uOttawa

L'Université canadiennc
Canada’s university

P

FACULTE DES ETUDES SUPERIEURES == FACULTY OF GRADUATE AND
ET POSTOCTORALES uOttawa POSDOCTORAL STUDIES
Zhijun Justin Zhan

AUTEUR DE LA THESE / AUTHOR OF THESIS

Ph.D. (Computer Science)
GRADE / DEGREE

School of Information Technology and Engineering
FACULTE, ECOLE, DEPARTEMENT / FACULTY, SCHOOL, DEPARTMENT

Privacy-preserving Collaborative Data Mining

TITRE DE LA THESE / TITLE OF THESIS

Stan Matwin
DIRECTEUR (DIRECTRICE) DE LA THESE / THESIS SUPERVISOR

CO-DIRECTEUR (CO-DIRECTRICE) DE LA THESE / THESIS CO-SUPERVISOR

EXAMINATEURS (EXAMINATRICES) DE LA THESE / THESIS EXAMINERS

Carlisle Adams Bhavani Thuraisingham
(teleconference)

Nathalie Japkowicz (absent)

John Oommen

Gary W. Slater

Le Doyen de la Faculté des études supérieures et postdoctorales / Dean of the Faculty of Graduate and Postdoctoral Studies

Privacy-Preserving Collaborative
Data Mining

by

Zhijun Justin Zhan

Thesis submitted to the
Faculty of Graduate and Postdoctoral Studies
In partial fulfillment of the requirements
For the Ph.D. degree in
Computer Science

School of Information Technology and Engineering
Faculty of Engineering
University of Ottawa

(© Zhijun Justin Zhan, Ottawa, Canada, 2006

Bibliotheque et
Archives Canada

Library and
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-18614-5
Our file Notre référence
ISBN: 978-0-494-18614-5
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian Conformément a la loi canadienne

Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Data mining is a process to extract useful knowledge from large amounts of data.
To conduct data mining, we often need to collect data. However, sometimes the data
are distributed among various parties. Privacy concerns may prevent the parties from
directly sharing the data and some types of information about the data. How multi-
ple parties collaboratively conduct data mining without breaching data privacy presents
a grand challenge. Theoretical results from the area of secure multi-party computation
show that one may provide secure protocols for any multi-party computation with honest
majority. However, the general methods are far from efficient and practical for comput-
ing complex functions on inputs consisting of large sets of data. Therefore, to efficiently
tackle the problem that is formulated as Privacy-Preserving Collaborative Data Mining,
we need to develop privacy-preserving solutions with adequate efficiency. The goal of
this dissertation is to provide efficient solutions to the problem of knowledge extraction
among multiple parties involved in a data mining task, without disclosing the data be-
tween the parties. The distributed data models considered are the vertical collaboration
where diverse features of the same set of data are collected by different parties, and
the horizontal collaboration where diverse sets of data, all sharing the same features,
are gathered by different parties. We develop privacy-preserving protocols for multiple
parties to conduct the desired computations. Specifically, we provide solutions for some
common data mining algorithms including privacy-preserving association rule mining,
privacy-preserving sequential pattern mining, privacy-preserving naive Bayesian classifi-
cation, privacy-preserving decision tree classification, privacy-preserving k-nearest neigh-
bor classification, privacy-preserving support vector machine classification, and privacy-
preserving k-medoids clustering. Our goal is to provide efficient solutions to obtain
accurate data mining results and minimize private data disclosure. The solutions are
distributed, i.e., there is no central, trusted party having access to all the data. Instead,
we define protocols using homomorphic encryption and digital envelope techniques to
exchange the data while keeping it private.

il

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my supervisor, Dr.
Stan Matwin. He has been a great academic father, a terrific mentor, and a wonderful
friend. I could not have imagined someone better for getting me through the graduate
experience and letting me have the freedom to explore scientific research world. I am
indebted to Dr. Matwin who has taught me what it means to be a scientist and has
provided support, encouragement, and valuable criticism through all these years. I am
proud to have been able to work with him.

I wish to thank Dr. LiWu Chang who has been with me for my whole graduate
studies. I am grateful for generously sharing his knowledge and expertise in this area, for
bigheartedly giving professional advice and plenty discussions for important problems.

I would like to thank the members of my thesis committee, Dr. Carlisle Adams, Dr.
Nathalie Japkowicz, Dr. Mike Just, Dr. John Oommen and Dr. Bhavani Thuraising-
ham for their thoughtful comments and insightful discussions that help me considerably
improve this dissertation.

My very special gratitude goes to Dr. Paul C. Van Oorschot who encouraged me to
apply for Natural Sciences and Engineering Research Council of Canada (NSERC) post-
graduate scholarship, and Dr. Gaunce Lewis who recommended me for this scholarship.
Without them, I could not obtain this honorable financial support.

I would like to say a big thank you to all of my friends who provided much needed
support, advice, and friendship. Thanks are also due to the researchers from all over the
world, who have commented on my research.

Beyond friends, there is family. My parents Dongrui Zhan, Huarui Liang, my sisters
Jianhua, Qinghua and Xiaolan, and my brother Lijun, have been there all along. They
provided heartfelt encouragement for my personal endeavors.

Finally, I wish to thank my wife Kathy Sun who always believed in me and encouraged
through all the way and made everything possible to help me make it this far. Without
her, I couldn’t thoroughly understand the importance of family relationship. Without her
support, I couldn’t spend plenty time on my research. Without her, I couldn’t conceived
how long I need to bring this part of my life to a close.

1l

Contents

1 Introduction
1.1 Data Mining and Privacy
1.2 The Development of Qur Ideas.
1.3 Our Contributions
1.4 The Impact of Our Approach
1.5 The Organization of Thesis
2 Literature Review
2.1 Data Mining
2.2 Distributed Data Mining
2.3 Privacy-Preserving Data Mining
2.3.1 Randomization-Based Techniques
2.3.2 Secure-Multiparty-Computation-Based Techniques
2.3.3 More Works oL
2.3.4 Homomorphic-Encryption-Based Approaches
3 Building Blocks
3.1 Notion of Security
3.1.1 Semantic Security
3.1.2 Non-Malleable Security
3.2 Goal-Oriented Privacy-Preserving Collaborative Data Mining
3.3 Notionof Privacy
3.4 Homomorphic Encryption,
3.5 Digital Envelopeo
3.6 Goal-Oriented Attack Model
3.7 Fundamental Protocols o

3.7.1 Privacy-Preserving Two-Party Frequency Count Protocol

S Ut O N =

12
12
15
16
17

3.7.2 Privacy-Preserving Two-Party Vector Product Protocol
3.7.3 Privacy-Preserving Multi-Party Summation Protocol
3.7.4 Privacy-Preserving Multi-Party Sorting Protocol

3.8 Privacy-Preserving Collaborative Data Mining Problems

Privacy-Preserving Association Rule Mining
4.1 Background
4.2 Association Rule Mining Procedure
4.3 How To Compute c.count
4.4 Privacy-Preserving Protocols for Vertical Collaboration
4.4.1 Privacy-Preserving Multi-Party Frequency Count Protocol
4.5 Privacy-Preserving Protocols for Horizontal Collaboration
4.6 Overall Complexity Overhead Analysis

Privacy-Preserving Sequential Pattern Mining

5.1 Background

5.2 Sequential Pattern Mining Procedure

5.3 Privacy-Preserving Protocols for Vertical Collaboration
5.3.1 How to compute c.count
5.3.2 Privacy-Preserving Comparison of Transaction Time
5.3.3 Privacy-Preserving Computation of c.count

5.4 Privacy-Preserving Protocols for Horizontal Collaboration

5.5 Overall Complexity Overhead Analysis

Privacy-Preserving Naive Bayesian Classification

6.1 Background
6.2 Privacy-Preserving Protocols for Vertical Collaboration
6.3 Privacy-Preserving Protocols for Horizontal Collaboration
6.4 Opverall Complexity Overhead Analysis

Privacy-Preserving Decision Tree Classification

7.1 Preliminaries

7.2 Introducing Decision Tree Classification

7.3 Decision Tree Classification Algorithm

7.4 Privacy-Preserving Protocols for Vertical Collaboration
7.4.1 To Compute e(Entropy(Sy)) - - -« v v v v v v

45
45
46
47
48
49
93
93

54
54
95
59
60
60
62
62
62

64
64
66
71
76

7.4.2 To Compute %Enﬁopy(&,) 86

7.4.3 To Compute the Attribute With the Largest Information Gain . . 89

7.5 Privacy-Preserving Protocols for Horizontal Collaboration 89
7.5.1 To Compute e(Entropy(Sy)) . -« v v v v v i i e 90
7.5.2 The Computation of |%|‘Entropy(5v) 94
7.5.3 To Compute the Attribute With the Largest Information Gain . . 99

7.6 Overall Complexity Overhead Analysis 99
8 Privacy-Preserving k-Nearest Neighbor Classification 100
8.1 Background 100
8.2 k-Nearest Neighbor Classification Procedure 101
8.3 Privacy-Preserving Protocols for Vertical Collaboration 101
8.4 Privacy-Preserving Protocols for Horizontal Collaboration 107
8.4.1 How P, Computes the Smallest k3 Elements 108

8.5 Overall Complexity Overhead Analysis 113
9 Privacy-Preserving Support Vector Machine Classification 115
9.1 Introducing Support Vector Machine, 115
9.2 Overview of Support Vector Machine 116
9.3 Introducing Sequential Minimal Optimization 118
9.4 Privacy-Preserving Protocol for Vertical Collaboration 119
9.5 Privacy-Preserving Protocol for Horizontal Collaboration 120
9.5.1 Sequential Minimal Optimization Procedure 120
9.5.2 Privacy-Preserving Computations of Kernel Functions 124
9.5.3 Privacy-Preserving Computations of Lagrange Multipliers. 132
9.5.4 Privacy-Preserving Protocols for Optimized Multipliers Selection . 141
9.5.5 Unusual Conditions, 147
9.5.6 Privacy-Preserving Decision Making 153

9.6 Overall Complexity Overhead Analysis 154
10 Privacy-Preserving k-Medoids Clustering 156
10.1 Background 156
10.2 Overview of k-Medoids Clustering Algorithm 157
10.3 Notations 158
10.4 The Scenarios Where the Private Data Maybe Exposed 158
10.5 Privacy-Preserving Protocols for Vertical Collaboration 159

vi

10.5.1 Privacy-Preserving Protocol for Computing TD .

10.6 Privacy-Preserving Protocol for Horizontal Collaboration
10.7 Overall Complexity Overhead Analysis

11 Conclusion and Future Work

List of Tables

2.1 Our Results Including the Published Papers Which Present These Ideas . 18

3.1 An Index Table of Number Sorting 42
3.2 An Example of Sorting 43

List of Figures

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2

5.1
9.2
9.3
5.4
9.9

7.1
7.2
7.3
74
7.5
7.6
7.7
7.8

8.1

A Sample Data Set 10
Collaborative Data Mining 11
Non-Malleability 22
Inside Attackers vs. Outside Attackers 24
Information Flow Diagram of Protocol 1 30
Information Flow Diagram of Protocol 2 34
Information Flow Diagram of Protocol 3 37
Information Flow Diagram of Protocol4 41
An Example of Computing c.count for Ve and Vgep 48
An Example of Vector Combination 50
Raw Data Sorted By Customer ID 55
Raw Data Sorted By Customer ID and Transaction Time 56
Mapping Table o 57
Mapped Data e 58
An Example of Computing c.count for 24 > 2B >6C 61
An Example of a Decision Tree 78
Information Flow Diagram of Step I in Protocol 10 82
Information Flow Diagram of Step II in Protocol 10 83
Information Flow Diagram of Protocol 11. 87
Information Flow Diagram of Step I in Protocol 12 91
Information Flow Diagram of Step II in Protocol 12 92
Information Flow Diagram of Step I in Protocol 13 95
Information Flow Diagram of Step 1I in Protocol 13 96

An Example of k-Nearest Neighbor Classification 102

9.1 Input Space and Feature Space 115
9.2 Mustration of SVM e 117
9.3 A Flow Chart of Protocols, 123
11.1 A Two-layer Neural Network 173
11.2 An Example of Neural Unit, 174

Notation
The following notation is used in this dissertation.
e P— Party i.
e DS;— Private data set for party i.
e ¢— Encryption key.
e d— Decryption key.
e G— An algorithm for generating keys.
e [f— An encryption algorithm
e D— A decryption algorithm.
e m— A message.

e E(m,e)— Encryption of message m using e. For simplicity, we use e(m) to denote

the encryption of message m in the privacy-preserving protocols.

e D(E(m,e),d)— Decryption of encrypted message m. For simplicity, we use d(m’)
to denote the decryption of m/ which is e(m, e).

e K{— Key length.

e - — Scalar product of two vectors.

e x— Multiplication of two numbers.

e n— The total number of parties in collaboration.

e a— The approximation of the number of bits for each transmitted element in the
privacy-preserving protocols.

e T'— Private data.

o Tace— Alice’s private data.
e Ts,,— Bob’s private data.

e T'p— Party i’s private data.

xi

VIEW gi.e— The extra information that Alice obtains via a privacy-oriented pro-
tocol.

VIEWpgs— The extra information that Bob obtains via a privacy-oriented proto-
col.

VIEWp,— The extra information that P; obtains via a privacy-oriented protocol.

ADVpgep— The advantage in getting access to Alice’s private data that Bob gains
by using the component protocol.

ADVyy.c— Alice’s advantage to gain access to Bob’s private data via the compo-
nent protocol.

ADVp— P;’s advantage to gain access to the private data of any other party via
the component protocol.

ADVs— The advantage of one party to gain access to the other party’s private

data via the component protocol by seeing the semantically secure ciphertext.
T— The total number of attributes for [DS; U DSy U --+ U DS,].

N— The total number of records for [DS; U DSy U -+ U DS,].

K S— The key generating server.

CS— The computation server.

Glossary

Data Mining and Knowledge Discovery Section 2.1.
Association Analysis Section 2.1.
Classification Section 2.1

Clustering Section 2.1.

Semantic Security Section 3.1.

Non-Malleable Security Section 3.1.

Inside Attacker Section 3.3.

Outside Attacker Section 3.3.

Definition of Privacy Section 3.3.

Association Rule Mining Section 4.1.
Sequential Pattern Mining Section 5.1

Naive Bayesian Classification Section 6.1.
Decision Tree Classification Section 7.1.
k-Nearest Neighbor Classification Section 8.1.
k-Medoids Clustering Section 10.1.

Support Vector Machine Classification Section 9.1.

Chapter 1

Introduction

1.1 Data Mining and Privacy

Data mining and knowledge discovery in databases are important research areas that
investigate the automatic extraction of previously unknown patterns from large amounts
of data. The field connects the three worlds of databases, artificial intelligence and
statistics. The information age has enabled many organizations to gather large volumes
of data. However, the usefulness of this data is negligible if meaningful information or
knowledge cannot be extracted from it. Data mining and knowledge discovery attempts
to answer this need. In contrast to standard statistical methods, data mining techniques
search for interesting information without demanding an aprior: hypotheses. As a field,
it has introduced new concepts and algorithms such as association rule mining, classifi-
cation, clustering, etc. Data mining techniques are widely used and are becoming more
and more popular with time.

Recent advances in data collection, data dissemination and related technologies have
inaugurated a new era of research where existing data mining algorithms should be re-
considered from the point of view of privacy preservation. The term privacy is used
frequently in ordinary language, yet there is no single definition of this term [26]. The
concept of privacy has broad historical roots in sociological and anthropological discus-
sions about how extensively it is valued and preserved in various cultures [36, 73, 77, 89].
Yet historical use of the term is not uniform, and there remains confusion over the
meaning, value and scope of the concept of privacy. Privacy refers to the right of users
to conceal their personal information and have some degree of control over the use of
any personal information disclosed to others in [1, 20, 45]. Particularly, in this thesis,

privacy preservation means that multiple parties collaboratively get valid data mining re-
sults while disclosing minimal private data to each other or any party who is not involved
in the collaborative computations.

A key problem that arises in any massive collection of data is that of privacy. The
need for privacy is sometimes due to law (e.g., for medical databases) or can be motivated
by business interests. However, there are situations where the sharing of data can lead
to mutual benefit. Despite the potential gain, this is often not possible due to the
privacy issues which arise. It is well documented [33] that the unlimited explosion of
new information through the Internet and other media has reached a point where threats

against the privacy are very common and they deserve serious thinking.

Example 1 Imagine the following scenario: to protect against terrorists, the members of
North Atlantic Treaty Organization (NATO) would like to conduct data mining over their
joint data which are related to terrorism. Each member is well motivated to share data
mining results with another member since it is beneficial for all the members. Although
it is one organization, countries may not want to disclose the data in their possession
to other countries. Moreover, each country has its own legal privacy rules for its actual
data. Therefore, they would like to prevent their private data from being disclosed during

the mining stage but are happy to share data mining results with each other.

Can we solve the above challenging problem? Can privacy and collaborative data
mining coexist? In other words, can the collaborative parties somehow conduct data
mining computations and obtain the desired results without compromising their data
privacy?

We claim that privacy and collaborative data mining can be achieved at the same
time. The goal of this thesis is to develop and invent technologies to solve several kinds
of privacy-preserving collaborative data mining computations over large data sets with
reasonable efficiency. The work presented in this thesis builds on a series of ideas that

we have developed over the past three years.

1.2 The Development of Our Ideas

In this section, we give an account of how our ideas developed during our research as the
topic of this thesis. The detailed technical presentation of these ideas is given further in
each chapter of the thesis.

Aiming at developing practical solutions to privacy-preserving data mining problems,
we have applied the random perturbation technique and the randomized response tech-
nique. The idea is to add random noise to the original data so that it is hidden. We
applied the random perturbation technique to build a decision tree classifier in [29].
That paper studied how to build a decision tree classifier for vertically partitioned data
between two parties with the help of an untrusted server. In [94, 96] , we proposed
a solution for privacy-preserving association rule mining among three parties and laid
out the possible solutions for a general scenario where the number of parties is more
than three. We applied the random perturbation technique to solve the problem of
privacy-preserving horizontal collaborative sequential pattern mining in [95], in which
we presented how to find the sequences with the maximal length (e.g., maximal se-
quences) among all sequences that have a certain user-specified minimum support. Each
such maximal sequence represents a sequential pattern.

We recognized that the randomized response technique [87] is also a proper tool for
privacy-preserving data mining. In [30, 99], we used this technique for privacy-preserving
collaborative decision tree induction. Our method consists of two parts: the first part is
the multivariate data disguising technique used for data collection; the second part is the
modified ID3 [68] algorithm used for building a classifier from the disguised data. We
presented experimental results that show the accuracy of the decision tree built using
our algorithm. Our results show that when we select the randomization parameter ¢
from [0.6, 1] and [0, 0.4], we can get fairly accurate decision trees compared to the trees
built from the undisguised data. The technique was also extended to deal with other
types of privacy-preserving collaborative data mining problems. In [97, 100], solutions
were proposed for naive Bayesian classification. Specifically, we have modified the naive
Bayesian classification algorithm [53] to make it work with data modified by randomized
response techniques, and implemented the modified algorithm. We then conducted a
series of experiments to measure the accuracy of our modified naive Bayesian algorithm
on randomized data. Our results show that if we choose the appropriate randomization
parameters, the accuracy we have achieved is very close to the accuracy achieved using
the original naive Bayesian classification on the original data. We then discussed how to
apply it to privacy-preserving electronic surveys. We considered how to mine association
rules [117] and conduct electronic voting [98] using this technique.

The drawbacks of randomization-based approaches are that we need to make a trade-
off between the accuracy of mining results and data privacy. To achieve a higher level of

privacy, we have to sacrifice the accuracy of mining results. To achieve a high level of both

accuracy and privacy, we have followed a different paradigm based on a cryptographic
tool. We propose a scheme using this technique in [102, 105] where we show how two par-
ties jointly conduct association rule mining without disclosing data to each other. In the
procedure of association rule mining, the only steps accessing the actual data values are
the initial step which computes large one-itemsets and the computation of the frequency
count for the candidate itemsets [3]. Other steps, particularly when computing candidate
itemsets, merely use attribute names. To compute large one-itemsets, each party selects
her own attributes that contribute to large one-itemset. As only a single attribute forms
a large one-itemsets, there is no computation involving attributes of the other party.
Therefore, we reduce the problem to computing the frequency count for the candidate
itemsets. We provide a privacy-preserving protocol for two parties to compute the fre-
quency count without revealing their private data to each other. In [113, 115], we propose
an advanced solution for a more general scenario where multiple parties are involved in
the computation. In [104, 107}, the problem of privacy-preserving collaborative sequen-
tial pattern mining is addressed. In [103], we discuss how to build a k-nearest neighbor
classifier for horizontal collaboration. In [101], we develop a privacy-preserving algorithm
for building a k-nearest neighbor classifier for vertical collaboration. In k-nearest neigh-
bor classification, given a query instance z,, we want to compute the distance between
zq and each of the training instances. To compute whether the distance between one
instance and z, is larger than the distance between another instance and z,, we need
to compare two distances. How to obtain the comparison result without compromising
data privacy is solved by the proposed protocols. We consider how to build support vec-
tor machines (SVM) [64] for both vertical collaboration and horizontal collaboration in
[106, 111, 116]. In particular, we address the problem of collaboratively learning support
vector machines, by using linear, polynomial or sigmoid kernel functions, on private data.
We develop a privacy-preserving collaborative protocol based on a semantically secure
homomorphic encryption scheme and digital envelope techniques. Privacy analysis is
provided. The correctness of our protocols is shown and the complexity of the proto-
cols is addressed as well. In [108, 109, 110, 114], we design privacy-preserving protocols
to build naive Bayesian classifiers and decision tree classifiers. In [112], we reduce the
k-medoids clustering [10] to the distance comparison problems. We utilize techniques
similar to the ones we designed for k-nearest neighbor classification to solve the problem.
To make the description clear, we list all the results that we have achieved by using

homomorphic encryption and digital envelope techniques in Table 2.1.

