, was ranked
quite low in their study. Later we apply MacEachren et
al.’s uncertainty visualization framework to the case of
visualizing uncertain element attribute values.

Now that we have dealt with the ’easier’ green
boxes from Table 1, we will move on to discuss the
’tougher’ orange box, the visualization of uncertain set
characteristics.

Uncertainty in Set Visualization
In comparison to general uncertainty visualization, the
representation of uncertain set data has received less
attention. A few attempts exist (see Figure 2) for the
visualization of fuzzy sets [39], [41], where set mem-
bership has a defined uncertainty. For set attributes,
we are aware of only two prior works, which represent

set size with a defined uncertainty in set hierarchies
using a treemap [36] and a circle packing visualization
[14]. Visual representations of undefined uncertainty
within sets have not been developed until now.

Given the scarcity of visualization methods for un-
certain information in sets, we next present examples
of visualization designs for each relevant orange cell
from our framework from Table 1.

Design Examples for Uncertainty in
Set Visualization

It is sensible to begin the process of depicting uncer-
tainty by constructing a visualization of the data that
is ’certain’, and then subsequently adapting or aug-
menting it as necessary to depict the uncertainty. Ger-
shon [13] calls this intrinsic representation of uncer-
tainty as opposed to extrinsic representations where
uncertainty information is shown in separate auxiliary
displays, like a supplementary diagram or text. The
decision on whether to use intrinsic or extrinsic repre-
sentations may depend on the complexity of both the
data and the uncertainty.

Uncertain Set Membership
Communicating set membership is essential for set
visualization. In the following, we use the toy database
with students and courses from Figure 3 for illustration.
Following Cantor’s [9] notation, elements are denoted
by small letters, whereas sets are denoted with capital
letters. For elements a (Alex), b (Ben), c (Chris), and d
(Dana) membership is certain, and we also know that
set B (Biology) is empty. We are uncertain, however,
about the membership of elements e (Eva) and f
(Frank) as well as of set M (Math). (Modeling the
data in tables designed like this is just an example,
more elaborate models would certainly be needed in
practice).
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Elements Sets Membership
ID Name ID Course Element Set Uncertainty
a Alex B Biology null B U=0
b Ben F French a F U=0
c Chris H History b F U=0
d Dana M Math b H U=0
e Eva c H U=0
f Frank d null U=0

e undef U>0 / U=p
f undef U>0 / U=p
undef M U>0 / U=p

FIGURE 3. Example data for sets memberships. cb

Visualizing certain set membership In general, cer-
tain set membership (U = 0) can be represented in
two different ways: implicitly or explicitly. Implicit rep-
resentations do not use a dedicated graphical mark to
visualize set membership, but rather some relation be-
tween existing marks. A common implicit example was
already shown in Figure 1 (a) where sets are visualized
as ellipses and elements of sets are visualized as
dots within the ellipses. In this case, set membership
is implicitly encoded through inclusion of the dots in
ellipses. In addition to inclusion, also adjacency and
overlap are possible implicit representations [34].

In contrast to implicit representations, explicit rep-
resentations have a dedicated graphical mark that
represents set membership (in addition to marks repre-
senting sets and elements). Common explicit examples
include bipartite node-link representations and matrix
representations as shown in Figures 1 (b) and (c). In
the former case, sets and elements are both depicted
as dots, whereas set membership is indicated via links
between set dots and element dots. The links are
the explicit representation of membership. For matrix
representations, sets correspond to the columns of a
matrix, whereas elements correspond to matrix rows
(or vice versa). The matrix cells are marked (e.g., by
filling the cell) where elements are members of a set.
In this case, the cells are the explicit representation of
membership.

Visualizing uncertain set membership When uncer-
tainty needs to be considered, it is necessary to vary
the representation of set membership in order to com-
municate either the fact that undefined uncertainty is
present (U > 0) or the exact information we may have
about the defined uncertainty (U = p). Varying an im-
plicit representation of set membership (i.e., inclusion,
adjacency, or overlap of graphical elements) is difficult.
Where in Figure 1 (a) should we place the dots for
the uncertain elements e and f of our data and how
should we draw the ellipse for set M? The problem
is that graphical marks may or may not include, be
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(a) U > 0 (b) U > 0 (c) U = p

FIGURE 4. Variants of visualizing uncertain set membership
in bipartite node-link diagrams. cb

adjacent, or overlap other marks, but there are no other
states that could be used to indicate uncertainty. So,
for implicit representations, we would first need to add
further graphical marks before uncertainty could be
encoded. In contrast, explicit representations already
have dedicated marks for set membership, which offer
several options for perceivable variation to visualize the
uncertainty set memberships [27].