1.3 Our Contributions

The contributions of this thesis include the following:

e a proposed formal definition of privacy for privacy-preserving collaborative data

mining.

e the protocols for privacy-preserving association rule mining for both horizontal and
vertical collaboration.

o the solutions for privacy-preserving sequential pattern mining for both horizontal
and vertical collaboration.

e a series of privacy-oriented protocols for classifications that include naive Bayesian
classification, decision tree classification, k-nearest neighbor classification and sup-

port vector machine classification.

e Introduction of the privacy-preserving k-medoids clustering problem and the solu-

tions for both horizontal and vertical collaboration.

e The complexity analysis to show how the performance scales up with various factors
such as the number of parties involved in the computation, the encryption key size,
the size of data set, etc.

1.4 The Impact of Our Approach

Our approach has broad impact in many applications. In practice, there are many envi-
ronments where privacy-preserving collaborative data mining is desirable. For example,
several pharmaceutical companies have invested a significant amount of money in con-
ducting genetic experiments with the goal of discovering meaningful patterns among
genes. To increase the size of the population under study and to reduce the cost, compa-
nies decide to collaboratively mine their data without disclosing their actual data because
they are only interested in limited collaboration; by disclosing the actual data, a company
essentially enables other parties to make discoveries that the company does not want to
share with others. In another field, the success of homeland security aiming to counter

terrorism depends on a combination of strength across different mission areas, effective

international collaboration and information sharing to support a coalition in which dif-
ferent organizations and nations must share some, but not all, information. Information
privacy thus becomes extremely important and our technique can be applied.
Moreover, there is a real application in Ottawa. TrialStat.com is interested in using
our approach to deal with a real existing problem. There are several hospitals in Ottawa.
Each hospital has its own data set containing patient records. These hospitals would like
to conduct data mining over the data sets from all of hospitals with the goal of obtaining
more valuable information via mining the joint data set. Due to privacy laws, one hospital
cannot disclose its patient records to another hospital. How can these hospitals achieve
their objective? Our approach is exactly what they need in order to solve their problems.
In the Internet era, collaborative data mining is becoming a popular way to extract
useful knowledge from large databases. Because of the establishment of privacy laws and
privacy concerns of individuals, collaborative data mining cannot be achieved without
using privacy protection technologies. This provides practical motivation to develop
privacy-conscious technologies for collaborative data mining. This thesis provides some

techniques to help solve this challenging issue.

1.5 The Organization of Thesis

The thesis is organized as follows: Related work is discussed in chapter 2. We present our
building blocks in chapter 3. Thereafter, we describe privacy-preserving protocols for var-
ious data mining algorithms. In chapter 4, privacy-preserving protocols for collaborative
association rule mining is presented. In chapter 5, we discuss how to solve privacy-
preserving sequential pattern mining. From chapter 6 to chapter 9, we talk about clas-
sification problems. In chapter 6, privacy-preserving collaborative naive Bayesian classi-
fication is addressed. Privacy-preserving protocols for collaborative decision tree classi-
fication are developed in chapter 7. Privacy-preserving collaborative k-nearest neighbor
classification is described in chapter 8. Chapter 9 gives privacy-oriented protocols for
support vector machine classification. In chapter 10, privacy-preserving protocols for
k-medoids clustering are provided. We give our conclusions and point out future work
in chapter 11.

Chapter 2
Literature Review

In this chapter, we provide the background material required to give an appropriate
perspective for the work done in this thesis. The chapter first introduces the fundamental
works of data mining and distributed data mining. We then describe the state of the art
in privacy-preserving data mining techniques.

2.1 Data Mining

Data mining is a field devoted to extraction of the useful unsuspected relationships from
large observational data sets [43]. Data mining tools can predict future trends and
behaviors, allowing people to make proactive, knowledge-driven decisions based on their
databases. Data mining tools can answer many questions that traditionally were too
time consuming to resolve. They scrub databases for hidden patterns, finding predictive
information that experts may miss because it lies outside their expectations.

Data mining techniques are the result of a long process of research and product devel-
opment. The core components of data mining technology have been under development
for decades, in research areas such as statistics, artificial intelligence, and machine learn-
ing. The maturity of these techniques, coupled with high-performance relational database
engines make these technologies practical for data warehouse environments. When data
mining tools are implemented on high performance parallel processing systems, they can
analyze massive databases in minutes. Faster processing means that users can automat-
ically experiment with more models to understand complex data. High speed makes it
practical for users to analyze large quantities of data. Larger databases, in turn, yield
improved predictions.

Data mining encompasses many different algorithms. The definition of each of these
algorithms can be found in [31, 43, 44]. The common tasks of data mining are association
analysis, classification, and clustering. Association analysis is the discovery of association
rules that occur frequently in a given set of data. The goal of association rule mining
is to discover meaningful association rules among the attributes of a large quantity of
data. For example, suppose that, as a manager of Wal-Mart, you would like to learn
which sets of items customers are likely to purchase in a certain period of time. To
know this, analysis may be performed on the retail data of customer transactions. The
results can be used for the purpose of better marketing or advertising strategies. It may
help managers design different store layouts. If customers who buy bread also tend to
purchase butter at the same time, then placing bread close to butter is likely to increase
the sales of both of these items. On the other hand, if bread and butter are placed in
different locations, people who buy bread have to look for butter. Especially, if people
cannot easily find butter, the customers who buy bread may not take time to find butter,
thus the sales may be reduced.

If we think of the universe as the set of items available at the store, then each item
has a boolean variable representing the presence and absence of that item. Each itemset
can then be denoted by a boolean vector of values assigned to these variables. The
boolean vectors can be analyzed for buying patterns that can be represented in the form
of association rules. For instance, the buying pattern saying that customers who buy
bread may also purchase butter at the same time, can be represented in association rule
below:

bread = butter[support = 20%, con fidence = 80%] (2.1)

The support and confidence of association rules are two measures of rule interest
that will be defined in chapter 4. They reflect the usefulness and certainty of discovered
rules, respectively. A support of 20% for association rule 2.1 means that 20% of all
the transactions in the database show that bread and butter are purchased together.
A confidence of 80% means that 80% of customers who bought bread also purchased
butter. We say that an association rule is interesting if it satisfies both a minimum
support threshold and a minimum confidence threshold. Both thresholds are set by
users or domain experts.

(Classification is a form of data analysis that can be used to extract models describing

data classes or to predict future trends. Classification is the process of finding a set of

models that describe and distinguish data classes or concepts, for the purpose of being
able to use the model to predict the class of objects whose class labels are unknown.
Classification is a two-step process. In the first step, a model is built to describe a
predetermined set of data classes or concepts. The model is built by analyzing dataset
tuples described by attributes. Each tuple is assumed to belong to a predefined class
that is called the class label attribute. The data tuples which are analyzed to build the
model collectively form the training data set. Typically, the learned model is denoted in
the form of classification rules, decision trees, or mathematical formulae. For instance,
given a database of patient records, classification rules can be learned to identify whether
or not, patients have cancer. The rule may be used for predicting whether a given patient
who does not know if he has cancer actually does have cancer. In the second step,
the model is used for classification. The predictive accuracy of the model (or classifier)
is estimated. If the accuracy of the model is considered acceptable, the model can be
utilized to classify future data tuples for which the class labels are not known.

Unlike classification, which analyzes class-labeled data objects, clustering analyzes
data objects without consulting a known class label. It is the process of grouping the
data into clusters so that objects within a cluster have high similarity in comparison to
one another, but are dissimilar to objects in other clusters. Cluster analysis has been
studied extensively for many years, focusing mainly on distance-based cluster analysis.
Clustering does not rely on predefined classes and class-labeled training examples.

Clustering has many important applications such as pattern recognition, image pro-
cessing and marketing. In business, clustering can help marketers discover different
groups among their customers and characterize customer groups based on purchasing
patterns. In machine learning, clustering is an example of unsupervised learning. Clus-
tering is a form of learning by observation, rather than learning by examples since it does
not rely on predefined classes and class-labeled training examples.

2.2 Distributed Data Mining

Much of the research in inductive learning concentrates on problems with relatively small
amounts of data. Some learning algorithms assume that the entire data set fits into main
memory, which is not feasible for massive amounts of data, especially for applications
in data mining. One approach to handling a large data set is to partition the data set
into subsets, run the learning algorithm on each of the subsets, and combine the results.

Moreover, data can be inherently distributed across multiple sites on the network and

10

merging all the data in one location can be expensive or prohibitive. Chan [13, 14] pro-
posed, investigated, and evaluated a meta-learning approach to integrating the results of
multiple learning processes. Specifically, Chan developed two main meta-learning strate-
gies: combiner and arbiter. Both strategies are independent of the learning algorithms
used in generating the classifiers. The combiner strategy attempts to reveal relationships
among the learned classifiers’ prediction patterns. The arbiter strategy tries to determine
the correct prediction when the classifiers have different opinions. Various schemes under
these two strategies have been developed. Empirical results show that their schemes can

obtain accurate classifiers from inaccurate classifiers trained from data subsets.

Al A2 A3
R1 1 0 1
R2 1 1 0
R3 0 1 1
R4 1 0 1
R5 1 0 0
R6 1 1 1
R7 0 0 1

Figure 2.1: A Sample Data Set

For the purpose of this thesis, we view the actual dataset as one table (Figure 2.1). In
the table, we refer to each row as a record, and we refer to each column as an attribute.
In distributed data mining, the data are scattered across multiple sources. An important
issue is the data partition model [17, 79, 81]. Data can be partitioned either horizontally
or vertically as shown in Figure 2.2 1. The former is called horizontal collaboration where
each party has the same sets of attributes but with different sets of records [47]; The
latter is called vertical collaboration where each party has different sets of attributes but
the key of each record is the same [82].

Compared with centralized data mining, a critical factor in distributed data mining
is how to efficiently conduct the desired computations. A direct application of sequential

algorithms to distributed databases is not effective, because it requires a large amount of

In generally-accepted collaborative data mining environments, data cannot be partitioned both
horizontally and vertically at the same time.

11

Ty

1

: 1

1

M -collaborative DM

L

—————

E g
E
ng i)

L _l_

-

(B) Horizontal Collaboration (C) Vertical Collaboration

- s-m=o

Figure 2.2: Collaborative Data Mining

communication overhead. Cheung et al. [17] proposed an efficient method for horizon-
tally partitioned data. It generates a small number of candidate sets and requires only
O(n) messages for support count exchange of each candidate set, where n is the number of
sites in a distributed database. The algorithm has been implemented on an experimental
test bed and its performance has been studied. The results show that their method has
superior performance when compared with the direct application of a popular sequential
algorithm in distributed databases. An efficient algorithm for vertically mining associa-
tion rules was proposed in [79]. The authors presented a vertical mining algorithm called
VIPER which has no special requirements of the underlying database. They analyzed
the performance of VIPER for a range of synthetic database workloads. Their experi-
mental results indicate significant performance gains for large databases. Classification
using Bayesian networks in vertically partitioned data was addressed in [16]. The authors
present a collective approach to mining Bayesian networks from distributed heterogenous
web-log data streams. In their approach, they first learn a local Bayesian network at
each site using the local data, each site then identifies the observations that are most
likely to be evidence of coupling between local and non-local variables and transmits a

sub-set of these observations to a central site. Another Bayesian network is learnt at

12

the central site using the data transmitted from the local site. The local and central
Bayesian networks are combined to obtain a collective Bayesian network that models
the entire data. They applied this technique to mine multiple data streams where data
centralization is difficult because of large response time and scalability issues.

In the field of distributed data mining, most of the algorithms address the problem of
efficiently obtaining the mining results from all the data across these distributed sources
but rarely target privacy preservation. A fruitful direction for data mining research is

the development of techniques that incorporate privacy concerns.

2.3 Privacy-Preserving Data Mining

To achieve the goal of privately conducting data mining, many approaches have been pro-
posed. Based on the techniques used, we can roughly categorize them into three types:
randomization-based techniques, secure-multiparty-computation-based approaches, and
cryptography-based methods. We start with presenting major works built on randomization-
based techniques. We then present works using secure-multiparty-computation-based
approaches. Finally, we describe the works based on homomorphic encryption. We clas-
sify the works into different types. We point out the missing works or the works that
need to be improved and describe what contributions we have made.

2.3.1 Randomization-Based Techniques

To protect actual data from being disclosed, one approach is to alter the data in a way
that actual individual data values cannot be recovered, while certain computations can
still be applied to the data. Due to the fact that the actual data are not provided for the
mining, the privacy of data is preserved. This is the core idea of randomization-based
techniques.

The random perturbation technique is usually realized by adding noise or uncertainty
to the actual data such that the actual data values are prevented from being discovered.
Since the data no longer contain the actual values, it cannot be misused to violate indi-
vidual privacy. Randomization approaches were first proposed by Agrawal and Srikant in
[5] to solve the privacy-preserving data mining problem. Specifically, they addressed the
following question. Since the primary task in data mining is the development of models
about aggregated data, can they develop accurate models without access to precise in-

formation in individual data records? The underlying assumption is that a person will

13

be willing to selectively divulge information in exchange for useful information that such
a model can provide. They considered the concrete case of building a decision tree clas-
sifier from training data in which the values of individual records have been perturbed.
The resulting data records look very different from the original records and the distri-
bution of data values is also very different from the original distribution. While it is not
possible to accurately estimate original values in individual data records, they propose a
reconstruction procedure to accurately estimate the distribution of original data values.
By using these reconstructed distributions, they are able to build classifiers whose accu-
racy is comparable to the accuracy of classifiers built with the original data. Given the
distribution of the noise added to the data, and the randomized data set, they were able
to reconstruct the distribution (but not actual data values) of the data set. Agrawal and
Aggarwal [2] showed that the EM algorithm converges to the maximum likelihood esti-
mate of the original distribution based on the perturbed data. They showed that when
a large amount of data is available, the EM algorithm provides robust estimates of the
original distribution. They proposed metrics for quantification and measurement of the
privacy-preserving data mining algorithms. Their privacy metrics illustrate some results
on the relative effectiveness of different perturbing distributions. The greater the level
of perturbation, the less likely we are able to effectively estimate the data distributions.
On the other hand, larger perturbations also lead to a greater amount of privacy. Thus,
there is a trade-off between loss of information and privacy.

Evfimievski et al. [35] presented a framework for mining association rules from trans-
actions consisting of categorical items where the data has been randomized to preserve
privacy of individual transactions. While it is feasible to recover association rules and
preserve privacy using a straightforward uniform randomization, the discovered rules
can unfortunately be exploited to find privacy breaches. They analyzed the nature of
privacy breaches and proposed a class of randomization operators that are much more
effective than uniform randomization in limiting the breaches. They derived formulae
for an unbiased support estimator and its variance, which allow us to recover itemset
supports from randomized datasets, and showed how to incorporate these formulae into
mining algorithms. Specifically, they considered categorical data instead of numerical
data, and association rule mining instead of classification. They focused on the task of
finding frequent itemsets in association rule mining. The proposed techniques can be
broadly classified into query restriction and data perturbation. The query restriction
family includes restricting the size of query result, controlling the overlap amongst suc-

cessive queries, keeping an audit trail of all answered queries and constantly checking for

14

possible compromise, suppression of data cells of small size, and clustering entities into
mutually exclusive atomic populations.

Du and Zhan [30] proposed a technique for building decision trees using randomized
response techniques. Zhan et al. [95, 96, 99, 100, 117] further applied this technique to
various data mining computations. Randomized Response techniques were developed in
the statistics community for the purpose of protecting surveyees’ privacy. Randomized
Response techniques were first introduced by Warner [87] as a technique to solve the
following survey problem: to estimate the percentage of people in a population that has
attribute A, queries are sent to a group of people. Since attribute A is related to some
confidential aspects of human life, respondents may decide not to reply at all or to reply
with incorrect answers. Two models, Related-Question Model and Unrelated-Question
Model, have been proposed to solve this survey problem. In the Related-Question Model,
instead of asking each respondent whether he/she has attribute A, the interviewer asks
each respondent two related questions, the answers to which are opposite to each other.
For example, the questions could be as follows.

o [have the sensitive attribute A.
e [do not have the sensitive attribute A.

If the statement is correct, the respondent answers yes; otherwise he/she answers no.
Respondents use a randomizing device to decide which of the two questions to answer,
without letting the interviewer know which question is answered. The randomizing device
is designed in such a way that the probability of choosing the first question is 8 , and the
probability of choosing the second question is 1 — 6. Although the interviewer learns the
responses (e.g., yes or no), he/she does not know which question was answered by the
respondents. Thus the respondents’ privacy is preserved. The interviewers are interested
in getting the answer to the first question. The answer to the second question is exactly
the opposite to the answer for the first one. To estimate the percentage of people who

have the attribute A, we can use the following equations:

P*(A = yes) = P(A =yes) x § + P(A =no) x (1 —10) (2.2)
P*(A = no) = P(A=n0) x 0+ P(A=yes) x (1—0) (2.3)
where P*(A = yes) (resp. P*(A = no)) is the proportion of the yes (resp. no)

responses obtained from the survey data, and P(A = yes)(resp. P(A = no)) is the

estimated proportion of the yes (resp. no) responses to the sensitive questions. Obtaining

15

P(A = yes)(resp. P(A = no)) is the goal of the survey. By solving the above equations,
we can get P(A = yes)(resp. P(A = no)) when 0 # £ as follows.

0 x P*(A =yes)— (1 —0) x P*(A=no)

P(A = yes) = 59— 1

(2.4)

P(A=no)=1— P(A = yes) (2.5)

For the cases where 6 = %, we can apply Unrelated-Question Model where two un-
related questions are asked, provided that the probability for one of the questions is
known.

The randomization-based methods have the benefit of efficiency. However, the draw-
back is that post-randomization data mining results are only an approximation of pre-
randomization results. There are some randomization level control parameters. It has
been experimentally shown that for certain scenarios under the control of a randomiza-
tion parameter, the accuracy of the results can achieve a certain level in the case of both
decision tree classification [5, 30] and association rule mining [35, 72]. Furthermore, the
randomization-based method may be invalid to protect data privacy in certain scenarios.
Kargupta et al. [49] analyzed the privacy of random perturbation techniques and showed
how to attack privacy by using random matrix-based data filtering techniques. Although
Evimievski et al. [34] showed how to limit privacy breaches while using randomization
for privacy-preserving data mining, there are still concerns that randomization-based ap-
proaches may allow an attacker to reconstruct distributions and also give out too much

information about the original data values [81].

2.3.2 Secure-Multiparty-Computation-Based Techniques

Secure Multi-party Computations (SMC) deal with computing any function on any in-
put in a distributed network. Each participant holds one of the inputs while ensuring
that no more information is revealed to a participant in the computation than can be
inferred from that participant’s input and output. The SMC problem was introduced by
Yao [93]. It has been proved that for any polynomial function, there is a secure multi-
party computation solution [40]. The approach used is as follows: the function F' to be
computed is first represented as a combinatorial circuit, and then the parties run a short

protocol for every gate in the circuit. Every participant gets corresponding shares of the

16

input wires and the output wires for every gate. This approach, though appealing in its
generality and simplicity, is highly impractical for large data sets.

Following the idea of secure multiparty computation, people started to design privacy-
oriented protocols for the problem of the privacy-preserving collaborative data mining.
Lindell and Pinkas [56] first introduced a secure multi-party computation technique for
classification using the ID3 algorithm, over horizontally partitioned data. Specifically,
they consider a scenario in which two parties owning confidential databases wish to
run a data mining algorithm on the union of their databases, without revealing any
unnecessary information. Their work is motivated by the need to both protect privileged
information and enable its use for research or other purposes. The above problem is
a specific example of secure multi-party computation which can be solved using known
generic protocols. However, data mining algorithms are typically complex and the input
usually consists of massive data sets. The generic protocols in such a case are of no
practical use and therefore more efficient protocols are required. Lindell and Pinkas
focused on the problem of decision tree learning with the popular ID3 algorithm. Their
protocol is considerably more efficient than generic solutions and demands both very
few rounds of communication and reasonable bandwidth. Du and Zhan [29] proposed
a protocol for privacy-preserving decision tree classification using ID3 algorithm over
vertically partitioned data. Lin and Clifton [55] proposed a secure way for clustering
using the EM algorithm over horizontally partitioned data. Kantarcioglu and Clifton
[47] described protocols for the privacy-preserving distributed data mining of association
rules on horizontally partitioned data. Vaidya and Clifton [82] presented protocols for
privacy-preserving association rule mining over vertically partitioned data. Vaidya and
Clifton [83] provided a solution for building a decision tree without compromising data

privacy.