Next, we suggest two example designs for the
case of explicit representations: (i) bipartite node-link
diagrams and (ii) matrices. The uncertain set member-
ships (elements e and f and set M) of the data from
Figure 3 will be used for the purpose of illustration.

i. Bipartite node-link diagrams In bipartite node-
link diagrams, we may vary the visual properties of
links to communicate uncertainty. Figure 4 shows
certain set memberships as bold dark links. The fig-
ure further shows three different variants of encod-
ing uncertainty. The fact that uncertainty is present
(U > 0) can be visualized by varying line width and
color value for uncertain memberships as in (a). This
makes certain memberships (bold dark lines) easily
distinguishable from uncertain memberships (thin gray
lines). Note, however, that elements whose member-
ship is uncertain need to be linked to all possible sets,
and vice versa for uncertain sets. This may lead to link
clutter, particularly when the data has many uncertain
memberships.

A design goal could thus be to reduce the resulting
link clutter. Therefore, variant (b) replaces the full-
length links for uncertain memberships with small link
fans, which are graphically less demanding. This way,
clutter can be reduced significantly, but readers need
to mentally connect the elements to all possible sets.

Finally, for variant (c), we assume that we know
exact probability values for possible set memberships
(U = p). This allows us to maintain the explicit con-
nection of elements and sets, and also to encode the
different probability values per membership by varying
lightness and width of lines. Thinner and lighter lines
indicate lower probability values. Next, we discuss a
matrix representation of set membership.
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(a) U > 0 (b) U > 0 (c) U = p

FIGURE 5. Variants of visualizing uncertain set membership
in matrix representations. cb

ii. Matrices For matrices, one can follow a similar
strategy of varying the explicit representation of set
membership. While we changed the graphical prop-
erties of 1D lines in the case of bipartite node-link
diagrams, we now change the properties of the 2D
cells of a matrix. If only the presence of uncertainty
is known (U > 0), then we can differentiate certain
and uncertain set memberships by varying the fill color
of matrix cells as in Figure 5 (a). However, this trivial
solution might again draw too much attention to the
uncertain information, simply because many cells need
to be marked. To better balance the representation of
certain and uncertain information, one can reduce the
size of the cell marks as indicated in Figure 5 (b).

Continuing on this line of thought, exact quantitative
information about the uncertainty (U = p) can be
encoded by varying size and color of matrix cells
together as indicated in Figure 5 (c). These and similar
encodings in matrix cells have already been explored
for visualizing multivariate graphs, in particular for
showing the weight of edges [1].

Overall, the provided examples suggest that visu-
alizing uncertain set memberships is rather straight-
forward for the cases where set membership is rep-
resented explicitly by dedicated marks. However, the
visual saliency of the uncertain information and the
certain information need to be cleverly balanced de-
pending on the communicative goal of the visualiza-
tion. While set membership is just a single piece of
information that may be uncertain, the design of visu-
alizations becomes more complicated when multiple
uncertain set attributes need to be communicated.

Uncertain Set Attributes
When considering the visualization of set attributes
the relationship between the sets and the elements is
given and we are interested in visualizing an overall
aggregate property of the sets - we are not interested
in representing the elements themselves (indeed, there

(a)

(b)

FIGURE 6. (a) raw set data, showing the residential status
(b) aggregate set data, showing the proportion of international
students by color value. Left to right, the proportion of inter-
national students is [20%, 50%, 33%, 0%, 50%]. cb

may be too many to represent explicitly). The column of
our framework (Table 1) that applies to set attributes is
associated with both the other two columns: set mem-
bership relates to the attribute of set size, while other
set attributes are derived from the attribute values of
their elements.

For set size, there are commonly known options
for the case of no uncertainty (U = 0), and set size
uncertainties (U > 0, U = p) relate to uncertainty in
set membership (as discussed in the previous section).
This section, therefore, focuses on the more general
case of set attributes derived from element character-
istics.

We use the following set scenario for illustration:
There is a class of students and a list of courses
that they can enroll in (e.g., Math, History, Biology,
French). Students may enroll in more than one course.
We consider two examples relating to attributes of the
students enrolled in the classes: their residential status
(domestic or international) and their age.

The two set attributes that we are interested in
are the proportion of international students in each
set, the ’international residential ratio’, called IRR, and
the average age of the students, AA. Depending on
the task that the visualization is intended to support,
the aggregated value (IRR or AA) may be shown for
individual sub sets (e.g., intersections, differences) as
well as, or instead of, for the entire sets themselves.
In our example visualizations, we show both the rep-
resentation of the aggregate set attributes, as well as
the raw data from which they were derived.