2.3.3 More Works

There have been some other works that do not properly fall into any of the categories.
Atallah et al. [7] explored the disclosure limitation of sensitive rules. Saygin et al. [74]
presented a way of using special values, known as unknowns, to prevent the discovery
of association rules. Kantarcioglu and Clifton [48] proposed an approach to solve the
problem of privately computing a distributed k-nearest neighbor classifier on horizontally
partitioned data. In this work, they introduce two extra parties to help the computation.

Recently, there have been several endeavors in privacy-preserving clustering [51, 58,

17

62, 63, 84]. Vaidya and Clifton’s work [84] is about privacy-preserving clustering over ver-
tically partitioned data using the k-means method. A framework for distributed cluster-
ing over horizontally partitioned data is provided in [58]. In [51], Klusch et al. presented
an approach to distributed data clustering based on sampling density estimates. Oliveira
and Zaiane introduced a family of geometric data transformation methods that ensure
the mining process does not violate privacy up to a certain degree in [62], and showed
that a solution can be achieved by transforming a database using object-similarity-based
representation and dimensionality-reduction-based transformation in [63].

Many previous works assume that there are extra parties who help the computation,
or they need to make tradeoff between accuracy of data mining results and privacy, or
their approaches are limited to the scenario of two collaborative parties. It is therefore
interesting to develop approaches that can deal with a general case where the number
of the collaborative parties is not limited to two, to obtain accurate data mining results,

and to achieve privacy preservation without the help of extra parties.

2.3.4 Homomorphic-Encryption-Based Approaches

Encryption is a well-known technique for preserving the privacy of sensitive informa-
tion. Compared with other techniques described, a strong encryption scheme can be
more effective in protecting data privacy. For example, if the value is hidden by a
randomization-based technique, the original value will be disclosed with certain proba-
bility. If the value is encrypted using a semantically secure encryption scheme [42], the
encrypted value provides no help for attacker to find the original value.

The concept of homomorphic encryption was originally proposed in [71] with the aim
of allowing certain computations to be performed on encrypted data without preliminary
decryption operations. To date, there are many such systems [9, 60, 61, 65]. Homomor-
phic encryption is a very powerful cryptographic tool and has been applied in several
research areas such as electronic voting, on-line auction, etc. We can see that the works
which are mainly based in homomorphic encryption are [90, 91] where Wright and Yang
applied homomorphic encryption to Bayesian network induction for the case of two par-
ties. Yang et al. [92] proposed a cryptographic approach to classify the customer data.
Many problems remain open in this area. In this thesis, we will apply homomorphic
encryption [65] and digital envelope techniques [15] to privacy-preserving data mining
and use them to design privacy-oriented protocols for various privacy-preserving collab-

orative data mining problems. To synthesize the research that we have done in the area

18

Vertical collaboration

Horizontal collaboration

Association Rule Mining

Section 4.4 [113]

Section 4.5 [117]

Sequential Pattern Mining

Section 5.3 [104]

Section 5.4 [107]

Naive Bayesian Classification

Section 6.2 [110]

Section 6.3 [109

Decision Tree Classification

k-nearest Neighbor Classification

[
Section 7.4 [99]
Section 8.3 [101]

[109]
Section 7.5 [114]
Section 8.4 [103]

k-Medoids Clustering

Section 10.5 [112]

Section 10.6

Support Vector Machine Classification

Section 9.4 [111]

Section 9.5 [116]

Table 2.1: Our Results Including the Published Papers Which Present These Ideas

of privacy-preserving data mining, we present our results in Table 2.1. The table has two

dimensions: one is the data mining algorithms, the other is the data partition model. In

the table, we indicate the specific sections that provide a privacy-preserving scheme for

the corresponding computation and the published papers which present these ideas.

Chapter 3

Building Blocks

3.1 Notion of Security

Secure encryption is a fundamental problem in the field of cryptography. An important
result in this field in the last years is the successful formal definition of secure encryption.
What does it mean for a cryptosystem to be secure? Informally, an encryption system
is called secure if knowing the encrypted message does not give any partial information
about the message that is not known beforehand. In their seminal paper [42] on the
notion of security for public-key cryptosystems, Goldwasser and Micali introduced two
security definitions. The two notions are named GM-security (indistinguishability) and
semantic security. Shortly thereafter, Micali et al. [59] showed that these two notions
actually coincide. Unlike Shannon’s definition of security [78] given from the point of view
of information theory, they define security with respect to efficient computations. Before
we introduce the formal definitions for semantic security, we describe the properties [41]

that any general encryption system needs to capture.

e Computational hardness. We say that an encryption does not give any partial
information about the message if no efficient algorithm can gain such information.

However, the encryption and decryption procedures should be efficient.

e Independence of probability distribution of messages. The encryption system
should not assume certain probability distribution of the messages to be encrypted.
It is not desirable that an encryption system is secure with respect to messages
taken from a uniform distribution but not secure with respect to messages written

in natural languages. In other words, to apply an encryption system, a user does

19

20

not need to predetermine the probability distribution of messages to be encrypted.

e Difficulty of gaining any partial information. It should be hard not only to find mes-
sage m given the encryption of m, F(m), but also to gain any partial information
about m, such as the number of bits of m.

3.1.1 Semantic Security

We now turn to the definition of semantic security. Informally, an encryption system
is semantically secure if for every probability distribution of messages, everything that
can be efficiently computed given the encrypted message, can be efficiently computed
without the encrypted message. The theoretical treatment of public-key encryption
begins with Goldwasser and Micali [42] where they introduced the notion of semantic
security. Goldreich [38, 39] then refined the notion of semantic security. We start with
the formal definition of a public-key encryption system.

Definition 1 A public-key encryption system consists of three probabilistic polynomial-
time algorithms (G, E, D) as follows:

1. G is an algorithm for generating keys. That is G(1¥) = (e, d) where e is the public-
key, d is the private-key, K is a security parameter, and |e| = |d| = K. 15X denotes
a binary sequence of 0 or 1 with the length of K.

2. E is an encryption algorithm and D is a decryption algorithm. For every message
m of size |m|, and every pair (e,d) generated by G on input 1%, and all the possible
coin tosses of E, D(E(m,e),d) = m.

We now provide a formal definition of semantic security.

Definition 2 An encryption scheme, (G, E, D), is semantically secure in public-key
model if for every probabilistic polynomial-time algorithm A, there exists a probabilistic
polynomial-time algorithm A’ such that for every probability ensemble { X}, with | X k| <
poly(K), every pair of polynomially bounded functions f, h, {0,1}* — {0,1}*, every
positive polynomial p and all sufficiently large K

PrlA(1%,G(1%), Bouxy(Xk), 1751 h(1%, Xk)) = (15, Xk))]
1

_Prl A1 1%KL B (1K X)) = FOIK X)] < ——.
PriA' (1%, 145U R(17 XK)) = f(17, X)]<p(K)

21

Intuitively, the notion of semantic security tells us that whatever can be efficiently
computed from the ciphertext and additional partial information about the plaintext
can be efficiently computed given only the length of plaintext and the same partial
information. This notion informally says that a ciphertext does not leak any useful

information about the plaintext, except its length, to a polynomial-time attacker.

3.1.2 Non-Malleable Security

The notion of non-malleable security [27] is an extension of semantically secure cryptog-
raphy. It requires that an adversary, given a ciphertext, cannot modify it to another,
different ciphertext in such a way that the plaintexts underlying the two ciphertexts are
meaningfully related. Informally, given a ciphertext, it is impossible to generate a differ-
ent ciphertext so that the respective plaintexts are related in a known way. Dolev et. al.
[27] provided a convincing example in the scenario of contract bidding: Suppose there are
several players who participate in a contract bidding game, where a contract goes to the
lowest bidder. There is a public key E to be used for encrypting bids and a fax number to
which encrypted bids should be sent. Company A places its bid of $15, 000, 000 by faxing
the ciphertext E(15,000,000) to the published number over an insecure line. Intuitively,
the public-key cryptosystem is malleable if, having access to E(15,000,000), company B
is more likely to generate a bid E(8) such that 8 < 15,000,000 than company B would
be able to do without the ciphertext. Note that company B needs not to be able to de-
crypt the bid of company A in order to consistently just underbid. In other words, even
if the commitment scheme is computationally secure against any polynomially-bounded
receivers, still a malicious committer can potentially come up with a commitment of
a related bid, without any knowledge what the original bid is, but still being able to
underbid. The reason is that the standard notion of commitment does not disallow the
ability to come up with the related commitments [24]. Therefore, a non-malleable public
key cryptosystem is desirable in network communication. Dolev et al. [27] described
a non-malleable public-key cryptosystem. In the following, we first introduce necessary
notations for the definition. We then provide the formal definition of non-malleability.

Definition 3 A public-key encryption scheme (G, E, D) is said to be non-malleable
under passive attacks ! if for every probabilistic polynomial-time algorithm A there exists
a probabilistic polynomial-time algorithm A’ such that for every ensemble { Xk}, with

!Please refer [41] for the definition of non-malleability under active attacks.

22

| X k| = poly(K), every polynomially bounded h: {0,1}* — {0,1}*, every polynomially
bounded relation R, every positive polynomial p, and all sufficiently large K, it holds that

Prlo1] — Pr{os] < &)
01 = (z,y) € R with (1) (e,d) +— G(1¥) and z — Xk; (2) ¢ — E(z) and ¢’ «
Ale,c, 11 h(z)); (8) y «— D() if ¢ # ¢ and y « 0 otherwise.
02 = (z,y) € Rwith (1) x — X,,; (2) y «— A(1¥, 17 h(z)).

R
a b
E(a) E(b)
7
_ —_ - _\;,;/ _____
7 7 \\
A Ve

Figure 3.1: Non-Malleability

Malleability specifies what it means to break the cryptosystem. Informally, given a
relation R and a ciphertext of a message a, the attacker A is considered successful if it
creates a ciphertect of a message b such that R(a,b) = 1. In non-malleable cryptosystems,
we should not allow an attacker to create a ciphertext of message b such that R(a,b) =1
as shown in Figure 3.1. Obviously, we cannot prevent against an attacker to modify
the ciphertext but we should prevent the attacker from modifying the ciphertext in a

23

meaningful way. In other words, the decryption of A’s output z and the decryption of
A”s output 2’ are not related in a pre-specified way.

3.2 Goal-Oriented Privacy-Preserving Collaborative

Data Mining

Secure communication in networks is often goal-oriented. For example, there are two
people (e.g., Alice and Bob) who want to talk to each other. Suppose that Alice would
like to send message m to Bob, the goal of Alice is to let Bob receive message m; the goal of
Bob is to receive m from Alice. In the meantime, they want to keep the communication
secure so that network attackers cannot see m or modify it in a meaningful way. To
achieve this goal, they apply encryption to message m.

Privacy-preserving collaborative data mining is also goal-oriented. The fundamental
goal of privacy-preserving collaborative data mining in our framework is to obtain the
accurate data mining results while keeping the data private. In other words, we need
to obtain accurate data mining results without letting each party see other parties’
private data. This is an ideal case. In fact, the data mining results may disclose partial
information about the private data. The primary motivation of the collaborative parties
is to gain useful knowledge from the collaboration. Therefore, a practical goal of privacy
preservation is to minimize private data disclosure for a given privacy-preserving data
mining problem.

In the following, we will formally define privacy in the scenario of privacy-preserving
collaborative data mining.

3.3 Notion of Privacy

In the last five years, the research community has developed numerous technical solutions
for privacy-preserving data mining. However, the notion of privacy that satisfies both
technical and societal concerns is unknown as Clifton [19] pointed out. Security and
privacy are related but different [88]. To achieve privacy, we often have to depend on
security. In the privacy-preserving collaborative data mining, we need secure channels
to protect against network attackers.

For illustration purposes, we categorize the protection into two layers as shown in

Figure 3.2. One is protection against the collaborative parties; the other is protection

Protection Against Outside Attackers

n

Secure Channel

Alice Bob

Privacy-Preserving Collaborative Data Mining

\ ___ / _

Protection Against Inside Attackers

Figure 3.2: Inside Attackers vs. Outside Attackers

24

25

against network attackers. Without loss of generality, Let us call attacks from collabo-
rative parties inside attacks, these parties are called inside attackers; let us call attacks
outside the collaborative parties outside attacks, the attackers who conduct the attacks
are called outside attackers.

To protect against outside attackers, we need to rely on secure channels. In this
thesis, we assume that the communications between collaborative parties are encrypted
by a non-malleable encryption scheme. Our focus is to prevent inside attackers from
knowing private data in collaborative data mining.

Protection against inside attackers is different from protection against outside attack-
ers in that the inside attackers usually have more knowledge about private data than
outside attackers. Furthermore, the goal of collaborative data mining is to obtain a
valid data mining result. However, the result itself may disclose private data to inside
attackers. Therefore, we cannot hope to achieve the same level of protection in privacy-
preserving collaborative data mining as in general secure communications which protect
against network attackers. However, we would like to protect the private data against
disclosure during the mining stage. In order to state more precisely how we understand

privacy in the data mining context, we propose the following definition:

Definition 4 A privacy-oriented scheme S preserves data privacy if for any private data
T, the following holds:

|Pr(T|PPDMS) — Pr(T)| < ¢

where

e PPDMS': Privacy-preserving data mining scheme.

¢: The absolute value of the difference between Pr(T|PPDMS) and Pr(T).

Pr(T|\PPDMS): The probability that the private data T is disclosed after a privacy-
preserving data mining scheme has been applied.

Pr(T): The probability that the private data T is disclosed without any privacy-
preserving data mining scheme being applied.

Pr(T\PPDMS)— Pr(T): The probability that private data T is disclosed with and
without privacy-preserving data mining schemes being applied.

26

We call € the privacy level that the privacy-oriented scheme S can achieve. The goal
is to make € as small as possible if Pr(T) approaches to 1 and make € as large as possible
if Pr(T) approaches to 0.

We have defined privacy for data mining algorithms. However, data mining algorithms
are usually complicated. To achieve privacy-preserving data mining, we need to reduce
the whole algorithm to a set of component privacy-oriented protocols. We say the privacy-
preserving data mining algorithm preserves privacy if each component protocol preserves
privacy and the combination of the component protocols does not disclose private data.
In the secure multiparty computation literature, a composition theorem [41] describes a
similar idea.

Theorem 1 Suppose that g is privately reducible to f and that there exists a protocol for
privately computing f. Then there exists a protocol for privately computing g.

Proof 1 Refer to [41].
We now formally define privacy for a component protocol.

Definition 5 A privacy-oriented component protocol CP preserves data privacy if for
any private data T, the following is held:

|Pr(T|CP) — Pr(T)| <€
where

o C'P: Component protocol.

e Pr(T|CP): The probability that the private data T is disclosed after a privacy-
preserving component protocol has been applied.

e Pr(T|CP)— Pr(T): The probability that private data T is disclosed with and with-
out a privacy-preserving component protocol.

We call € the privacy level that the privacy-oriented component protocol CP can
achieve. The goal is to make € as small as possible if Pr(T) approaches to 1 and make €
as large as possible if Pr(T) approaches to 0.

Next, we introduce the fundamental framework for this thesis. They are homomorphic
encryption, digital envelope technique, attack models that we will consider and privacy-
oriented component protocols.

27

3.4 Homomorphic Encryption

The concept of homomorphic encryption was originally proposed in [71]. Since then,
many such systems have been proposed [9, 60, 61, 65]. We observe that some homomor-
phic encryption schemes, such as [28], are not robust against chosen cleartext attacks.
However, we base our privacy-oriented protocols on [65] which is semantically secure [37].

A cryptosystem is homomorphic with respect to some operation * on the message
space if there is a corresponding operation *" on the ciphertext space such that e(m) '
e(m’) = e(m *m’). Let us illustrate the concept by an example. Let us use * to stand
for the multiplication operation and %’ to denote the addition operation. Suppose that
m =25 m' =4, mxm =5x4 = 20. Suppose also that e(m x m') = e(20) = 12,
e(m) = 10 and e(m’) = 2. Then e is a homomorphic encryption since e(m) x" e(m’) =
e(mxm') =2+ 10 = 12.

In our privacy-oriented protocols, we use the additive homomorphism offered by [65]
in which Paillier proposed a new trapdoor mechanism based on the idea that it is hard to
factor a number n = pq where p and g are two large prime numbers. In the performance
evaluation, Paillier compares the proposed encryption scheme with existing public-key
cryptosystems. The results show that the encryption process is comparable with the
encryption process of RSA in terms of computation cost; the decryption process is faster
than the decryption process of RSA.

In this thesis, we utilize the following instantiation of the homomorphic encryption
functions: e(m1) x e(ms) = e(my + mgy) where m; and ms are the data to be encrypted.
Because of the property of associativity, e(m; + ms + .. + m,) can be computed as
e(my) X e(mgy) X -+ x e(m,) where e(m;) # 0. That is

dle(mi +ma+---+my)) =d(e(my) X e(mg) X -+ X e(my)) (3.1)
Note that a corollary of it is as follows:
d(e(my)™?) = d(e(my X ms)), (3.2)

where X denotes multiplication.

3.5 Digital Envelope

A digital envelope [15] is a random number (or a set of random numbers) only known by

the owner of private data. To hide the private data in a digital envelope, we compute a

28

set of mathematical operations between a random number (or a set of random numbers)
and the private data. The mathematical operations could be addition, subtraction,
multiplication, etc. For example, assume that the private data value is v. There is a
random number R which is only known by the owner of v. The owner can hide v by

adding this random number, e.g., v + R.

3.6 Goal-Oriented Attack Model

In this thesis, we define our attack model as Goal-Oriented Attack Model. In this model,
all the collaborative parties need to follow their goals. The basic goal of collaborative
data mining is to obtain desired data mining results. The collaborative parties are
motivated to ensure that all parties obtain valid data mining results. This attack model
is applicable in many scenarios such as the NATO counter-terrorism example. In Goal-
Oriented Attack Model, any attacks can be applied as long as they follow this basic goal.
We require that the purpose of the attacks of one party (or a group of parties) is to gain
useful information about the data of the other party (or the other group of parties).

3.7 Fundamental Protocols

In the next several chapters, we develop a set of privacy-oriented protocols for privacy-
preserving data mining problems. We identify that some component protocols can be
reused in different data mining tasks. Therefore, we would like to present them in this
chapter as fundamental component protocols. They are privacy-preserving frequency
count protocol, privacy-preserving vector product protocol, privacy-preserving summa-
tion protocol, and privacy-preserving sorting protocol.

To calculate the computation cost for each component protocol, we utilize the total
number of primary operations such as addition, subtraction, multiplication, modulo,
etc 2. The generation of a cryptographic key pair [65] is constant. We use g; to denote
it. The encryption involves 6 primary operations. The decryption involves 13 primary
operations. A permutation of N numbers needs go/N operations where g is a constant.
To sort n numbers, the computation cost is denoted by gsnlog(n) which can be improved
to be linear in n by radix sorting algorithm [21]. We denote the cost for generating N

random numbers as g4 /V.

2We will follow this convention for the whole thesis.

29

In order to show that data privacy is preserved, we introduce the following notation.
We follow this notation throughout the whole thesis.

Notation:

e In the component protocol involving two parties, Alice and Bob, we use ADVpg,
to denote the advantage in getting access to Alice’s private data that Bob gains by
using the component protocol. We use ADVyj.. to denote the Alice’s advantage
to gain access to Bob’s private data via the component protocol.

o Pr(Tajce|VIEWpga, Protocols): the probability that Bob sees Alice’s private data
via protocol <.

o Pr(Tgu|VIEW sjice, Protocols): the probability that Alice sees Bob’s private data
via protocol g.

e In the component protocol involving multiple parties, we use ADVp, to denote F;’s

advantage to gain access to the private data of any other party via the component
protocol.

o Pr(Tp|VIEWSp,, Protocols): the probability that p; sees F;’s private data via pro-
tocol <.

o We use ADVs to denote the advantage of one party to gain the other party’s private
data via the component protocol by knowing the semantically secure encryptions.
According to Definition 2, ADVy is negligible.

3.7.1 Privacy-Preserving Two-Party Frequency Count Protocol

Problem 1 Suppose there are two parties, Alice and Bob. Alice has a boolean vector
A = {Ay, Ay, --- AN}. Bob has a boolean vector B = {Bi, B, ---, Bn}. We use
A; = {0,1} to denote the ith element in vector X, and B; = {0,1} to denote the ith
element in vector B. Both vectors have N elements. Alice and Bob would like to compute
the items that appear in both A and B with one of them obtaining the result which is
shared with the other party.

Highlight of Protocol 1: To deal with the above frequency count problem, we will

design a privacy-oriented protocol. In our protocol, one of the parties is randomly chosen

30

as a key generator. For simplicity, let us assume Alice is selected as the key generator.
Alice generates an encryption key (e) and a decryption key (d). She encrypts the sum of
each value of A and a digital envelope R; x X of A;(e.g., e(A; + R; * X)), where R; is a
random integer and X is an integer which is greater than N. She then sends e(A4;+ R;* X)s
to Bob. Bob computes the product []7_,[e(A; + R; * X) x B;] when B; = 1 (since when
B; = 0, the result of the multiplication doesn’t contribute to the frequency count). He
sends the multiplication result to Alice who computes [d(e(A; + A2+ -+ A; + (R1 +
Ry+--+Rj)« X)) modX = (A1 +As+- -+ A+ (Ri+ Ry + - + R;) * X)modX and
obtains the frequency count. An information flow diagram is provided in Figure 3.3.