Visualizing certain set attributes The residential sta-
tus and the ages of the students are the element
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(a)

(b)

FIGURE 7. (a) raw set data, showing the ages of the students
(b) aggregate set data, showing average age of students by
color value. Left to right, the average age is [26.2, 19.5, 22,
34, 24.5]. cb

attributes, and their enrollment in different courses is
set membership. Figure 6 (a) shows the raw data,
where all elements are shown; Figure 6 (b) does not
show the elements, but shows a derived visualization
where the IRR is shown as the desired aggregate
value. For the attribute of age, Figure 7 (a) shows
the age of all the students, Figure 7 (b) shows the AA
visualization.

It is important to note that even representing set
attributes without uncertainty (U = 0) using a simple
visual variable like color value has its challenges,
since we cannot easily represent the aggregate value
of the whole sets as well as that of the sub-sets
created by the relationships between them. We focus
on representing aggregate information for the sub-sets
created by the relationships; additional visual variables
or additional supplementary visualizations would be
required if the aggregates of the entire sets are also
required.

Visualizing set attributes with defined uncertainty In
the case of defined uncertainty (U = p), we know which
courses each student is enrolled in, and we know the
residential status of some students. The uncertainty
lies in the fact that there are some students for whom
we do not know the residential status, and/or there are
some students for which we know that the information
given may be incorrect.

In this case, the visualization designer has to make
choices relating to how both the aggregate value and
the uncertainty are calculated. The procedure for cal-
culating the aggregate value can:

1) ignore the elements with missing values as well

(a)

(b)

FIGURE 8. (a) adaptation of the raw set data of Figure 6,
showing that the residential status of some students is either
missing or known to be incorrect (b) aggregate set data,
showing the proportion of international students represented
by color value, with edges indicating the extent of uncertainty.
The aggregate data calculation ignores the students with
missing values, but uses the given values for all other stu-
dents; the certainty calculation includes students with missing
values. Left to right, the proportion of international students is
[25%, 50%, 0%, 0%, 25%] and the certainty is [0.4, 0.5, 0.33,
1.0, 0.5]. cb

as those with uncertain value, or
2) ignore the elements with missing values, and use

the given values for the uncertain elements.

The certainty can be calculated as:

3) the proportion of elements for which the value is
certainly known, in relation to the total number of
elements in the (sub) set; or

4) the proportion of elements for which the value is
certainly known, in relation to the total number of
elements for which values have been given (i.e.
ignoring the elements with missing values).

In the examples in Figures 8 and 9, we illustrate
options 2 and 3.

Visualizing set attributes with undefined uncertainty
In the case of undefined uncertainty (U > 0), although
we have a residential status and an age associated
with each student, we know that some of this informa-
tion is incorrect. Although we do not know for which
students this might be the case, there is uncertainty
throughout. Figures 10 (b) and 11 (b) show how
general uncertainty can be added to the visualization
using texture. However, we recommend that when
uncertainty is present throughout all the data, this
should be noted as a general disclaimer statement

February 2023 7
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(a)

(b)

FIGURE 9. (a) adaptation of the raw set data of Figure 7,
showing that the ages of some students is unknown, and
some students have given possibly incorrect ages (in italics);
(b) aggregate set data, showing average age represented by
color value, with edges indicating the extent of uncertainty.
The aggregate data calculation ignores the students with
missing values, but uses the given values for all other stu-
dents; the certainty calculation includes students with missing
values. Left to right, the average student age is [30, 19.5, 23,
34, 30] and the certainty is [0.4, 1.0, 0.33, 0.5, 0.25]. cb

(a)

(b)

FIGURE 10. (a) adaptation of the raw set data of Figure 6,
showing that the given residential status of all students is
possibly incorrect; (b) aggregate set data, showing the pro-
portion of international students represented by color, with
texture indicating that all the data is uncertain. Left to right, the
proportion of international students is the same as in Figure 6:
[20%, 50%, 33%, 0%, 50%]. cb

in the caption or the text (rather than being explicitly
added to the visualization by the use of additional
visual variables).