Alice Bob

6(141 +R1 X X),Z € [1,N]

W' =e(Ar+Ag+ -+ A+ (Ri+ -+ R+ R) x X)

Figure 3.3: Information Flow Diagram of Protocol 1

We state the protocol more formally as follows.

Protocol 1 .

31

1. Alice performs the following;:

(a) Alice generates a cryptographic key pair (e, d) of a homomorphic encryption
scheme. Let X be an integer which is chosen by Alice and Bob and X > N.

(b) Alice randomly generates a set of integer numbers R;, Ry, - -+, Ry and sends
e(A1+ Ry x X), e(A2+ Ry x X), -+, and e(Ay + Ry X X) to Bob.

2. Bob performs the following:

(a) Bob computes W; = e(A;+ Ry X X) x By, Wy = e(Aa+ Ry X X) X By, - -+ and
Wy =e(Any + Ry x X) x By. Since B; is either 1 or 0, e(4; + R; x X) X B;
is either e(A; + R; * X) or 0. Note that R;, Ry, ---, and Ry are independent
random numbers.

(b) Bob multiplies all the W;s for those B;s that are not equal to 0. In other
words, Bob computes the product of all non-zero W;s, e.g., W = [[W, where
W; # 0. Without loss of generality, Let us assume only the first j elements
are not equal to 0s. Bob then computes W = W; x Wy X -+ x W; = [e(A4; +
Ry x X) x By] x [e(As + Ry x X) X B} x -+ x [e(A4; + R; x X) x Bj] =
[e(A1+ Ry x X) x 1] x [e(Ay+ Ry x X) x 1] x -+« x [e(4; + Rj x X) x 1] =
€(A1+R1 XX) X@(A2+R2 XX) X Xe(Aj—{—Rj XX) = €<A1+A2++
Aj+ (R1+ Ry + -+ + Rj) x X) according to Equation 3.1.

(c) Bob generates a random integer number R'.

(d) Bob computes W =W X e(R' X X) =e(A1 + Aa+ -+ A+ (Ri + Rs +
-+ R;+ R') x X).

(e) Bob sends W' to Alice.

3. Alice computes d(W')modX which is equal to the frequency count.

The Correctness Analysis of Protocol 1: When Bob receives each encrypted
element e(A4; + R; x X), he computes e(4; + R; x X) x B;. If B; = 0, then the fre-
quency count does not change. Hence, Bob computes the product of those elements
whose B;s are 1s and obtains W = [[e(4; + Rj x X) = e(A1 + Ao+ -+ A; + (R +
Ry +--- 4+ R;) x X) (note that the first j terms are used for simplicity in explana-
tion), then computes W' = W x e(R' x X) and sends it to Alice. After Alice decrypts
it, she obtains [d(e(A1 + A2+ -+ A;+ (Ri + Ry + -+ R; + R) x X))lmodX =

32

(Ai+ A+ + A+ (Ri+Ro+- 4+ R;j+ R') x X)modX which is equal to the desired
frequency count. The reasons are as follows: when B; = 1 and A; = 0, the frequency
count does not change; only if both A; and B; are 1s, the frequency count changes.
Since (Ay +As+ -+ A) < N<Xand (Ri+ Ry +--+R;j+ R) x X)modX is 0,
(Ai+As+ + A +(Ri+Ry+- -+ R+ R)x X)modX = (A + Ay +---+ 4;). In
addition, when B; = 1, (A; + As + - -+ + A;) gives the total number of times that both

A; and B; are 1s. Therefore, the frequency count is correctly computed.

The Complexity Analysis of Protocol 1: The bit-wise communication cost con-
sists of the cost of step 1 which is a/N and the cost of step 2 which is a. « is the number
of bits for each encrypted element.

The computational cost is caused by the following: (1)The generation of a cryp-
tographic key pair. (2)The total number of N+1 encryptions, e.g., e(A; + R; X X)
where ¢ € [1, N]. (3)3N multiplications in the worst case. (4)One decryption. (5)
One modulo operation. (6)N additions. Therefore, the total computation overhead is
G +O6N+6+3N+13+14+N=10N+g +7.

Theorem 2 Protocol 1 preserves data privacy ® at a level equal to ADV ajice.
Proof 2 We will identify the value of € such that
|Pr(T|CP) — Pr(T)| < e

holds for T = T ptice, T = Tgoy, and CP = Protocol 1.

According to our notation,

ADVBOb = PT‘(TA“w‘VIEWBOb, P’I"OtOCOl.Z) —_ PT(TAlice|VIEWBob)7
and
ADV giice = Pr(Tpop|VIEW pjice, Protocoll) — Pr(Tgep|VIEW afice)-

Since all the information that Bob obtains from Alice in Protocol 1 is e(A; + R; x X)
for 1 <i < N and e is semantically secure,

3When we say that a protocol preserves data privacy, we mean that privacy is preserved with certain
probability e.

33

ADVpo = ADV5.

In order to show that privacy is preserved according to Definition 5, we need to know
the value of the privacy level . We set

€ = maz(ADV aiice, ADVBey) = max(ADV jice, ADVg) = ADV jice,

where ADVayce s the Alice’s advantage to gain access to Bob’s private data by ob-
taining the desired results, and ADVs is negligible.
Then

Pr(Taice|VIEWpge, Protocol1) — Pr(Taice|VIEWgwp) < ADVajice,

and
PT(TBobIVIEWAlice, P’I“OtOCOl]) - PT(TBobIVIEWAlice) S ADVAlice’

which completes the proof.

3.7.2 Privacy-Preserving Two-Party Vector Product Protocol

In this section, we introduce the two-party vector product problem. The difference
between problem 1 and problem 2 is that the values of the vectors defined in problem 1
are binary while the values of the vectors defined in problem 2 are real values. In fact,
problem 1 is a special case of problem 2. We put them as the separate problems since
the solution for the special case is more efficient.

Problem 2 Suppose there are two parties, Alice and Bob. Alice has a vector A= {Aq,
Ag, -+ JANx}. Bob has a vector B = {Bi, Bs, ---, By}. DBoth vectors are from the
real domain. We use A; to denote the ith element in vector 1_4>, and B; to denote the
tth element in vector B. Both vectors have N elements. Alice and Bob would like to
compute the vector product between X and § which 1s denoted by X . § with one of

parties obtaining the result which is shared with the other party.

Highlight of Protocol 2: In our privacy-oriented protocol, one of parties is ran-

domly chosen as a key generator. For simplicity, let us assume Alice is selected as the

34

key generator. Alice generates a cryptographic key pair (e, d) of a semantically-secure
homomorphic encryption scheme and publishes its public key e. Alice adds a random
number to each of her actual data values, encrypts the masked values, and sends the
encrypted masked terms to Bob. By adding the random numbers, Bob is prevented from
correctly guessing Alice’s actual values based on encryption patterns. In other words,
Alice encrypts each element of A wrapped in a digital envelope(e.g., e(A; + R;)). Bob
computes e(z . E)) He then sends e(z . ?) to Alice who decrypts it and gets (1_4) : _ﬁ)
An information flow diagram is provided in Figure 3.4.

Alice Bob

e(A; + Ry),i € [1,N]

e(—R;),i1 € [1,N]

Figure 3.4: Information Flow Diagram of Protocol 2

We present the protocol as follows:

Protocol 2 . INPUT: Alice’s input is a vector A = {Ay, As, -+, An}, and Bob’s input

_)
is a vector B = {By, By, .-+, Bn}. The elements in the input vectors are taken from

the real domain.

35

1. Alice performs the following operations:

(a) Alice generates a cryptographic key pair (e, d) of a homomorphic encryption
scheme.

(b) She computes e(A; + R;), (¢ € [1,N]), and sends them to Bob. R;, known
only by Alice, is a random number in real domain.

(c) She computes e(—R;), (z € [1, N]), and sends them to Bob.
2. Bob performs the following operations:

(a) He computes Wi = e(A;+R;)P = e(A; x Bi+ Ry x By), W = e(Ay+Ry)?2 =
€(A2 X Bg + Rg X Bg), SR WN = G(AN + RN)BN = e(AN X BN +RN X BN)

(b) He computes Wy x Wy X -+« x Wy =e(A; x By + Ay X By+ -+ Ay X By +
- =
R X B +RyxBy+---+RyxBy)=e(A-B+YN R xB).
(c) He computes e(—R;)? = e¢(—R; x B;) for i € [1, N].

—

(d) He computes e(z- B + Zfil R; X B;) x e(=R1 X By) X e(—Ry X By) X -+ X
e(—Rn X By) =e(A - B) and sends it to Alice.

!
|

- =

—

3. Alice computes d(e(A - B)) = A - B.

The Correctness Analysis of Protocol 2: When Bob receives each encrypted
element e(A; + R;) and e(—R;), he computes Zfil e(A; + R;)B which, according to
Equation 3.2, is equal to e(S~ A;- Bi + S R, x B;) for all i € [1,N]. He then

_}
computes e(A - B+, R x B)) x e(—Ry x By) x e(—Ry x By) x - - x e(—~Ry X By) =
— —
e(A - B) according to Equation 3.1. After that, he sends it to Alice who computes

— = — = — =
d(e(A - B))= (A - B). Therefore, (A - B) is correctly computed.

The Complexity Analysis of Protocol 2: The bit-wise communication cost of
this protocol is (2N + 1)a consisting of 2N« from step 1 and « from step 2.

The following contributes to the computational cost: (1)The generation of a crypto-

graphic key pair. (2)2N encryptions. (3)2N exponentiations. (4)2N-1 multiplications.
Therefore, the total computation overhead is ¢; + 12N + 2N +2N — 1= 16N +g; — 1.

Theorem 3 Protocol 2 preserves data privacy at a level equal to ADV gj5ce.
Proof 3 We will identify the value of € such that

|Pr(T|CP) — Pr(T)| < e

36

holds for T' = Tatice, T = Tgop, and CP = Protocol 2.

According to our notation in Section 3.7,

ADVBob = PT(TAliceIVIEWBoba P’I“OtOCOlQ) - PT(TAHCQ‘VIEWBO[,>,
and
ADVA“C@ = Pr (TBobIVIEWAlice’ P’I“OtOCOlQ) — PT(TBO()|V]EWAHC€).

All the information that Bob obtains from Alice is e(A;+R;)s (i € [1, N]) and e(—R;)s
(i € [1,m]), since e is semantically secure, therefore

ADVpo, = ADVs.

The information that Alice obtains from Bob is e(—f_f . ﬁ) Thus, Alice can only guess
- —
Bob’s private data through A - B which is the desired result.

In order to show that privacy is preserved according to Definition 5, we need to know
the value of the privacy level e. We set

€ = max(ADVAh-ce, ADVBOb) = max(ADVAlice, ADVS) = ADVA“CE.
Then

PT(TAHCE|V[EWBO(,, PTOtOCOlQ) — PT(TAlice|VIEWBob) _<_ ADVA[ice;

and

PT(TBob|VIEWAlicea PT’OtOCOlQ) — PT(TBobIVIEWAlice) S ADVAlice>

which completes the proof.

3.7.3 Privacy-Preserving Multi-Party Summation Protocol

Problem 3 Let us assume Py has a private integer number c.count,, P, has a private
integer number c.counts, - -+, and P, has a private integer number c.count,, wheren > 3.
The goal is to compute the Yy .. | c.count; without compromising data privacy. One party
obtains Y| c.count;, then shares the result with other parties.

37

Highlight of Protocol 3: In our protocol, we randomly select a key generator, e.g.,
P, who generates a cryptographic key pair (e, d) of a homomorphic encryption scheme
and a large integer X which is greater than the total number of records N. P, sends P, the
encryption of the private value which is masked by a digital envelope; P, computes the
multiplication between the received term and the encryption of the masked private value
by another digital envelope; Repeat until P, obtains e(} ;' | c.count; + (3> 1, R;) x X).
Finally, P, obtains c.count by decrypting it, then reducing modulo X. An information

flow diagram is provided in Figure 3.5.

P, c.county + Ry x X P,

e(c.county + c.county + (R + Rs) X X)

e(31) c.count; + S0 Ry x X)

Figure 3.5: Information Flow Diagram of Protocol 3

We present the formal protocol as follows:
Protocol 3 .

1. P, generates a cryptographic key pair (e, d) of a semantically secure homomorphic
encryption scheme. P, also generates an integer X which is greater than V.

2. P, computes e(c.count; + Ry X X) and sends it to P, where R; is a random integer
generated by Pj.

38

3. P, computes e(c.count; + Ry X X) x e(c.counts + Ry X X) = e(c.count, + c.counts +
(R; + Ry)X) and sends it to P5. R» is a random integer generated by FPs.

4. Repeat until P, computes e(c.count; + Ry x X) x e(c.counts + Ry x X) x -+ - X
e(c.count, + Ry, x X) = e(d> - c.count; + Y o | Ry x X).

5. P, computes d(e(>1_ | c.count;+ (> | Ri)x X)) modX = (31| c.count;+(D>_r) Ri)%
X) modX =37, c.count;.

The Correctness Analysis of Protocol 3: To show the c.count is correct, we
need to consider:

dle(c.county) X e(c.counts) X -+ X e(c.county,)]
= dle(c.count; + By x X) X e(c.counts + Ry X X) X -+« X e(c.count, + R, X X)]modX.
According to Equation 3.2, the left hand side

dle(c.county) x e(c.county) x - - x e{c.count,)] = Zc.coumfi.
i=1

The right hand side

dle(c.count; + Ry X X) X e(c.county + Ry X X) X - -+ x e(c.count, + R, x X)|modX

= [Z c.count; + Z R;) x X|modX.
i=1 i=1

Since X > N, Y c.count; < N, and) | R; is an integer,

[Z c.count; + (Z R;) x X]modX = Z c.count;.
i=1 i=1 i=1

Therefore, the)" | c.count; is correctly computed.

The Complexity Analysis of Protocol 3: The bit-wise communication cost of
this protocol is a(n-1) since the cost of each step is a except for the first step.

The following contributes to the computational cost: (1)The generation of one cryp-
tographic key pair. (2)The total number of n encryptions. (3)The total number of 2n—1
multiplications. (4)One decryption. (5)One modular operation. (6)n additions.

Therefore, the total computation overhead is g; +6n+2n—14+13+14n = 9n+13+¢;.

39

Theorem 4 Protocol 8 preserves data privacy at a level equal to ADVp, .
Proof 4 We will identify the value of € such that
|Pr(T|CP) — Pr(T)| < e

holds for T =Tp,, i € [1,n], and CP = Protocol 3.

According to our notation in Section 3.7,
ADVp, = Pr(Te,|VIEWSE,, Protocol3) — Pr(Tp,|VIEWp,),i # n,
and
ADVp, = Pr(Tp,|VIEWE,, Protocol8) — Pr(Tp,|VIEWp,),

where ADVp_ is the advantage of P, to gain access to other parties’ private data by

obtaining the final result Z;:ll c.count;.

Since Py obtains no data from other parties, ADVp = 0. For Py, ---, P,_4, all the

information that each of them obtains about other parties’ data is encrypted, thus,

ADVp, = ADV,

which is negligible.
In order to show that privacy is preserved according to Definition 5, we need to know
the value of the privacy level e. We set

¢ = maxz(ADVp,, ADVp,) = max(ADVs, ADVp) = ADVp, .
Then
Pr(Tp,|VIEWp,, Protocol3) — Pr(Tp,|VIEWp,) < ADVp,,i #n,

and

Pr(Tp,|VIEWp,, Protocol3) — Pr(Tp,|VIEWp,) < ADVp,,

which completes the proof.

40

3.7.4 Privacy-Preserving Multi-Party Sorting Protocol

Problem 4 Assume that P, has a private number t1, P, has a private number to, - - -,

and P, has a private number t,. The goal is to sort t;, i € [1,n] without disclosing t; to
P; wherei # j.

Highlight of Protocol 4: In our protocol, we randomly select a key generator, e.g.,
P,., who generates a cryptographic key pair (e, d) of a homomorphic encryption scheme.
Each party encrypts their number using e, then sends it to P,_;. P,_; computes the
encryption difference of two numbers and obtains a sequence ¢ of (’2‘) elements. P, ;
randomly permutes this sequence and sends the permuted sequence to P, who decrypts
each element in the permuted sequence and obtains a +1/ — 1 sequence according to the
decrypted results. P, sends this +1/ — 1 sequence to P,_; who determines the sorting
result. An information flow diagram is provided in Figure 3.6.

We present the formal protocol as follows:
Protocol 4 .

1. B, generates a cryptographic key pair (e, d) of a semantically secure homomorphic
encryption scheme.

2. P, computes e(t;), fori=1,2,--- ,n—2,n, and sends it to P,_.

8. P._1 computes e(t;) x e(t;)™! = e(t; — t;) for alli,7 € [1,n],4 < j, and sends the
sequence denoted by @, which is randomly permuted, to P,.

4. B, decrypts each element in the sequence . He assigns the element +1 if the result
of decryption is not less than 0, and —1, otherwise. Finally, he obtains a +1/ — 1
sequence denoted by ¢'.

5. P, sends the +1/ — 1 sequence ' to P,_;.

6. P._y sorts the numbers t;, i € [1,n].

The Correctness Analysis of Protocol 4: P,_; is able to remove permutation
effects from ¢’ (the resultant sequence is denoted by ¢”) since she has the permutation
function that she used to permute @, so that the elements in ¢ and ¢” have the same
order. It means that if the gth position in sequence ¢ denotes e(t; — t;), then the gth

position in sequence ¢” denotes the result of ¢; — t;. We encode it as +1 if t; > ¢;,

P

P, . P,
€ (tg) € (tn_z)
Pn—l
e(tn)
2
90/

Figure 3.6: Information Flow Diagram of Protocol 4

41

42

1 |l2 |ts |- |tn
| +1|+1]1 |- |1
to |1 |+1]-1 |-]
ts | 41|41 |41 |- | +1
o |41 411 |- |42

Table 3.1: An Index Table of Number Sorting

and as -1 otherwise. P,_; has two sequences: one is ¢, the sequence of e(t; — t;), for
i,7 € [1,n](¢ > j), and the other is ¢”, the sequence of +1/ — 1. The two sequences have
the same number of elements. F,_; knows whether or not ¢; is larger than ¢; by checking
the corresponding value in the ¢” sequence. For example, if the first element ¢” is —1,
P,_1 concludes t; < t;. P,_; examines the two sequences and constructs the index table
(Table 3.1) to sort t;, ¢ € [1,n].

In Table 3.1, +1 in entry ij indicates that the value of the row (e.g., ¢; of the ith row)
is not less than the value of a column (e.g., ¢; of the jth column); -1, otherwise. FP,_;
sums the index values of each row and uses this number as the weight of that row. She
then sorts the sequence according the weight.

To make it clearer, Let us illustrate it by an example. Assume that: (1) there are 4
elements with t; < t4 < 3 < t3; (2) the sequence ¢ is [e(t; —ta), e(t1 —t3), e(t1 —14), e(ta —
t3), e(ta — t4), e(ts — t4)]. The sequence ¢” will be [-1,—1,—1,—1,+1,+1]. According
to p and ¢”, P,_; builds the Table 3.2. From the table, P, knows t3 > ty > t4 > t;
since t3 has the largest weight, ¢5 has the second largest weight, ¢, has the third largest
weight, £; has the smallest weight.

The Complexity Analysis of Protocol 4: The total communication cost is (1)
The cost of a(n — 1) from step 2. (2) The cost of ta(}) from step 3. (3) The cost
of %ﬁ (g) from step 4 where § denotes the number of bits for +1 and —1. Note that
normally 8 < « (4) The cost of %ﬁ (’;) from step 5. Therefore, the total communication
overhead is upper bounded by 3a(}) + a(n — 1).

The following contributes to the computational cost: (1)The generation of one cryp-
tographic key pair. (2) The total number of n encryptions. (3)The total number of (7)
multiplications. (4) The total number of (7) decryptions. (5)The total number of (7)

n

assignments. (6) (3) — n additions. (7)gsnlog(n) for sorting n numbers.

43

ty |te |tz | ts | Weight
ty | +1)-1 |-1 | -1 |-2

to | +1 | 4+1]-1 | +1|+2
ts|+1|+1|+1 | +1 | +4

ta | +11-1 |-1 | +110

Table 3.2: An Example of Sorting

Therefore, the total computation overhead is g1 +6n+ (3) +13(3) + (3) + () = n+
gsnlong(n) = 16(%) + 5n + gsnlog(n) + g1.

Theorem 5 Protocol 4 preserves data privacy at a level equal to ADVp,.
Proof 5 We will identify the value of € such that
|Pr(T|CP) — Pr(T)| < e

holds for T = Tp,, i € [1,n], and CP = Protocol 4.

According to our notation in Section 3.7,

ADVp,_, = Pr(Tp,|Viewp,_,, Protocol4) — Pr(Tp|Viewp, ,),i #n —1,
and
ADVp, = Pr(Tp,|Viewp,, Protocol4) — Pr(Tp,|Viewp,),j # n.

All the information that P,_; obtains from other parties is e(t;) for 1 < i < n,
i #n—1, and the sequence ¢'.

Since e is semantic secure,

ADVp, = ADV,

which is negligible.

In order to show that privacy is preserved according to Definition 5, we need to know
the value of the privacy level e. We set

44

¢ = max(ADVp,, ADVp) = max(ADVp, ,ADVs) = ADVp,.
Then
Pr(Tp,|Viewp,_,, Protocol4) — Pr(Tp,|Viewp,) < ADVp, i #n—1,
and
Pr(Tp,|Viewp,, Protocol{) — Pr(Tp,|Viewp,) < ADVp,,j # n.

which completes the proof.

3.8 Privacy-Preserving Collaborative Data Mining

Problems

In this thesis, we will solve some of the typical privacy-preserving collaborative data
mining problems. In particular, we consider the scenario where multiple parties, each
having a private data set which is denoted by DSy, DSs, --- and DS, respectively, want
to collaboratively conduct a data mining task on the concatenation of their data sets.
Because they are concerned about their data privacy or due to the legal privacy rules,

no party is willing to disclose its actual data to others. The problem is formally defined
as follows:

Problem 5 P, has a private data set DSy, P, has a private data set DSs, --- and P,
has a private data set DS,,. The data set [DS1UDS,U---UDS,] forms a dataset, which
is actually the concatenation of DSy, DSy, --+ and DS,. The n parties want to conduct
a particular data mining task over [DS; U DSy U --- U DS,/ to obtain the mining results
satisfying the given constraints (i.e., P; does not disclose DS; to P;, where i # j).

The collaborative model can be horizontal collaboration or vertical collaboration.
Data mining tasks that we consider encompass association analysis, classification and
cluster analysis. We discuss a particular data mining task in each chapter. Specifically,
we consider the association rule mining problem in chapter 4, the sequential pattern
mining problem in chapter 5, the naive Bayesian classification problem in chapter 6,
the decision tree classification problem in chapter 7, the k-nearest neighbor classification
problem in chapter 8, the support vector machine classification problem in chapter 9,
and the k-medoids clustering problem in chapter 10.

Chapter 4

Privacy-Preserving Association Rule

Mining

4.1 Background

Since its introduction in 1993 [3], association rule mining has received a great deal of
attention. It is still one of most popular pattern-discovery methods in the field of knowl-
edge discovery. The goal of association rule mining is to discover meaningful association
rules among the attributes of a large quantity of data. For example, let us consider the
database of a medical study, with each attribute representing a characteristic of a patient.
A discovered association rule pattern could be “70% of patients who suffer from medical
condition C have a gene G”. This information can be useful for the development of a diag-
nostic test, for pharmaceutical research, etc. Briefly, an association rule is an expression
X =Y, where X and Y are disjoint sets of items. Rules are inferred from a dataset in
which each record denotes an object. Records model itemsets by using Boolean variables,
e.g., if there are five items, a record 01010 represents an itemset {is, 44}. The meaning
of association rules is as follows: Given a database DB of records, X = Y means that
whenever a record R contains X then R also contains Y with certain confidence. The
rule confidence is defined as the percentage of records containing both X and Y with
regard to the overall number of records containing X. The fraction of records R having
item X and Y with respect to the total number of records in the database DB is called
the support of the rule of X = Y. Consequently, in order to learn association rules, one
must compute the candidate itemsets, and then prune those that do not meet the preset

confidence and support thresholds which are defined as the frequency of attributes in

45

46

a given itemset C' in the entire database. Note that association rule mining works on
binary data, representing presence or absence of items in transactions. However, the
proposed approach is not limited to the assumption about the binary character of the
data in the content of association rule mining since non-binary data can be transformed
to binary data via discretization.

4.2 Association Rule Mining Procedure

We now describe the procedure for mining association rules [3]. The pseudocode for the
frequent itemset generation part of the Apriori algorithm is shown in Algorithm 1. Let

Cy denote the set of candidate k—itemsets and Ly denote the frequent k—itemsets:

e The algorithm initially makes a single pass over the data set to determine the
support of each item. Upon completion of this step, the set of all frequent 1-
itemsets, L1, is known.

e The algorithm then iteratively generates new candidate k-itemsets using the fre-
quent (k-1)-itemsets found in the previous iteration. Candidate generation is im-
plemented using a function called apriori-gen which is described right after Algo-
rithm 1.

Algorithm 1 .

1. Ly = large 1-itemsets
2. for (k = 2; Ly_1 # ¢; k++) do begin

3. Cy = apriori-gen(Ly_;)

4. for all candidates ¢ € Cj, do begin
5. Compute c.count
6. end

7. Ly = {c € Ci|c.count > min-sup}
8. end

9. Return L = U L,

1

c.count divided by the total number of records is the support of a given item set. We will show how
to compute it in Section 4.3.

47

The procedure apriori-gen is described in the following (please also see [3] for de-

tails). It generates candidate itemsets by performing the following two operations:

o Candidate Generation. This operation generates new candidate k—itemsets

based on the frequent (k — 1)—itemsets found in the previous iteration.

¢ Candidate Pruning. This operation eliminates some of the candidate k—itemsets
using the support-based pruning strategy. For example, let us consider a candidate
k—itemset, X = {i1,42,--- ,ix}. The algorithm must determine whether all of its
proper subsets, X—; (Vj =1,2,--- k), are frequent. If one of them is infrequent,
then X is immediately pruned. This approach can effectively reduce the number of
candidate itemsets considered during support counting.

The pseudocode for the procedure apriori-gen is as follows:
apriori-gen(Ly_1: large (k-1)-itemsets)

1. for each itemset I; € Ly_; do begin
2. for each itemset [y € Ly_; do begin

3. (L[] =50 A GRI=52]) A Allk—1 =blk-1]) A(L[k-1] <
bl — 1))
4, then c = [, join [y
5. for each (k-1)-subset s of ¢ do begin
6. if s ¢ Lk:—l
7. then delete ¢
8. else add c to C},
9. end
10. }
11. end
12. end

13. return Cy

4.3 How To Compute c.count

In the procedure of association rule mining, the only steps accessing the actual data val-
ues are: (1) the initial step which computes large 1-itemsets and (2) the computation of
c.count in step 5 of the algorithm. Other steps, particularly computing candidate item-
sets, merely use attribute names. We will provide privacy-oriented protocols to compute

c.count in the scenarios of vertical collaboration as well as horizontal collaboration.

48

4.4 Privacy-Preserving Protocols for Vertical Col-

laboration

To compute large 1-itemsets, each party selects her own attributes that contribute to large
1-itemsets. As only a single attribute forms a large 1-itemset, there is no computation
involving attributes of other parties. Therefore, no data disclosure across parties is
necessary. However, to compute c.count, a computation accessing attributes belonging
to different parties is necessary. How to conduct this computation across parties without
compromising each party’s data privacy is the challenge we address.

If all the attributes belong to the same party, then c.count, which refers to the fre-
quency counts for candidates, can be computed by this party. If the attributes be-
long to different parties, they then construct vectors for their own attributes and ap-
ply our privacy-oriented protocols to obtain c.count. We use an example to illustrate
how to compute c.count between two parties. Alice and Bob construct vectors Vagce
and Vg for their own attributes respectively. To obtain c.count, they need to com-
pute Zﬁil(VAlice[i] - VBop[i]) where N is the total number of values in each vector. For
instance, if the vectors are as depicted in Figure 4.1, then Zf;l(VAlice[i] - Vealt]) =
Z?:l(VAlice [2] ’ VBob[i]) =3.

—_— = |~
—

Alice Bob

Figure 4.1: An Example of Computing c.count for Ve and Vpep

In this section, we develop privacy-oriented protocols to compute c.count for the
scenario of vertical collaboration. If there are two parties, we can apply Protocol 1 from

Section 3.7.1. We develop a protocol for the case of multiple parties as follows.

49

4.4.1 Privacy-Preserving Multi-Party Frequency Count Proto-

col

In vertical collaboration, each party has a private data set. Each data set usually contains
many attributes but this can be reduced to the case with each party having a single
attribute. For example, in Figure 4.2, there are three attribute vectors which are denoted
by A;1, Ajp and A;3, after being combined, they reduce to a single vector which is denoted
by A;. The combination process is as follows: if A;; = 1, A;p = 1 and A;3 = 1, then
A; = 1; otherwise, A; = 0. Thus, the problem is reduced to computing the frequency
count while each party has only one vector.

Problem 6 Assume that P, has a private vector Ay, P, has o private vector Ag, ---
and P, has a private vector A,. The goal is to compute c.count for vertical collaboration

involving Ay, -+ -, and A, without compromising data privacy.

Highlight of Protocol 5: In our protocol, P, generates a cryptographic key pair
(e, d) of a homomorphic encryption scheme and an integer X which is greater than the
total number of records N and publishes ¢ and X. B, computes e(A,; + R X X)
where R,;,7 € [1,N], are random numbers known only by FP,; then sends them to
Po_1. Py computes e(An; + An-1)i + (Bni + Rn-1yi) X X) = e(Ani + Rp; x X) X
e(Am-1yi + Rn_1)i X X), then sends them to P,_5. Continue the above process until
P, obtains W; = e(Api + Ap—1)i + - + A + (Rni + Rpm1yi + -+ + Ru) x X) =
e(Ani + Rni x X) x e(Apo1yi + Rpn1yi X X) X ---e(A; + R;; x X), @ € [I,N]. P
randomly permutes the Wy, Wy, -+ and Wy, then sends the permuted sequence W7,
Wi, -+ and W}, to P,. P, decrypts each element in the sequence , then reduces modulo
X. If the result is equal to n, P, increases c.count by 1. Finally, P, obtains c.count and
shares with P;, P, --- and F,_;.

We present the formal protocol as follows:

Protocol 5 .

1. P, generates a cryptographic key pair (e, d) of a semantically secure homomorphic
encryption scheme and a number, X, where X is an integer which is greater than
N and publishes e and X.

2. P, computes e(An1 + Ru X X), e(Ap2 + Rpas X X), -+, and e(A,n + Ry X X)
where R,;,7 € [1, N], are random numbers known only by P,, then sends them to
P,

The Original Vectors
1 1
l 0
1 1
1 1
1 1
0 1
1
0
1
0 The Combined Vector
|
0

Figure 4.2: An Example of Vector Combination

90

ol

3. P,_1 computes e(An1 + Ap-11 + (Bu1 + Rn—1)1) X X) = e(Ap + Rny X X) X
e(Am-11 + R X X), €(An2 + Apm—1)2 + (B2 + Rin—1)2) X X) = e(Anz + Bpa X
X) x e(A(n_l)g + Rip_1)2 X X), -+, and e(AnN+A(n—1)N+ (RnN+R(n—1)N) x X) =
e(Apn + Ran X X) X e(Ap—1)yn + Rpn—1yn X X), then sends them to B, _».

4. Continue until P; obtains Wy = e(An1 + Ay + - + A1n + (Ruy + R +

4 Ryy) X X) = e(Ap + R X X) X e(Apein + R X X) x ---e(An +

Ry xX), Wo=e(Ana + A1y + - + Az + (Rpa + Rn—1y2 + - +R12)XX):

e(Ana + Rnz X X) X e(Am_1)2 + Rn—1y2 X X) X ---e(A12 + Rz x X), ---, and

Wy = e(Any + Ap—pyny + - + Aiv + (Run + Rip—yy + - + Riv) x X) =
e(Ann + Ron X X) X e(Apn—1)n + Rpn—1yy X X) X -+ x e(A1ny + Riy x X).

5. P, randomly permutes [57] Wy, Ws, -+ and Wiy, then obtains the permuted se-
quence W{, Wy, .-+ and Wy.

6. P, sends Wi, W, .-+ and W}, to P,.

7. P, decrypts Wi, W3, ... and W}, then reduces modulo X. In other words, P,
computes d(W]) mod X = (A}; + Ay + -+ + Ay + (B + Ry + -+ + Ryy) x X)
mod X = A}, + Ay, + -+ + Aj,. If the result is equal to n, it means the values of

P, P, -, P,_1 and P, are all 1s and therefore c.count increases by 1.
8. P, finally obtains c.count and shares with P, P, --+ and P,_;.

The Correctness Analysis of Protocol 5: To show the c.count is correct, we
need to consider: (1)If Aj; 4+ Ag; 4 -+ + Ay = n, then c.count increases by 1. Since
[d(e(Ay; + Ry x X) X e(Ag; + Ry x X) X -+ X e(An; + Ry X X))] mod X = [d(e(A1; +
Agi + 4+ Api + (R + Ryi + - + Ryi) X X))l mod X = Ay + Agi + -+ + Ay, if
Ay + Ao + -+ Ap; = n, that means Ay, Aq, -+, Ap; and A,,; are all 1s, then c.count
should increase by 1. (2) In the protocol, P, permutes the W;s before sending them to P,.
Permutation does not affect c.count. We evaluate whether each element contributes to
c.count, we then sum those that contribute. Summation is not affected by a permutation.

Therefore, the final c.count is correct.

The Complexity Analysis of Protocol 5: The bit-wise communication cost of
this protocol is anN consisting of the cost of a(n — 1)N from steps 2-4 and the cost of
aN from step 6.

The following contributes to the computational cost: (1) The generation of a cryp-
tographic key pair. (2)The total number of nN encryptions. (3)The total number of

92

(2n — 1)N multiplications. (4)A permutation of N numbers. (5) N decryptions. (6)N
modular operations. (7)nN additions.

The total computation cost is g1 + 6nN + 2nN — N + goN + 13N + N + nN =
INN + 13N + g2 N + g1.

Theorem 6 Protocol 5 preserves data privacy at a level equal to ADVp, .
Proof 6 We will identify the value of € such that
|Pr(T|CP) — Pr(T)| < e

holds for T =Tp,, i € [1,n], and CP = Protocol 5.

According to our notation in Section 3.7,

ADVp, = Pr(Tp,|VIEWpg,, Protocol5) — Pr(Tp,|[VIEWE,),i # n,j € [L,n],j # 1,

and

ADVp, = Pr(Tp|VIEWp,, Protocol5) — Pr(Tp|VIEWp,), i # n.

Since all the information that P;,i € [1,n — 1] obtains from P;, j € [1,n] and j # %

is the encrypted terms and e is semantically secure,

ADVp, = ADVs,

which is negligible.
In order to show that privacy is preserved according to Definition 5, we need to know

the value of the privacy level e. We set

¢ = maz(ADVp,, ADVp,) = max(ADVp,, ADVs) = ADVp,_.
Then

Pr(Tp,|VIEWp,, Protocol5) — Pr(Tp,|[VIEWp,) < ADVp,,i #n,j € [1,n],j # 1,

23

and
Pr(Tp|VIEWE,, Protocol5) — Pr(Tp|VIEWE,) < ADVp,,i #n,

which completes the proof 2.

4.5 Privacy-Preserving Protocols for Horizontal Col-

laboration

In horizontal collaboration, the challenge is still how to compute large 1-itemsets and
c.count without compromising each party’s data privacy. To achieve these computations,
each party, e.g., F;, needs to compute her own count c.count;. The total count c.count is
equal to Y., c.count;, the major challenge is how to compute this summation without
disclosing each party’s c.count;.

In fact, when c.count; is sufficiently large, the probability of disclosing each private
value by providing c.count; is very small. To further decrease the probability, we apply a
privacy-preserving summation protocol (Protocol 3 in Section 3.7.3) for multiple parties

to compute c.count without disclosing c.count; to P; for 7 # j.

4.6 Overall Complexity Overhead Analysis

In this section, we analyze the overall efficiency of our proposed solutions. We have
provided the computation cost and communication cost for each component protocol.
We will combine them in order to achieve privacy-preserving association rule mining.
The overall communication and computation overhead for vertical collaboration among
multiple parties is anNi and (8n N+ 14N + go N + g1)7 where ¢ is the number of iterations
that the algorithm needs to be run. The overall communication and computation over-
head for horizontal collaboration among multiple parties is a(n — 1)i and (9n + 13+ g1)i
where ¢ is the number of iterations that the algorithm needs to be run.

*Note that the information that P, obtains from P; is W; = e(An; + Am—1yi + + A+ (Rug +
R(n—l)i+‘ 4 R1) X X) = e(Ani+ Rpi X X) ¥ e(A(n—l)i+R(n—1)i XX)%--- e(Au—}-Ru xX),1<i<N
but in a random order. Therefore, P, can only guess P;’s private data via the result of the component
protocol.

Chapter 5

Privacy-Preserving Sequential

Pattern Mining

5.1 Background

Sequential pattern mining is commonly defined as finding the complete set of frequent
subsequences in a set of sequences [4]. Sequential pattern mining provides a means for
discovering meaningful sequential patterns among a large quantity of data. For example,
let us consider the sales database of a bookstore. The discovered sequential pattern could
be “70% of people who bought Harry Porter also bought the Lord of Rings at a later
time”. The bookstore can use this information for shelf placement, promotions, etc.

In the sequential pattern mining, we are given a database of customer transactions.
Each transaction consists of the following fields: customer-ID, transaction-time, and the
items purchased in the transaction. No customer has more than one transaction with the
same transaction-time. We do not consider quantities of items bought in a transaction:
each item is a binary variable representing whether an item was bought or not. An
itemset is a non-empty set of items. A sequence is an ordered list of itemsets according
to time. The support for a sequence is defined as the fraction of total customers who
support this sequence. The problem of mining sequential patterns is to find the sequences
with maximal length (e.g., maximal sequence) among all sequences that have a certain
user-specified minimum support. Each such maximal sequence represents a sequential
pattern.

54

5.2

25

Sequential Pattern Mining Procedure

The procedure of mining sequential patterns contains the following steps:

1.

C-ID

Sorting

The database [DS; U DS;---U DS,] is sorted, with customer ID as the major key
and transaction time as the minor key. This step implicitly converts the original
transaction database into a database of customer sequences. As a result, transac-
tions of a customer may appear in more than one row which contains information of
a customer ID, a particular transaction time and items bought at this transaction
time. For example, suppose that datasets after being sorted by their customer IDs
are shown in Figure 5.1. Then after being sorted by the transaction time for each
customer, data tables of Figure 5.1 will become those of Figure 5.2 where we see
that the transactions for the same customer ID (e.g., C — ID) is sorted by the

transaction time.

Alice

T-time

Items Bought

C-ID

Bob

T-time

Items Bought

C-ID

Carol

T-time

Items Bought

06/25/03

30

06/30/03

90

06/28/03

110

06/10/03

10, 20

06/15/03

40, 60

06/13/03

107

06/20/03

06/18/03

35,50

06/19/03

103

06/25/03

30

06/30/03

5,10

06/10/03

45,70

06/26/03

105, 106

06/21/03

101, 102

Figure 5.1: Raw Data Sorted By Customer 1D

. Mapping

Each item in a row is considered as an attribute. We map each item in a row
(i.e., an attribute) to an integer in an increasing order and repeat for all rows.
Re-occurrence of an item will be mapped to the same integer. As a result, each
item becomes an attribute and all attributes are binary-valued. For instance, the
sequence < B, (A,C) >, indicating that the transaction B occurs prior to the
transaction (A,C) with A and C occurring together, will be mapped to integers
in the order B - 1, A — 2, C — 3, (4,C) — 4. During the mapping, the

Alice Bob Carol
C1D T-tme Items Bought C-ID T-time Item Bought C-ID T-time Item Bought
1 06/25/03 30 N/A / N/A
N/A N/A / 1 06/28/03 110
N/A 1 | 06530003 90 N/A
2 06/10/03 10, 20 N/A N/A
/
N/A N/A / 2 06/13/03 107
N/A 2 06/15/03 40, 60 N/A
2 06/20/03 9,15 N/A N/A
N/A / 3 06/10/03 45,70 N/A
N/A 3 06/18/03 35,50 N/A
N/A N/A 3 06/19/03 103
N/A / N/A 3 06/21/03 101, 102
3 06/25/03 30 N/A N/A
N/A N/A 3 06/26/03 105, 106
3 06/30/03 5,10 N/A N/A

N/A: The information is not available.

Figure 5.2: Raw Data Sorted By Customer ID and Transaction Time

56

57

corresponding transaction time will not be changed. For instance, based on the
sorted dataset of Figure 5.2, we may construct the mapping table as shown in

Figure 5.3. After the mapping, the mapped datasets are shown in Figure 5.4.

Alice 30-1A 10 -2A 20-3A (10,20) - 4A 9-5A 15- 6A 9,15-7A | 5-8A (5,10)-9A
Bob 90- 1B 40-2B 60-3B (40, 60) - 4B 35-5B 50-6B (35,50)-7B| 45-8B 70-9B (45,70)- 10B
Carol 110-IC 107-2C 103-3C 101-4C 102-5C | (101,102)-6C} 105-7C 106 - §C (105,106) - 9C

Note that, in Alice’s dataset, item 30 and 10 are reoccurred, so we map them to the same mapped-ID.

Figure 5.3: Mapping Table

3. Mining

Our mining procedure will be based on the mapped dataset. The general sequential
pattern mining procedure contains multiple passes over the data. In each pass,
we start with a seed set of large sequences, where a large sequence refers to a
sequence whose itemsets all satisfy the minimum support. We utilize the seed set
for generating new potentially large sequences, called candidate sequences. We find
the support for these candidate sequences during the pass over the data. At the
end of each pass, we determine which of the candidate sequences are actually large.
These large candidates become the seed for the next pass. The procedure for mining
sequential patterns on [DS; U DSy --+ U DS,,] is similar as association rule mining
algorithm in Section 4.2. The difference is that we need to find large itemsets in
association rule mining while we need to find large sequences in sequence pattern

mining. Please refer to Section 4.2 for the detailed description of how it works.