Possible use of other visual variables In the examples
above, we chose to use variations in color value,

(a)

(b)

FIGURE 11. (a) adaptation of the raw set data of Figure 7,
showing that the given age of all students is possibly incorrect
(in italics); (b) aggregate set data, showing the average age
represented by color, with texture indicating that all the data
is uncertain. Left to right, the average age is the same as in
Figure 7: [26.2, 19.5, 22, 34, 24.5]. cb

(a) (b) (c)

FIGURE 12. Representing uncertainty with markers indicating
size variation as in (a) is not appropriate for set visualizations
where the area of the set does not relate to the set attribute
value as in (b) and (c). cb

line dashes, and texture to represent aggregate data
values and uncertainty. While other visual variables
could be used instead (for example, color hue, line
weight), we claim that using size variation to repre-
sent uncertainty is inappropriate, even though it is
commonly used in other data visualizations. Despite
evidence that simple error bars in a bar chart are not as
easy to interpret as they may appear [10], uncertainty
is often depicted with error bars or grayed out areas
which indicate proportional uncertainty corresponding
to the size differences as in Figure 12 (a). It is not
recommended though to apply such ‘size-aware’ prin-
ciples to common set visualizations as in Figures 12 (b)
and (c), which focus on depicting set membership. The
size of the graphical objects holds no meaning, and
hence, inappropriate inferences could be made about
the extent of the uncertainty.

Adding supplementary information to depict uncertainty
The approach above focuses on adapting an original
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FIGURE 13. Set attributes with defined uncertainty visualized
in a bipartite node-link diagram. cb

M H B F Σ

M

H

B

F

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

domestic
international
uncertain

FIGURE 14. Set attributes with defined uncertainty visualized
in a matrix including set intersections. cb

(certain) Venn diagram visualization by adapting visual
variables and existing graphical elements. An alterna-
tive approach adds supplementary graphical elements
to the original diagram. For example, in a bipartite
node-link diagram, sets can be represented as small
pie charts indicating the proportion of international
students and uncertainty (see Figure 13). In this way,
any set aggregate attribute (and its uncertainty) can
be added to the (certain) set representation. The as-
sociation between the supplementary information and

the set (or sub-set) it refers to needs to be made clear,
using, for example, visual cues, like proximity or links.
However, this visualization does not explicitly show
(un)certainties of the intersections. To communicate
(un)certain attributes of intersections, one may use a
matrix representation as in Figure 14, which shows
the statistics for each intersection and the overall set.

Uncertain Element Attributes
Finally, we present designs for visualizing uncertain
attributes of set elements. For our example, we may
wish to visually represent the student age distribution
enrolled in our courses. We thus focus on the age
attribute of the student elements belonging to the set
courses. For the defined uncertainty case (U = p),
we know the value of an element attribute, and we
also know the nature and value of the uncertainty. For
example, for a given course with twenty seats, fifteen
students have already enrolled and we have been
given their birth year from the university registrations
office. For five students also interested in enrolling in
the course, we only know their age range at this point,
as they ticked the age range box, i.e., 20-30 yrs. in the
course enrollment questionnaire. The uncertainty lies
in the fact that there are some students for whom we
do not know their actual age with certainty, but we do
have information on their age within a given range and
above a certain threshold.

Followin MacEachren et al. [26], [27], we employ
the intuitively understood visual variable color value
(i.e., varying shades of gray) to denote variation of
uncertainty in set element attributes, accordingly (see
Figure 15). Of course there are other visual variables
such as, opacity, fuzziness, texture, arrangement that
we could have been used instead of color value [27].
The same visual variables to show uncertainty in set
elements may also be used to denote uncertainty of
set membership or set attributes, as discussed before
in this paper.

In the undefined uncertainty case (U > 0), we know
the value of an element attribute, but we do not know
the type and value of the uncertainty. This means for
our worked example, that for a given course with twenty
seats, fifteen students have already enrolled, and we
have been given their birth year from the university
registrations office. Five students also interested in
enrolling in this course have chosen not to respond to
the age class question in the enrollment questionnaire.
In this case, following the logic in Figure 15, we can
simply denote uncertainty with a very light gray shade,
or use any other appropriate visual variable [27] for
those five students of whom we are uncertain about
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FIGURE 15. Top row (U = 0): Two courses (sets) have twenty
enrolled students (set elements) where all individual ages
(set element attribute) are known (i.e., black point symbols).
Bottom row (U > 0 and U = p): Two courses (sets) have
twenty enrolled students where, a) the degree of uncertainty
in student ages varies from completely unknown, that is,
point symbol denoted with the lightest shade of gray, to b)
mostly unknown, (i.e., age above 30 yrs.) shown with medium
gray point symbols, and to c) somewhat unknown (i.e., within
a given age range 20-30 yrs.), assigned dark gray point
symbols). cb

their actual age.
For the easy case of certainty (U = 0), we know the

value of an element attribute with certainty. This means
for our worked example, that for a given course with
twenty seats, twenty students have already enrolled
and we have been given their birth year from the
university registrations office. In this case, we can
depict the age attribute of our elements with any of
the commonly known multivariate visualization meth-
ods [40], [37] and principles that are appropriate for
ratio level data, i.e., dots, bar charts, box plots with
commonly used visual variables [4].