Algorithm 2 .

(a) L; = large 1-sequence

(b) for (k = 2; Ly_1 # ¢; k++) do{
(c
(d

(e

)
)
) Cy = apriori-generate(Ly_;)
) for all candidates ¢ € Cy do {
)

Compute c.count

o8

Alice
Mapped
cpND 1A 2A 3A 4A SA 6A TA 8A 9A
1 1] 06/2503} 0 NA {0 N/A 0 NA 0| NA 0 NA |0 | NA 0| NNA |0 | NA
2 0 N/A 1 |06/10/03 | 1 | 06/10/03| 1 | 06/10/03| 1 | 06/20/03| 1 {06/20/03| ¢ [06/20/03) 0 | NJA | 0 | NA
3 1 106/25/03 | 1 | 06/30/03 0 N/A 0 N/A 0 N/A 0 NA | 0] NA 1 |06/30/03| 1 | 06/30/03
Bob
apped
D 1B 2B 3B 4B 5B 6B 7B 8B 9B 10B
C-ID
1 1]06/3003 0O NA {0 N/A 0| NA 0| NA 0 NA |0 | NA 0| NA JO | NA 0 | NA
2 0 N/A 11 06/15/03 | 1 {06/15/03| 1 | 06/15/03| 0 | N/A 0 N/A 01 NA 0} NMA |0 | NA 0 NA
3 0 NA |0 N/A 0 N/A 0 N/A 1 |06/18/03 | 1 | 06/18/03| 1 | 06/10/03 | 1 106/10/03| 1 |06/10/03 | 1 | 06/10/03
Carol
Mapped
D 1C 2C 3C 4C 5C 6C 7Cc 8C 9C
C-ID
1 1062803 0 NA |0 N/A 0] NA 0 | NA 0 NA |0 [NA 0| NNA |0 | NA
2 0 N/A 1| 06/13/03 | O N/A 0| NA 0 i NA 0 N/A 0 | Na 0] NNA | 0 NA
3 0 NA | O N/A 1 | 06/19/03 | 1 | 06/21/03| 1 | 06/21/03| 1 [06/21/03] 1 | 06/26/03| 1|06/26/03(1 |06/26/03

N/A : The information is not available.

Figure 5.4: Mapped Data

99

() Ly = Ly U c | c.count > minsup
(g) end
(h) end

)

(i) Return UpLy

where L stands for a sequence with k itemsets and C} stands for the collection
of candidate k-sequences. The procedure apriori-generate is described in [4] in
details.

4. Maximization

Having found the set of all large sequences S, we provide the following procedure
to find the maximal sequences.

Algorithm 3 .
(a) for (k =m; k <1;k--) do
(b) for each k-sequence s; do

(c) Delete all subsequences of s from S

5. Converting

The items in the final large sequences are converted back to the original item
representations used before the mapping step. For example, if 1A belongs to some
large sequential pattern, then 1A will be converted to item 30 in the final large
sequential patterns according to the mapping table.

In the procedure of sequence pattern mining, the only steps accessing the actual data
values is the computation of c.count. Next, we will discuss how to solve the problem in

the scenarios of vertical collaboration as well as horizontal collaboration.

5.3 Privacy-Preserving Protocols for Vertical Col-

laboration

In this section, we develop protocols to compute c.count among multiple parties for the
scenario of vertical collaboration.

60

5.3.1 How to compute c.count

To compute c.count which is the support for some candidate pattern (e.g., P(z; Ny; N
zilzi > yi > 2z)), we need to conduct two steps: one is to deal with the condition part
where z; occurs before 7; and both of them occur before z;; the other is to compute the
actual counts for this sequential pattern.

If all the candidates belong to one party, then c¢.count which refers to the frequency
counts for candidates, can be computed by this party since this party has all the infor-
mation needed to compute it. However, if the candidates belong to different parties, it
is a non-trivial task to conduct the joint frequency counts while protecting the privacy

of data. We provide the following steps to conduct this cross-parties’ computation.

1. Vector Construction. The parties construct vectors for their own attributes (mapped-
ID). In each vector constructed from the mapped dataset, there are two compo-
nents: one consists of the binary values (called the value-vector); the other consists
of the transaction time (called the transaction time-vector). Suppose we want to
compute the c.count for 2A > 2B > 6C in Figure 5.4. We construct three vectors:
2A, 2B and 6C depicted in Figure 5.5.

2. Transaction Time Comparison. To compare the transaction time, each time-vector
should have a value. We let all the parties randomly generate a set of transac-
tion time for entries in the vector where their values are 0’s. They then transform
their values in time-vector into real numbers so that if transaction transaction;
happens earlier than the transaction transactions, then the real number that de-
notes transaction; should smaller than the number that denotes transaction,. For
instance, ”06/30/2003” and ”06,/18/2003” can be transform to 363.2 and 361.8 re-
spectively. The purpose of transformation is that we will privately compare them
based their real number denotation. Next, we will present a privacy-oriented pro-

tocol that allows n parties to compare their transaction time.

5.3.2 Privacy-Preserving Comparison of Transaction Time

Problem 7 Assume that P, has transaction time ti, P, has transaction time to, -- -,

P, has transaction time t,. The goal is to compare the time to determine the order of
occurrence of transactions.

Via Protocol 4 in Section 3.7.4, P,,_; obtains the order of occurrence. P,_; then makes
a temporary vector T. If the number does not satisfy the requirement of 24 > 2B > 6C,

2A

0] NA

—_

06/10/03

—_

06/30/03

06/10/03

06/10/03

06/30/03

6C

0] NA

0| NA

1] 06/18/03

T
0 0 06/18/03
0 0 06/19/03
1 1 06/18/03
LI L

(Secure Number Product Protocol]

c.count

Step III

61

2B

0 NA

1| 06/15/03 Step1

0 N/A
06/14/03

Step IT

06/15/03
06/23/03

Figure 5.5: An Example of Computing c.count for 24 > 2B > 6C

62

she sets the corresponding entries of T to 0’s; otherwise, she copies the original values in
6C to T (Figure 5.5).

After the above step, they need to compute c.count based on their value-vector. For
example, to obtain c.count for 2A > 2B > 6C in Figure 5.5, they need to compute
SN 24[6]-2B[i] - Th] = SoN 2A[1] - 2BJi] - T[i] = 320, 2A[i] - 2BJi] - T[i] = 0, where N is
the total number of values in each vector. In general, let’s assume the value-vectors for
P, -+, P, are Ay, ---, A, respectively. Note that P;’s vector is T'. Next, we will show
how n parties compute this count without revealing their private data to each other.

5.3.3 Privacy-Preserving Computation of c.count

Problem 8 Assume that Py has a private vector T, P, has a private vector As, --- and
P, has a private vector A,. The goal is to compute c.count for vertical collaboration

involving T, As, -+, and A, without compromising data privacy.

We can apply Protocol 5 in Section 4.4.1 to solve Problem 8.

5.4 Privacy-Preserving Protocols for Horizontal Col-

laboration

In horizontal collaboration, each party, e.g., F;, can conduct the vector construction,
transaction time comparison, and computes her own count c.count;. The total count
c.count = y ., c.count;, the challenge is how to compute this summation without dis-
closing each party’s c.count;.

Problem 9 Assume that P, has a private count count;, Py has a private count counts,

-, and P, has a private count count,,. The goal is to compute c.count =y ., c.count;
for horizontal collaboration involving county, c.counts, - -+, and count, without compro-
mising data privacy.

We can apply Protocol 3 in Section 3.7.3 to solve Problem 9.

5.5 Overall Complexity Overhead Analysis

In this section, we analyze the overall efficiency of our proposed solutions. We have

provided the computation cost and communication cost for each component protocol.

63

We will combine them in order to achieve privacy-preserving sequential pattern mining.
The overall communication and computation overhead for vertical collaboration among
multiple parties is a(nN+2n2+n—1)i and (80 N+14N+gy N +16n2+gsnlog(n)+5n+2g,)i
respectively where 7 is the number of iterations that the algorithm needs to be run. The
overall communication and computation overhead for horizontal collaboration among
multiple parties is a(n — 1)i and (9n + 13 4 g1)¢ respectively where 7 is the number of
iterations that the algorithm needs to be run.

Chapter 6

Privacy-Preserving Naive Bayesian

Classification

6.1 Background

The naive Bayesian classification [31] is one of the most successful algorithms in many
classification domains. Despite of its simplicity, it is shown to be competitive with other
complex approaches, especially in text categorization and content based filtering. Clark
and Niblett [18] found that it did surprisingly well by comparing it with two rule learn-
ers and a decision-tree learner. Cestnik [12] obtained similar conclusions. Kononenko
[52] reported that representation of the Bayesian classifier quite intuitive and easy to
understand and it is often a significant concern in machine learning. Pazzani et al.
[66] compared several learners on a suite of information filtering tasks, and found that
the Bayesian classifier was the most accurate one overall. Although the reasons for the
Bayesian classifier’s good performance were not clearly understood, these results were
evidence that it might constitute a good starting point for further development.

Next, we provide a brief review [32] of naive Bayesian classification. Let A; through
A, be attributes with discrete values used to predict a discrete class V. Given an instance
with attribute values a; through a,, the optimal prediction is class value v such that

Pr(V =vlA; = a1, Ay = ag,- -+ , A, = a,,) is maximal. By Bayes’ rule,

64

65

PT(V:U|A1 =CL1,A2:CL2,"' aATL:a’n)
(6.1)

_ Pl = A=V =0 (6.2)

PT(AlZCLl,"' 7An=an)

The probability Pr(V = v) can be estimated from training data. The probability
Pr(A; = ay, -, A, = a,) is irrelevant for decision-making since it is the same for
each class value v. Learning is therefore reduced to the problem of estimating Pr(A4; =
ai, -, A, = a,|V =v) from training instances. Using Bayes’s rule again,

Pr(A; =ay, Ay =aq, -+ , Ay = a,|V =)
=Pr(A;=a1|Ay =ag, -+ ,Ap = a,,V =v) X Pr(Ay = ag, -+, Ap = a,|V = v).
The second factor can be recursively written as

Pr(As =aq, -+, A, = a,|V =v)

=Pr(Ay=aslA3 =a3, - , A =an,V=v) x Pr(As =ag, -+, Ap = a,|V = v),

and so on. Now suppose that for each A;, its outcome is independent of the outcome
of all other A; (¢ # j), given V. In other words, we assume that

Pr(A; =a1|As = a9, -+ , Ay = an,V =v) = Pr(4; = a1|V =),
and so forth for A, through A,. Then
PT’(Al —_—al,AQ = dag, - ,Anzanﬂ/———v)

= Pr(A; = a1|V =v)Pr(Ay = ao|V =v) -+ Pr(A, = a,|V =v).

Each factor in the product above can be estimated from training data:

count(A; = a;,V = v)
count(V = v)

PT(A]' =AaJ|V = U) =

It was shown [32] that the above equation gives mazimum likelihood probability es-
timates, i.e., probability parameter values that maximize the probability of the training
examples.

66

The naive Bayesian classifier applies to learning tasks where each instance x is de-
scribed by a conjunction of attribute values and where the target function f(x) can take
on any value from some finite set V. A set of training examples of the target function
is provided, and a new instance is presented, described by the tuple of attribute values
< ai,ag, -+ ,a, >. The learner is asked to predict the target value for this new instance
by assigning a class value which maximizes the Pr(v;) [[;_; Pr(a:|v;).

Vg = argmazyev Pr(V = v;) HPT(Ai = |V = v;)
i=1

T

= argmazy,cv Pr(v;) H Pr(a;|v;) (6.3)

i=1

To build a naive Bayesian classifier, we need to conduct the following major steps:
1. To compute Pr(a;,v;) = [, Pr(a:|v;)Pr(v;).

2. To Compute Pr(v;) [[ie; P;Ena(;’:)') for each v; € V.

3. To Compute Viyp.

Next, we will provide privacy-oriented protocols to conduct each step in the scenarios
of vertical collaboration as well as horizontal collaboration.

6.2 Privacy-Preserving Protocols for Vertical Col-

laboration

In vertical collaboration, if the class labels are shared by all of the parties, then Pr(a;|v;)
and Pr(v;) can be computed by each party. Once they obtain them, Vyp can be com-
puted. The more interesting case is that the class label and attributes are held by
different parties. In this chapter, we consider the scenario that only one party holds the
class labels. For the case that the parties share the class label is less challenging than the
case we consider. Without loss of generality, Let us assume that P, has the class label.
On the other hand, Pr(a;,v;), Pr(a;lv;) and Pr(v;) are computed vector by vector. For
example, suppose that F,; has three attributes denoted by Aq1, Ag2, and Ags respectively.
The computation of Pr(a;,v;) and Pr(a;|v;) involves Ayj and V', or Ay and V, or Ay
and V. Therefore, we can simplify the problem to that each party holds a private vector
following the similar idea of Section 4.4.1.

67

Problem 10 Assume that Py has a private vector Ay and class label vector V', P, has a

private vector Aq, --- and P, has a private vector A,. Thus F;, i < 2, does not have the

class labels. The goal is to compute e(Pr(a;,v;)), e(Pr(v;) [T, %)L)) foreachv; €V,

and Vg for vertical collaboration involving Ay, ---, and A, without compromising data
Privacy.

We will provide the following protocols. Protocols 6 computes e(Pr(a;, v;)). Protocol

7 computes e(Pr(v;) [T, P;Sfl(vf)’)) for each v; € V and computes V.

Highlight of Protocol 6: In our protocol, we first select a key generator who

produces the encryption and decryption key pair. For the purpose of illustration, Let us
assume that P, is the key generator who generates a homomorphic encryption key pair
(e, d). Each party encrypts each value in their private vectors, then sends them to P,
who computes e(Pr(a;, v;)).

We present the formal protocol as follows:

Protocol 6 .

1. P, generates a cryptographic key pair (e, d) of a homomorphic encryption scheme.
2. P, for i € [2,n] performs the following operations:

(a) She computes e(a)s (k € [1, N]) and sends them to P;.
3. P, performs the following operations:

(a) He computes t; = e{a;1)” = e(as - v1), ta = e(a;2)” = e(aip - va), -+, ty =
e(a;n)"™ = e(a;n - vy) where i € [1,n].
(b) He computes t; X tg X -+ Xty = e(a; v+ ap Vot +an-Un) = e(E{-E};).

a;-v;)

C Hec:omputese—a—{-?%:e(;'v‘L = e(Pr(a;,v;)).
J N b

The Correctness Analysis of Protocol 6: When P, receives e(a;:)(k € [1, N],i €
[2,7]), he computes t = e(a)". According to Equation 3.2, it is equal to e(auvy) for
k € [1,N]. He then computes [],, tx which is equal to e(a; - v;) according to Equa-
tion 3.1. Finally, he computes e(a; - U;)% = e(Pr(ai,vj)). Therefore, the Protocol 6

correctly computes e(Pr(a;, v;)).

The Complexity Analysis of Protocol 6: The bit-wise communication cost of
this protocol is a(n — 1)N contributed by step 2.

68

The following contributes to the computational cost: (1) The generation of one cryp-
tographic key pair. (2)The total number of nN encryptions. (3)The total number of
N — 1 multiplications. (4)The total number of N + 1 exponentiations.

Therefore, the total computation cost is gy +6nN+ N -1+ N +1=6nN +2N +g;.

Theorem 7 Protocol 6 preserves data privacy ot a level equal to ADVs.
Proof 7 We will identify the value of € such that
|Pr(T|CP)— Pr(T)| <e

holds for T = Tp,, i € [1,n], and CP = Protocol 6.

According to our notation in Section 3.7,

ADVp, = Pr(Tp|VIEWp,, Protocol6) — Pr(Tp|VIEWp,),i # 1.

Since only Py obtains information from other parties, ADVp,,i # 1 is zero.
All the information that Py obtains from other parties is e(ay) for 2 < i< n, 1 <
k < N and e is semantically secure,

ADVp, = ADVs.

In order to show that privacy is preserved according to Definition 5, we need to know
the value of the privacy level . We set

e = ADVp = ADVg.
Then
Pr(Tp|VIEWp,, Protocol6) — Pr(Tp|VIEWE,) < ADVs,i # 1,

which completes the proof.

Via protocol 6, the class label holder P gets e(Pr(a;, v;)) for i € [1,n]. Next, we will

show how to compute e(Pr(v;) [, E%‘Z)’—?) for each v; € V.
J

69

Highlight of Protocol 7: In our protocol, P, adds a random number to each
Pr(a;,v;). P, sends the encrypted terms to F, who decrypts them, then sends them
to the corresponding parties respectively. Those parties collaborate with P, to compute
the desired results. In the protocol, we use Pr(a;,v;)p to denote that Pr(a;,v;) with
a; € P

We present the formal protocol as follows:

Protocol 7 .

1. Py generates a set of random numbers from the real domain. Let us denotes them
by Ry, Ry, --+, and R,.

2. P computes e(Pr(a;, v;)p,) Xe(Rs) = e(Pr(ai, v;) p,+R2), e(Pr(a;,v;)p,) Xe(Rs) =
e(Pr(ai,v;)p, + Rs), -+, e(Pr{as, vj)p.) X e(Rn) = e(Pr(a;, v;)p, + Bn).

8. Py sends e(Pr(a;,vj)p + Ry) to P, where l € [2,n].
4. P, decrypts them and obtains Pr(a;,v;)p, + Ry forl € [2,n].
5. P, sends Pr(a;,v;)p, + Ry to P forl € 2,n —1].

6. P, computes e(l_[vjep1 P%Eﬂaé%ﬁ) for a; € Py. Let us denote it by e(Gy). P sends

6(G1> to PQ.
7. Py computes e(G1)Fr@v)rtR) — o((Pr(a; +v;)p, + Ra) x G1) and sends it to P;.

8. Py computes e((Pr(a;+v;)p,+R2) X G1) Xe(—RyG1) = e([],.cp, p, Priesvi)y denoted

Pr(v;)
by e(Ga).
9. Continue until Py gets e(l—‘[aieplvpz’,,.1pn —LP;E?(:;)')) =e(J]L, —LP;(TG(Z)’:)')).

10. Py computes e(]]\, %)L))PT(W) =e(Pr(v;) [T, %)ﬁ)

The Correctness Analysis of Protocol 7: In step 3, P, obtains e(Pr(a;,v;)p+Ri)

for [€ [2,n]. In step 6, P, computes e(G;) = e([Iy,en, %ﬁ) for a; € P, based on his
own data. In step 9, P, obtains e¢(Gs) = e((Pr(a; + v;)p, + R2) X G1) X e(—RyG1) =

e([1a.ep, P, P;Sﬂa(;:)])) according to Equation 3.1 and Equation 3.2. Finally, P, obtains

(10, %ﬁﬁ))m(w) = e(Pr(v;) [, E};ﬁ%ﬁ)')) according to Equation 3.2.

70

The Complexity Analysis of Protocol 7: The bit-wise communication cost of
this protocol is upper bounded by a(3n — 4) consisting of (1) the cost of a(n — 1) from
step 3; (2) the cost of a(n — 2); (3) the cost of a(n — 1) from step 6-9.

The following contributes to the computational cost: (1) The generation of n-1 ran-
dom numbers. (2)The total number of n — 1 encryptions. (3)The total number of n — 1
multiplications. (4)The total number of n — 1 decryptions. (5)The total number of n —1
exponentiations.

Therefore, the total computation cost is g4(n—1)+6(n—1)+n—14+13(n—1)+n—1 =
(21 + g4)(n —1).

Theorem 8 Protocol 7 preserves data privacy.
Proof 8 We will identify the value of € such that
|Pr(T|CP) ~ Pr(T)| < e

holds for T'=Tp,, i € [1,n], and CP = Protocol 7.

According to our notation in Section 3.7,

ADVp, = Pr(Tp,|VIEWp, , Protocol?) — Pr(Tp,|VIEWE,),i # n,

and

ADVp, = Pr(Tp|VIEWp,, Protocol?) — Pr(Tp,|VIEWp,),i # 1.

ADVp, = Pr(Tp|VIEWE, Protocol?) — Pr(Tp,|VIEWp,),i # 1,i # n,j # i.

All the information that P, obtains is encrypted by e which is semantically secure,
thus,

ADVp, = ADVs.

In order to show that privacy is preserved according to Definition 5, we need to know
the value of the privacy level e. We set

71

¢ = max(ADVs, ADVp , ADVp,) = maz(ADVp,,ADVp,),i # 1,n.
Then

Pr(Tp|VIEWE,, Protocol7) — Pr(Tp,|VIEWp,) < maz(ADVp,,ADVp),i # 1,n.

Pr(Tp,|VIEWp,, Protocol?) — Pr(Tp,|VIEWp,) < max(ADVp,, ADVp,),i # 1,n.
and
Pr(ij|VIEWpi, Protocol7) — Pr(ij\VIEWpi) < maz(ADVp,, ADVp,),i # 1,n, andj # 1,

which completes the proof.

Through the above protocol, e(Pr(v;) [T, %ﬁ) can be computed for each v; € V.
J
Without loss of generality, Let us assume Py gets e(Vyg,), e(Vig,), -+ and e(Vyg,).

The goal is to find the largest one which can be achieved via Protocol 4 in Section 3.7.4.

6.3 Privacy-Preserving Protocols for Horizontal Col-

laboration

Problem 11 Assume that P, has a private data set DS, P, has a private data set

DSy, -+ and P, has a private data set DS,. The goal is to compute e(Pr(a;,vj)),
e(Pr(v;) [Tiey P;—ia(;’—})ﬁ) for each v; € V, and Vg for horizontal collaboration involving
DSy, .-+, and DS, without compromising data privacy.

We will provide the following protocols. Protocols 8 computes e([[;_; Pr(a:|v;)).
Protocol 9 computes e(Pr(v;) [1i_; Pr(ai|v;)) and Vyp.

Highlight of Protocol &: In our protocol, we first select a key generator. Let us
assume that P, is the key generator who generates a homomorphic encryption key pair
(e, d). Py encrypts [], cp. Pr(a;lv;) and sends it to Py. P, computes e([], cp. Pr(ai|vy)-
[14,ep, Prlailvy)) and sends it to P, and so on. Finally, P, computes e([[;_, Pr(as|v;)).

We present the formal protocol as follows:

Protocol 8 .

72

1. P, generates a cryptographic key pair (e, d) of a homomorphic encryption scheme.
2. B, computes e([[,.cp, Pr(ailv;)) denoted by e(Gy) and sends it to Pi.

3. Pi computes e(Gr)°" = e(G1Gy) where Gy = [],.cp, Pr(ailvy), then sends e(G1G,)
to PQ.

4. Py computes e(G1Gp)?? = e(G1G2G,) where Gy = [],.cp, Pr(alv;), then sends
G(GleGn) to P3.

5. Continue until P,_, obtains e(G1Ga -+ Gy) = e([1i_; Pr(a:|v;)).

The Correctness Analysis of Protocol 8: When P, receives e(G,), he com-
putes e(G,)% which is equal to e(G,G,) according to Equation 3.2. He sends it to
P, who computes e(G,G,)¢? which is equal to e(G1G2G,) according to Equation 3.2.
Continue to send the result to the next party. Finally, P,_; obtains e(G1Gy---Gy) =
e([T;_, Pr(ai|v;)). Therefore, the Protocol 8 correctly computes e([];_; Pr(a;|v;)).

The Complexity Analysis of Protocol 8: The bit-wise communication cost of
this protocol is a(n — 1) consisting of (1) the cost of o from step 1; (2) the cost of a from
step 2; (3) the cost of a(n — 3).

The following contributes to the computational cost: (1)The total number of n — 1
exponentiations. (2)The total number of Y multiplications.

Therefore, the total computation cost is n — 1 + T where T is the total number of
attributes of the joint dataset.

Theorem 9 Protocol 8 preserves data privacy at a level equal to ADVs.
Proof 9 We will identify the value of € such that
|Pr(T|CP) — Pr(T)| < ¢

holds for T' = Tp,, i € [1,n], and CP = Protocol 8.

According to our notation in Section 3.7,

ADVp, = Pr(Tp,|VIEWp,, Protocol8) — Pr(Tp,|VIEWE,),j # i,i # n.

73

Since all the information that P, obtains from other parties is the encrypted by e
which is semantically secure,

ADVp, = ADVs.

In order to show that privacy is preserved according to Definition 5, we need to know
the value of the privacy level €. We set

e = ADVs.
Then
Pr(Tp,|VIEWp,, Protocol8) — Pr(Tp,|VIEWE,) < ADVs, j # i,i # n,
which completes the proof.

To compute e(Pr(v;)), each party computes Pr(v;) for their own class label set. Let
assume that P; has the share s;, P, has the share s,, ---, P, has the share s,. Our
goal is to compute e(D ., si) = e(Pr(v;)). We can apply Protocol 3 in Section 3.7.3 to
deal with this problem by removing the last step. In other words, we follow the Proto-
col 3 until P,_; obtains e(> ., s;) = e(Pr(v;)). Next, we use Protocol 9 to compute

e(Pr(v;) [Tizy Pr(alv;)).

Highlight of Protocol 9: In our protocol, P,_; generates t random numbers from
the real domain, sends e(Pr(vy)), e(r1), ---, e(r¢) to P, in a random order. P, de-

crypts them and sends the decrypted sequence to P;. P and P,_; jointly computes
e(Pr(v;) I1izy Pr(ailvy)).

We present the formal protocol as follows:

Protocol 9 .
1. P,_, generates a set of random numbers: Ry, Ry, -+, R;. He then sends e(Pr(v;)),
e(Ry), -+, e(Ry) to P, in a random order.

2. P, decrypts each element in the sequence, then sends them to Py in the same order
as P,_; did.

74

3. Pno_y sends e(I1_, Pr(Pr(a;,v;))) to Pi.

4 Py computes e([T;_; Pr(Pr(ai,v)))7", e(ITiZ, Pr(Pr(ai,v)))™, -
e(ITi=, Pr(Pr(a;,v;)))f. Pi then sends them to P,_;.

5. P,_q obtains e(Pr{v;) [11_; Pria;|vy)).

The Correctness Analysis of Protocol 9: In step 4, P, computes
e([TLy Pr(Pr(as, o))", e(TTioy Pr(Pr(as, sy))™, -, and e([TL_y Pr(Pr(as, o))",
They are equal to e(Pr(v;) 1., Pr(Pr(a;,v;))), e(Ri [1._, Pr(Pr(a;,v;))), -+,
and e(R; [[]_; Pr(Pr(a;,v;))) respectively according to Equation 3.2. In step 5, P,
gets e(Pr(v;) [1;., Pr(Pr(a;,v;))) since he knows the permutations.

The Complexity Analysis of Protocol 9: The bit-wise communication cost of
this protocol is upper bounded by a(3t + 4) consisting of (1) the cost of a(t + 1) from
the step 1; (2) the cost of 5(¢t + 1) where 3 denotes the number of bits of the plaintext

and is assumed that § < «;(3) the cost of « from step 3; (4) the cost of a(t + 1) from
step 4.

The following contributes to the computational cost: (1) The generation of ¢t random

numbers. (2)The total number of ¢ + 1 encryptions. (3)The total number of ¢ 4 1
exponentiations.

Therefore, the total computation cost is g4t +6(t + 1) +t+ 1= (7T +ga)t + 7.
Theorem 10 Protocol 9 preserves data privacy at a level equal to ADVp, .
Proof 10 We will identify the value of € such that

|Pr(T|CP) — Pr(T)| < ¢

holds for T = Tp,, i € [1,n], and CP = Protocol 9.

According to our notation in Section 3.7,

ADVp, = Pr(Tp,|VIEWp,, Protocol9) — Pr(Te,|[VIEWp,),j # 1,

ADVp, , = Pr(Tp|VIEWp, _,, Protocol9) — Pr(Towmers|\VIEWE, ,),i%# n—1,

75

and
ADVp, = Pr(Tp|VIEWE,, Protocol9) — Pr(Tp,|\VIEWp,),i # n.

Since all the information that Py and P,_1 obtain from other parties is encrypted by

e which is semantically secure,

ADVp, = ADVg,
and
ADVp , = ADVj.

In order to show that privacy is preserved according to Definition 5, we need to know
the value of the privacy level . We set

€= mCLZE(ADVpn, ADVPn_U ADVPI) = maz(ADVpn, ADVS) = ADVPH.
Then

Pr(Tp,|VIEWp,, Protocol9) — Pr(Tp,|VIEWp,) < ADVp,,j # 1,

Pr(Tp|VIEWp, _,, Protocol9) — Pr(Tp|VIEWp,) < ADVp,,i #n—1,
and
Pr(Tp|VIEWpg,, Protocol9) — Pr(Tp|VIEWE,) < ADVp,,i # n,
which completes the proof .

Through the above protocol, e(Pr(v;) [[;=; Pr(a;lv;)) can be computed for each v; €
V. Without loss of generality, Let us assume P; gets e(Vyg,), e(VNg,), -+, e{(Vnp,) The
goal is to find the largest one which can be achieved by Protocol 4 in Section 3.7.4.

'Note that the information that P, obtains from P,_; is hidden by t random numbers.

76

6.4 Overall Complexity Overhead Analysis

In this section, we analyze the overall efficiency of our proposed solutions. We have
provided the computation cost and communication cost for each component protocol. We
will combine them in order to achieve privacy-preserving naive Bayesian classification.
The overall communication and computation overhead for vertical collaboration among
multiple parties is (5anN +2an? — aN +a(n —1))i and ((n +2)N + 16n% + gznlog(n) +
(93+26)n+2g1 —ga—2)i where i is the number of iterations that the algorithm needs to be
run. The overall communication and computation overhead for horizontal collaboration
among multiple parties is «(2n?+2n+3t+2)i and (16n2+gsnlog(n)-+6n+"T+(7+gz)t+6)i
where 7 is the number of iterations that the algorithm needs to be run.

Chapter 7

Privacy-Preserving Decision Tree

Classification

7.1 Preliminaries
We briefly describe some necessary terminologies [6] for describing decision trees.

Definition 6 A graph G = (V, E) consists of a finite, non-empty set of nodes (or ver-
tices) V and a set of edges E. If the edges are ordered pairs (v, w) of vertices, then the
graph is said to be directed.

Definition 7 A path in a graph is a sequence of edges of the form (vy, v2), (v2, v3), -+,
(vi—1, vi). We say the path from vy to vy and is of the length t.

Definition 8 A directed graph with no cycles is called a direct acyclic graph. A directed
(or rooted) tree Figure 7.1 is a directed acyclic graph satisfying the following properties:

e There is exactly one node, called the root, which no edges enter.
e Fuvery node except the root has exactly one entering edge.

e There 1s a unique path from the root to each node.

Definition 9 If (v, w) is an edge in a tree, then v is called the father of w, and w is a
son of v. If there is a path from v to w (v # w), then v is a proper ancestor of w and w

is a proper descendant of v.

77

78

I & &

(class label)

Figure 7.1: An Example of a Decision Tree

Definition 10 A node with no proper descendant is called a leaf (or a terminal). All
other nodes (except for the root) are called internal nodes.

Definition 11 The depth of a node v in a tree is the length of the path from the root
to v. The height of node v in a tree is the length of a largest path from v to a leaf. The

height of a tree is the height of its root. The level of a node v in a tree is the height of
tree minus the depth of v.

Definition 12 An ordered tree is a tree in which the sons of each node are ordered,
normally from left to right.

Definition 13 A binary tree is an ordered tree such that
e cach son of a node is distinguished either as a left son or as a right son.

e no node has more than one left son nor more than one right son.

7.2 Introducing Decision Tree Classification

The decision tree is one of the classifiers. The induction of decision trees [68, 69, 70] from

attribute vectors is an important and fairly explored machine learning paradigm. The

79

decision tree representation is the most widely used method. There is a large number of
decision tree induction algorithms described in the machine learning and applied statistics
literature. In general, the decision tree is built in a top-down style, using a greedy strategy
to choose, based on the instances corresponding to the sub-tree in construction, the root

of this sub-tree.

7.3 Decision Tree Classification Algorithm

A decision tree is a class discriminator that recursively partitions the training set until
each partition entirely or dominantly consists of examples from one class. A well known
algorithm for building decision tree classifiers is ID3 [68]. We describe the algorithm

below where S represents the training instances and AL represents the attribute list:

Algorithm 4 . ID3(S, AL)

—

Create a node V.
If S consists of instances with all the same class C then return V as a leaf node

labelled with class C.

If AL is empty, then return V as a leaf-node with the majority class in S.
Select test attribute (T'A) among the AL with the highest information gain.
Label node V with T A.

For each known value a; of TA

&

ST ANl

a) Grow a branch from node V for the condition TA = a;.

(a)

(b) Let s; be the set of instances in S for which TA = a;.

(c) If s; is empty then attach a leaf labeled with the majority class in S.
(d) Else attach the node returned by ID3(s;, AL — T'A).

According to ID3 algorithm, each non-leaf node of the tree contains a splitting point,
and the main task for building a decision tree is to identify an attribute for the splitting
point based on the information gain. Information gain can be computed using entropy.
In the following, we assume there are nc number of classes in the whole training data
set. Entropy(S) is defined as follows:

Entropy(S) = — Z Q;log @, (7.1)

=1

80

where @); is the relative frequency of class j in S. Based on the entropy, we can compute
the information gain for any candidate attribute A if it is used to partition S:

Gain(S, A) = Entropy(S) — Z(%Entropy(&)), (7.2)

vEA

where v represents any possible values of attribute A; S, is the subset of S for which
attribute A has value v; |S,| is the number of elements in S,; |S| is the number of
elements in S. To find the best split for a tree node, we compute information gain for
each attribute. We then use the attribute with the largest information gain to split the
node.

To build a decision tree classifier, we have to decide and assign an attribute for each
node. In order to determine each node for the tree, we need to conduct the following
steps:

1. To compute Entropy(S,).

S|
Bl

!IS;” Entropy(S,).

2. To compute

3. To compute

4. To compute information gain for each candidate attribute.

5. To compute the attribute with the largest information gain.

Next, we will provide privacy-oriented protocols to conduct each step in the scenarios
of vertical collaboration as well as horizontal collaboration.

7.4 Privacy-Preserving Protocols for Vertical Col-

laboration

Each party has a private data set. The data set normally contains many attributes.
For example, P, has DS; which includes five attributes denoted by A1, Aig, -, Ass
respectively. To compute ();, we need to compute the frequency count involving all the
private data. Each party can first join their own attribute vectors and obtain a single
vector following the similar idea in Section 4.4.1. The cross-parties computation will
solely use this combined vector (Figure 4.2).

81

We first select a key generator who produces the encryption and decryption key pairs.
Let us assume that P, is the key generator who generates a homomorphic encryption

key pair (e, d). Next, we will show how to conduct each step.

7.4.1 To Compute e(Entropy(S,))

Highlight of Protocol 10: There are three steps in the protocol. In step I, P,_;
obtains e(Q;). In this step, P, sends e(A;) to Py who computes e(A,14;;) then sends
it to P,. Continue this process until P,_; obtains e(Ay Az« Ani), @ € [1,N]. Py
then computes e(Q;) = e(A11da -+ Ap1 + ApAgy - Apa + -+ + Ain Aoy - -AnN)% =
(A1 Agy - Apy) X e(A12Agy -+ Apg) X - X e(Ain Aoy - -+ Apy)¥. An information flow
diagram for Step I is provided in Figure 7.2.

In step II, P,_; computes e(Q;log(Q;)). In this step, P, first generates set of
random numbers Ry, Ry, --+, and R, then sends the sequence of ¢(Q;), e(R1), e(Ra),
-+, e(Ry) to P, in a random order. P, decrypts each element in the sequence, computes,
then sends log(Q;), log(R1), log(Rz), - - -, log(R¢) to P, in the same order as P,_; did. P,
and P,_; compute e(Q;log(Q;)). Step I and step II are repeated to obtain e(Q;log(Q;))

for all j’s. Finally, P,_; computes e(Entropy(S,)). An information flow diagram for Step
IT is provided in Figure 7.3.

We present the formal protocol as follows:

Protocol 10 .
1. Step I: To compute e(Q);).

(a) P, sends e(An1) to Py.

(b) Py computes e(An)41t = e(An1 A1), then sends it to Ps.

(c) Py computes e(An1 A1) = e(An1 A1 As), then sends it to Ps.
(d) Continue until P,_, obtains e(A11As; - - An).

(e) Repeat all the above steps for Ay, A, - -+, and Ay until Py_q gets e(AriAg; - - - Ang)
for alli € [1, NJ.

(f) Pn—l computes 6(14111421 s Anl) ><e(A12A22 s Ang) XKoo Xe(AlNAQN s AnN) =
e(A11Agr - Ap1 + ApAg - Ang + - + Aiv Aoy - - Anw).

(9) Pn—1 computes e(A11 A9 -+ Apr+ ApAog- - Apo+ -+ Ain Aoy - - AnN)% =
e(Q;)-

G(Am),’i &« [1, N]

G(Am'Ali), 1 € [1, N]

e(AniAriAgi - Am—2)), % € [1, N]

Figure 7.2: Information Flow Diagram of Step I in Protocol 10

82

P

P

83

Figure 7.3:

e(Qj), e(Rr), e(Ra), -+, e(Fy)
P,
log(Qj)7 log(Rl)v log(RQ)v T log(Rt>
Py
log(Q;) + R,log(R1) + R, ,log(R:) + R

Pn—-l
e(@;)

Py
6(—RQj) Pn_l

Information Flow Diagram of Step II in Protocol 10

84

2. Step II: To compute e(Q;log(Q;)).

(a) P,_1 generates a set of random numbers Ry, Rq, ---, and R;.
(b) P,_1 sends the sequence of e(Q;), e(R1), e(R2), - -+, e(Ry) to P, in a random
order.

(c) P, decrypts each element in the sequence, and sends log(Q;), log(R4), log(Ry),
-+, log(Ry) to Py in the same order as P,_, did.

(d) Pi adds a random number R to each of the elements, then sends them to F,_1.
(¢) P,_y obtains log(Q;)+ R and computes e(Q;) 09 @+R) = e(Q;log(Q;)+RQ;).
(f) Pn-1 sends e(Q;) to Pi.

(9) Py computes e(Q;)~" = e(—RQ;) and sends it to P,_1.

(h) Pn-1 computes e(Q;log(Q;) + RQ;) x e(—RQ;) = e(Q;log(Qy;)).

3. Step I1I: To compute e(}_; Q;log(Q;)).

(a) Repeat Step I and Step II to compute e(Q;log(Q;)) for all j’s.
(b) Py computes e(Entropy(S,)) = [1; e(Q;log(Q;)) = e(32; Qilog(Q;))-

The Correctness Analysis of Protocol 10: In step I, P,_; obtains e(Q;). In
step 11, P,_1 gets e(Q;log(Q;)). These two protocols are repeatedly used until F,_;
obtains e(Q;log(Q;)) for all j's. In step III, P,_; computes the entropy by all the terms
previously obtained. Notice that although we use Entropy(S,) to illustrate the pro-

tocol, Entropy(S) can be computed following the above protocols with different input
attributes.

The Complexity Analysis of Protocol 10: The bit-wise communication cost has
the upper bound of 2a(n + ¢ + 2)nc consisting of (1) the cost of a(n — 1) from step I;
(2) the cost of a(t + 1) + 28(t + 1) + 2o where 3 denotes the number of bits for each
plaintext and is assumed that 8 < a; (3) (nc — 1) times of the total cost of step I and
step II since the step I and step II are repeated (nc — 1) times.

The following contributes to the computational cost: (1) The generation of a cryp-
tographic key pair. (2)The generation of t random numbers. (3)The total number of
nN — N + 3 exponentiations. (4)The total number of n + nc multiplications where nc is
the total number of classes. (5)One summation.

85

Therefore, the total computation cost is g1 + gst + nN — N +3+n+nc+1 =
(n—1)N +n+ gt +nc+ g +4.

Theorem 11 Protocol 10 preserve data privacy at a level equal to ADVp,_ .
Proof 11 We will identify the value of € such that
|Pr(T|CP) — Pr(T)| <e

holds for T =Tp,, i € [1,n], and CP = Protocol 10.

According to our notation in Section 3.7,

ADVp, = Pr(Tp,|VIEWp,, Protocol10) — Pr(Te,|VIEWS,),i # n,
and
ADVp, = Pr(Tp,|VIEWp,, Protocol10) — Pr(Tp,|[VIEWp,),i # n,i # j.

The information that P; for i s+ n obtains from other parties is encrypted by e which

18 semantically secure, therefore,
ADVp, = ADVs.

In order to show that privacy is preserved according to Definition 5, we need to know

the value of the privacy level e. We set

¢ = maz(ADVp,, ADVp,) = max(ADVp, , ADVs) = ADVp,.
Then
Pr(Tp,|VIEWp,, Protocol10) — Pr(Tp|VIEWp,) < ADVp_,i # n,
and
Pr(Tp,|VIEWs,, Protocol 10) — Pr(Tp, |VIEWp) < ADVp, i # n,i # j.
which completes the proof .

In the next section, we present how to compute %Entropy(&,).

!The information that P, obtains from P,_; is e(Q;), e(R1), e(R2), - -+, e(R;) in a random order.

86

7.4.2 To Compute %”—'Entropy(Sv)

nghlight of Protocol 11: There are three steps in the protocol. In step I, P,_; obtains

e(|Su]) = e('lS”|). In this step, P,_1 sends e(|S,|) to the party (e.g., P;) who holds the

parent node, then P; computes (3(|SU[)ﬁ = e('é”“), and sends it to P,_;. In step II, P,_4

obtains %”Entropy(Sv). First, P,_; sends e(‘f?]') to P, who computes e(||s|) X e(R) =

e(llé;““ + R') where R’ is a random number from the real domain and only known by
Py, then sends e(B L4 R') to P,. P, decrypts it and sends 1% 4 R to P,_1 who P,

|5}
A
computes e(Entropy(S,)) TR) = ('%’l‘Entropy(Sv) + R'Entropy(Sy)). Next, P,y

sends e(Entropy(S,)) to P, who computes e(Entropy(S N~F = e(—R Entropy(S,)),
and sends it to P,_;. Then P,_; computes e(l3 5] | Entropy(S,) + R Entropy(S,)) x
e(—R Entropy(S,)) = ('%'Entropy(s)). Finally, P,_; obtains e(Gain(S,A)). An
information flow diagram is provided in Figure 7.4.