Discussion
Our investigations into how uncertainty in set data
might be depicted has resulted in a novel conceptual
framework representing various types of uncertainties
in different aspects of set visualizations. We addressed
uncertainty in set memberships, set attributes, and
set element attributes, as summarized in Table 1. In
devising and applying this new framework to data
examples, we have drawn on existing visualization
research. We have addressed the relevant cells in the
proposed framework and also tackled challenging cells
by identifying several design alternatives for set visu-
alization designers drawing upon existing visualization
research. A further outcome of our conceptual frame-
work is the identification of challenges that warrant
further detailed investigations.

Task- and context-specific challenges. The visu-
alization community is well aware that user tasks and
the application context are essential ingredients in de-
signing expressive, effective, and efficient visualization

solutions [35], [30], [37]. While specific visualization
tasks were considered in previous work on general set
visualization [2], we addressed such tasks and context
only partly in our work and leave a comprehensive
investigation for future research.

Missing vs. uncertain data. For simplicity, we
treated missing and uncertain data equally in our
framework. Future work should extend our proposal to
disentangle these two concepts further.

Uncertainty propagation. Uncertainty is not a
static concept and interdependencies might occur due
to data processing chains. For example, the uncer-
tainty of a set attribute may be directly dependent on
set membership and set element attribute uncertain-
ties. Consequently, uncertainty propagation should be
specifically addressed in a future version of the frame-
work; the communication of uncertainty propagation
in a set visualization will pose interesting depiction
challenges.

Temporal and spatial uncertainty. While we con-
sidered uncertainty in set visualization, we mostly ig-
nored the spatial and temporal context of sets, which
poses additional challenges for their visualization [12].
Similarly to what can be said about the dynamics
of uncertainty propagation, temporal uncertainty itself
also relates to time-varying changes to uncertainty,
including uncertainty states with respect to points in
time, perdurance, and the evolution of uncertainty in
unfolding events [16]. Likewise, uncertainty in a spa-
tial frame of reference requires special consideration.
When several domains with data uncertainty need to
be understood in context, more scalable designs are
needed to balance the visualization according to the
needs of users [11]. When visualizing sets and set
elements that represent spatial and temporal data,
consideration will need to be given to the particular
nature of spatial and temporal uncertainty.

Perception of uncertainty depictions. In general,
the depiction of uncertainty U needs to be balanced
with respect to the depiction of the actual set data D.
Carelessly adding an uncertainty depiction to a data
visualization can lead to clutter or overemphasis. For
example, in our bipartite node-link diagrams from Fig-
ure 4, uncertain set memberships require links be-
tween all uncertain set elements and all possible sets,
which easily leads to visual clutter and gives much
greater saliency to the uncertain information rather
than to the certain information. For this specific case,
we proposed small link fans, but other, more general
alternatives should be explored and evaluated for their
effectiveness. One such method could be reordering
to reduce clutter [3].

Evaluation. In general, the appropriateness, use-
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fulness, utility, and usability of the various ways of
depicting uncertainty in sets need to be established,
especially as interpretations of uncertainty visualiza-
tions are dependent on the background and training
of the user (e.g., graphical level, domain expertise).
For example, depicting the uncertainty of a set element
attribute in a Venn diagram with a lighter gray value of
the element mark could be interpreted as uncertainty
of set membership of that element. The evaluation of
uncertainty visualizations, as a whole, is a young field
with a range of important questions to be tackled.

Design recommendations. During the conceptu-
alization phase of our framework, we identified design
issues that lead to the following recommendations:

• Data first, uncertainty second : It is easier to
start with the visual encoding of the certain
data, followed by the encoding of the uncertain
aspects.

• Be aware of visual misinterpretations by the
users: Test your designs with users, as interpre-
tation and understanding of uncertainty are likely
challenging for many users; visual solutions
might be misread by the target audience [23],
[24]. Ample labeling and adding legends and
explanations accompanying the uncertainty vi-
sualization will help to guide the users. In some
cases, we even found, it may be more effective
to communicate uncertain information by non-
visual means.

Conclusion
We set out to devise a conceptual framework on how
uncertainty in set data could be visualized by first
finding answers to still open research questions: (i)
Which aspects of set type data could be affected by
uncertainty, and (ii) Which characteristics of uncer-
tainty could influence the visualization design. Based
on this new conceptual framework, we then systemati-
cally discuss set visualization examples with integrated
uncertainty information. We also provide a set of open
challenges in the hope that these may inspire future
research on uncertainty in set visualization.
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