We present the formal protocol as follows:

Protocol 11 .

1. Step I: To Compute ||S||

(a) P,_1 sends €(|S,|) to the party (e.g., P,) who holds the parent node.
(b) P, computes e(|S, |) (lé?]), then sends it to P,_;.

2. Step II: To Compute %’”Entropy(Sv).

(a) P,y sends e(||SS“I) to Py.

b) P, computes e 5oy s e(R') = (22l + R') where R’ is a mndom number from
I5) IS]

the real domain and only known by Py, then sends e(5 L+ R') to P,.

(¢) P, decrypts it and sends |I%I| + R to P,_y.

(d) P,_y computes e(Entropy(Sv))(lliSUTl+R/) (|ISS?I|Entropy(Sv)—kR’Entropy(Sv)).
(e) P,_1 sends e(Entropy(S,)) to P;.

(f) P, computes e(Entropy(S,)) T = e(—R'Entropy(S,)), and sends it to P,_;.

(9) Pa_y computes e(2: B | Entropy(S,) + R Entropy(S,)) x e(—R Entropy(S,)) =
e(lﬁ;”llEntropy(Sv)).

P

I}

ISy]
5+ R

e(Entropy(Sy))

e(—R' Entropy(S,))

Figure 7.4:

Information Flow Diagram of Protocol 11

87

P

88

3. Step III: To Compute Information Gain for An Attribute.

(a) P,y computes [[,ca e(%’l—‘Entropy(Sv)) = vea %Entropy(&,).
(b) He computes e(D, .4 %Entropy(&,))“l =e(~ D yea %Entropy(&,)).

(¢c) He computes e(Gain(S, A)) = e(Entropy(S)) X e(—= > ,eca %Entropy(&,)).

The Correctness Analysis of Protocol 11: In step I, P,_; obtains e(15]

IS]
I, P,_, gets [S”'Entropy Sy). In step III, P,_; gets e(Gain(S, A)). The computation
151

uses the both properties of homomorphic encryption Equation 3.1 and Equation 3.2.

). In step

The Complexity Analysis of Protocol 11: The bit-wise communication cost of
this protocol is 7a consisting of (1) the cost of a from step 1; (2) the cost of 6 from
step 2.

The following contributes to the computational cost: (1)The generation of a crypto-
graphic key pair. (2) 4 exponentiations. (3) The total number of 3 + nc multiplications
where nc is the total number of classes.

Therefore, the total computation cost is g1 +4+3+nc=nc+g; + 7.
Theorem 12 Protocol 11 preserve data privacy at o level equal to ADVp, .
Proof 12 We will identify the value of € such that

|Pr(T\CP)— Pr(T)| <e

holds for T =Tp,, i € [1,n], and CP = Protocol 11.

According to our notation in Section 8.7,

ADVp, = Pr(Tp|VIEWp,, Protocol11) — Pr(Tp,|VIEWE,),i # n,

and

ADVp, = Pr(Tp,|VIEWE, Protocol11) — Pr(Tp,|VIEWp,),i # n,i # j.

The information that P, for i # n obtains from other parties is encrypted by e which
1s semantically secure, therefore,

ADVp, = ADV.

89

In order to show that privacy is preserved according to Definition 5, we need to know
the value of the privacy level e. We set

¢ = max(ADVp,, ADVp,) = max(ADVp,, ADVs) = ADVp,.
Then
Pr(Tp|VIEWp,, Protocol11) — Pr(Tp|VIEWp,) < ADVp,,i # n,

and

Pr(Tp;,|VIEWp,, Protocol11) — Pr(Tp,|[VIEWp,) < ADVp,,i # n,i # j,

which completes the proof.

7.4.3 To Compute the Attribute With the Largest Information
Gain

Once we compute the information gain for each candidate attribute, we then compute
the attribute with the largest information gain. Without loss of generality, Let us assume
there are k information gains: e(g1), e(g2), -+ -, and e(gx), with each corresponding to
a particular attribute. We then apply similar protocol as Protocol 4 in Section 3.7.4 to
compute the attribute with the largest information gain.

7.5 Privacy-Preserving Protocols for Horizontal Col-

laboration

Problem 12 Assume that P, has a private data set DSy, P, has a private data set
DSy, -+ and P, has a private data set DS,. The goal is to compute e(Entropy(Sy,)),
e(Q;log(Q;)), %"I—lEntropy(Sv) and the attribute with the largest information gain for
horizontal collaboration involving DSy, - - -, and DS,, without compromising data privacy.

We first select a key generator who produces the encryption and decryption key pairs.
Let us assume that P, is the key generator who generates a homomorphic encryption
key pair (e, d). Next, we will show how to conduct each step.

90

7.5.1 To Compute e(Entropy(S,))

Highlight of Protocol 12: The protocol contains three steps. In step I, each party
computes |S,| based on their own datasets. Assuming P; gets ci, P» gets ¢, -+, Py
gets ¢,. P, sends e(c,) to P, who computes e(c,,) X e(c1) = e(c; + ¢,) and sends it to Ps.
Repeat until P,_; obtains e(c; + ¢y +- - +¢,). P, computes e(> ",)N = e(@;). An
information flow diagram for step I is provided in Figure 7.5.

In step II, P,,_; generates a set of random numbers Ry, Ro, ---, and R;. P,_; sends
the sequence of e(Q;), e(R1), e(Ra), - - -, e(R:) to P, in a random order. P, decrypts each
element in the sequence, and sends log(Q;), log(R1), log(Ry), -, log(R;) to P; in the

same order as F,_; did. Next, P, and P,_; computes e(Q;log(Q;) + RQ;) X e(—RQ;) =
e(Q;log(Q;)). Finally, B,_; computes e(Entropy(S,)). An information flow diagram for
step II is provided in Figure 7.6.

We present the formal protocol as follows:
Protocol 12 .

1. Step I: To compute e(Q;)

(a) Each party computes |S,| based on their own datasets. Assume Py gets ¢1, Py
gets ca, -+, P, gets c,.

(b) P, sends e(c,) to Pi.

(c) Pi computes e(cn) X e(c1) = e(c1 + ¢,) and sends it to P;.

(d) Repeat until P, obtains e(cy +cog+ -+ + cy).

(e) P._1 computes e(37, ¢;)v = e(Q;).

2. Step II: To compute e(Q;log(Q;))

(a) P,_1 generates a set of random numbers Ry, Ry, ---, and R;.
(b) P,_1 sends the sequence of e(Q;), e(R1), e(Ry), -+, e(Ry) to P, in a random
order.

(c) P, decrypts each element in the sequence, and sends log(Q;), log(R;), log(Ry),
-+, log(Ry) to Py in the same order as P,_; did.

(d) Py adds a random number R to each of the elements, then sends them to P,_.

(¢) Pa_y obtains log(Q;)+R and computes e(Q;) 09 @I+E) = ¢(Q;log(Q;)+ RQ;).

e(cn + 1)

e(fcp+c1+ -+ cua)

Figure 7.5: Information Flow Diagram of Step I in Protocol 12

91

P

I

92

e(Qj)’ €(R1), 6(R2)= Tt e(Rt)
P,
lOg(Qj), log(Rl)’ log(R2)> T, log(Rt)
Py
log(Q;) + R,log(R1) + R, ,log(R:) + R
Pn—l
e(@y)

Py

6(—RQj) Pn_l

Figure 7.6:

Information Flow Diagram of Step II in Protocol 12

93

(f) P, sends e(Qj) to P.
(9) Pi computes e(Q;)™ " = e(—RQ;) and sends it to Po_;.
(h) Py computes G(QJZOQ(QJ> + RQJ) X e(_RQJ) — G(QJZOQ(Q]))

3. Step III: To compute e(Entropy(S,))

(a) Repeat protocol step I and step II to compute e(Q;log(Q;)) for all j’s.
(b) Pa_y computes e(Entropy(Sy,)) = [1; e(Qjlog(Q;)) = e(32; Q;log(Q;))-

The Correctness Analysis of Protocol 12: In step I, P,_; obtains ¢(Q;). In
step II, P,y gets e(Q;log(Q;)). The two steps repeatedly used until P,_; obtains
e(Q;log(Q;)) for all 5’s. In step III, P,_; computes the entropy by all the terms previ-
ously obtained. Notice that although we use Entropy(S,) to illustrate, Entropy(S) can
be computed following the above protocols with different input attributes.

The Complexity Analysis of Protocol 12: The bit-wise communication cost has
the upper bound of am(n + 3t + 4) consisting of (1) the cost of a(n — 1) from step I; (2)
the cost of a(t + 1) + 268(t + 1) + 2a from step II; (3) nc — 1 times of the total cost of
step I and step II since step I and step II are repeated nc — 1 times.

The following contributes to the computational cost: (1) The generation of t random
numbers. (2)The total number of n + ¢ + 2 encryptions. (3)The total number of n + nc
multiplications where nc is the total number of classes. (3) 3 exponentiations. (4) A
permutation of t numbers. (5) ¢ + 1 decryptions. (6) N modular operations. (7) One
addition.

Therefore, the total computation cost is g4t + 6(n+t+2) +n+nc+ 3+ got + 13(¢ +
D4+ N+1=N+Tn+(g94+ 19+ g2)t + 29 + ne.

Theorem 13 Protocol 12 preserve data privacy at a level equal to ADVp,.
Proof 13 We will identify the value of € such that
|Pr(T|CP) — Pr(T)| <e

holds for T = Tp,, i € [1,n], and CP = Protocol 12.

According to our notation in Section 3.7,

ADVp, = Pr(Tp,|VIEWp,, Protocol12) — Pr(Tp,|VIEWp,),i # n,

94

and

ADVp, = Pr(Tp,|VIEWp,, Protocol12) — Pr(Tp,|VIEWE,),i # n,i # j.

The information that P; where i # n obtains from other parties is encrypted by e
which is semantically secure, therefore,

ADVp, = ADVs.

In order to show that privacy is preserved according to Definition 5, we need to know
the value of the privacy level e. We set

e = maz(ADVp,, ADVp,) = max(ADVp ,ADVs) = ADVp .
Then
Pr(Tp,|VIEWp,, Protocol12) — Pr(Tp,|VIEWp) < ADVp,,i # n,

and

Pr(Tp,|VIEWE,, Protocol12) — Pr(Tp,|VIEWp,) < ADVp,,i # n,i # J,

which completes the proof 2.

In the next section, we present how to compute léﬁ'Entropy(Sy).

7.5.2 The Computation of %ﬂEntropy(Sv)

Highlight of Protocol 13: The protocol contains three steps. In step I, P,_; sends
e(|Sy|) to Py. P,_1 generates a set of random numbers: Ry, Ry, - -+, Ry, then sends e(|S]),

e(Ry), --+, and e(R;) to P, in a random order. P, decrypts each element, then sends
11

'|'§—|7 R
e(|Sy])® where w denotes for each decrypted element, then sends the sequence to P,

in the same order as P, did. P,_; obtains e('%’“). An information flow diagram for Step

the sequence of -, and —I%—t to P; in the same order as P,_; did. P, computes

I is provided in Figure 7.7.

2 Note that the information that P, obtains from P,_; is e(Q;), e(R1), e(Rz), -+, e(R;) in a random
order.

P

e(15])

€(|S|),€(R1>, U)e(Rt>

e(|Su]) 7, e(|Sul) P -+, e(| S|)

Figure 7.7: Information Flow Diagram of Step I in Protocol 13

95

Py

P

In step I, P, sends e(

S|
||

R’ is a random number only known by P, then sends e(

) to P; who computes e(

96

) x e(R) = ('ﬁg“l’ + R’) where

‘ SUI + R') to P,. P, decrypts it

1Sy
and sends lé" + R’ to P,_, who computes e(Entropy(S,)) s T (‘&'Entropy(S)+
R'Entropy(S,)). Next, P, and P,_; computes €(||S| Entropy(S,) + R Entropy(S,)) x
e(—R Entropy(S,)) = ('éj'lEntropy(S)). Finally, P,_; obtains e(Gain(S,A)). An
information flow diagram for Step II is provided in Figure 7.8.
()
Pn-—l Pl
|S’U| /
P, e(5+ R') P
‘Sul /
Pn Kl + f Pn—l
e(Entropy(S,))
Pn—l P1
P, e(—R'Entropy(S,))
Pn—l

Figure 7.8: Information Flow Diagram of Step II in Protocol 13

We present the formal protocol as follows:

97

Protocol 13 .

1. Step I: To Compute ‘fs?;\'

(a) P,_1 sends e(|S,|) to P.

(b) P,_1 generates a set of random numbers: Ry, Rs, -, R;.

(c) P,_1 sends e(|S]), e(Ry), ---, and e(R;) to P, in a random order. Note that
e(|S]) can be computed following step I of Protocol 12.

(d) P, decrypts each element, then sends the sequence of |1?|, Tzl? -, and R% to

P, in the same order as P,_, did.

(e) Pi computes e(|Sy|)* where w denotes for each decrypted element, then sends
the sequence to P,_1 tn the same order as P, did.

(f) P.—1 obtains e('é’f'l) since he knows the original permutations.

2. Step II: To Compute |é'ﬁ“|l€'rz7t7"opy Sy).
IS

(a) P,_1 sends e(ﬁi") to P;.

b) P, computes e 150y « e(R) = e(12l + R') where R’ is a random number only
5] Sl 5]

known by Py, then sends e(Eila R) to P,.
s

(c) P, decrypts it and sends ||5?|l + R to Py,

(d) P,_1 computes e(Entropy(Sv))(llsTullJ’R/) = e(||‘Z“||Entropy(Sv)+R’Ent7“0py(5v)).
(e) P,_1 sends e(Entropy(S,)) to Pi.
(f) P, computes e(Entropy(S,))~F = e(—R'Entropy(S,)), and sends it to P,_;.

(g) P._1 computes e(‘é‘]'Entropy(SU) + R'Entropy(S,)) x e(—R'Entropy(S,)) =
e('éﬁ]'Entropy(Sv)).

3. Step III: To Compute Information Gain for An Attribute

(a) P,_1 computes HUGAe(%Entropy(Sv)) = vea %’Jl—'Entropy(Sv).

(b) He computes e(Y ", c4 {lsT“”Entropy(Sv))_1 =e(— D en %”—'lEntropy(Sv)).

(c) He computes e(Gain(S, A)) = e(Entropy(S)) X e(—>_,ca %Entropy(Sv)).

98

The Correctness Analysis of Protocol 13: In step I, F,_; obtains e(|5“|

|S
I1, P,_; gets ||S§’||Entropy(5’v). In step III, P,_; obtains e(Gain(S, A)). The computation

uses the both properties of homomorphic encryption (Equation 3.1 and Equation 3.2).

). In step

The Complexity Analysis of Protocol 13: The total communication cost is
upper bounded by 3a(t + 3) consisting of (1) the cost of 2a(t + 1) + B(t + 1) + o where
g is the number of bits for each plaintext and is assumed that 8 < a. (2) the cost of
4o + f from step 2.

The following contributes to the computational cost: (1)The generation of ¢ + 1
random numbers. (2)The total number of ¢ + 2 encryptions. (3)¢ + 1 inversions. (4)4
exponentiations. (5)The total number of 2 + nc¢ multiplications where nc is the total
number classes. (6) A permutation of N numbers.

Therefore, the total computation cost is g4(t+1)+6(t+2)+t+1+44+2+nc+gN =
goN + (gs + T)t + 19 + g4 + ne).

Theorem 14 Protocol 13 preserve data privacy at a level equal to ADVp, .
Proof 14 We will identify the value of € such that
|Pr(T|CP) — Pr(T)| < e

holds for T' = Tp,, i € [1,n], and CP = Protocol 13.

According to our notation in Section 3.7,

ADVp, = Pr(Tp|VIEWS, , Protocol18) — Pr(Tp|VIEWS,),i # n,
and
ADVp, = Pr(Tp,|VIEWp,, Protocol18) — Pr(Tp,|VIEWE,),i # n,i # j.

The information that P; where i # n obtains from other parties is encrypted by e
which is semantically secure, therefore,

ADVp, = ADV.

In order to show that privacy is preserved according to Definition 5, we need to know
the value of the privacy level e. We set

99

e = max(ADVp, , ADVp,) = max(ADVp, ,ADVs) = ADVp,.
Then
PT(Tpi‘V]EWPn, PTOtOCOlIS’) - PT‘(TPzIV]EWPn) S ADVpn,Z 7é n,

and

Pr(Tp;,|VIEWp,, Protocol13) — Pr(Tp,|VIEWp,) < ADVp,,i # n,i # j,

which completes the proof.

7.5.3 To Compute the Attribute With the Largest Information
Gain

Once we compute the information gain for each candidate attribute, we then compute
the attribute with the largest information gain. Without loss of generality, assuming
there are k information gains: e(g;), e(gq), - - -, and e(gx), with each corresponding to a
particular attribute. We then apply Protocol 4 in Section 3.7.4 to compute the attribute

with the largest information gain.

7.6 Overall Complexity Overhead Analysis

In this section, we analyze the overall efficiency of our proposed solutions. We have
provided the computation cost and communication cost for each component protocol.
We will combine them in order to achieve privacy-preserving decision tree classification.
The overall communication and computation overhead for vertical collaboration among
multiple parties is aT(n—1)N +2an®+ an + T (3t +5) + 6a)i and ((n — 1) N + 16n* +
gsnlog(n) + 6n + gat + 3g1 + 11 + 2nc)i where 4 is the number of iterations that the
algorithm needs to be run. The overall communication and computation overhead for
horizontal collaboration among multiple parties is (2an?+ a(1+T)n+3a(T + 1)t +3a)i
and ((g2 + 1)N + 16n? + gsnlog(n) + 12n + (3g, + 14)t + g1 + go + 2nc + 36)i where i is
the number of iterations that the algorithm needs to be run.

Chapter 8

Privacy-Preserving k-Nearest

Neighbor Classification

8.1 Background

The k-nearest neighbor classification [23] is an instance-based learning algorithm that
has been shown to be very effective for a variety of problem domains. The objective of
k-nearest neighbor classification is to discover k nearest neighbors for a given instance,
then assign a class label to the given instance according to the majority class of the
k nearest neighbors. The algorithm assumes that all instances correspond to points
in the n-dimensional space. The key element of this scheme is the availability of a
similarity measure that is capable of identifying neighbors. The nearest neighbors of
an instance are defined in terms of a distance function such as the standard Euclidean
distance. More precisely, let an arbitrary instance be described by the feature vector
(a1(x),as(z), -+ ,a,(x)), where a;(x) denotes the value of the ith attribute of instance

z. Then the distance between two instances z; and z; is defined as dist(x;, z;), where

T

dist(zs,z;) = | 3 (ag(w:) — ag(e;))?. (8.1)

g=1

In this chapter, we use the square of the standard Euclidean distance to compare the
different distances.

T

dist®(zi,1;) = > _(ag(m:) — ag(z;))*. (8.2)

g=1

100

101

8.2 k-Nearest Neighbor Classification Procedure

We consider learning discrete-valued target functions of the form f : RY — V, where
V' is the finite set vy, vs, -+ ,vs. The following is the procedure for building a k-nearest
neighbor classifier.

Algorithm 5 .
1. Training algorithm:

e For each training example (z, f(z)), add the example to the list training-
examples.

2. Classification algorithm: Given a query instance x, to be classified,

e Letxy, -+ x denote the k instances from training-examples that are nearest

to x,.

o Return
k

Flarg) — argmax > 6w, £(z)),

where 6(a,b) =1 if a = b and 6(a,b) = 0 otherwise.

Figure 8.1 illustrates the operation of the k-nearest neighbor algorithm for the case
where the instances are points in a two-dimensional space and where the target function
is boolean valued. The positive and negative training examples are shown by '+’ and ’-’
respectively. A query point is shown as well. Note that the 1-nearest neighbor algorithm
classifies the query point as a positive example in this figure, whereas the 5-nearest
neighbor algorithm classifies it as a negative example.

To build a k-nearest neighbor classifier, the key point is to privately obtain k nearest
instances for a given point. Next, we will provide privacy-oriented protocols for the
scenarios of vertical collaboration as well as horizontal collaboration.

8.3 Privacy-Preserving Protocols for Vertical Col-

laboration

In vertical collaboration, given a query instance x,, we want to compute the distance
between z, and each of the N training instances. Since each party holds only a portion of

102

The The query point

Figure 8.1: An Example of k-Nearest Neighbor Classification

a training instance, each party computes her portion of the distance (called the distance
portion) according to her attribute set. To decide the k nearest neighbors of z,, all
the parties need to sum their distance portions together. For example, assume that the
distance portions (the square of the standard Euclidean distance) for the first instance
are S11, S12, **+, S1n; and the distance portions (the square of the standard Euclidean
distance) for the second instance are sa1, a2, < - -, S2,. To compute whether the distance
between the first instance and z, is larger than the distance between the second instance
and z,, we need to compute whether Z?:l S15 = Z?:l $9;. How can we obtain this result
without compromising data privacy? A naive solution is that those parties disclose their
distance portions to each other, and they can then easily decide the k nearest neighbors by
comparing the distances. However, the naive solution will lead to private data disclosure.
The reasons are as follows:

Problem 13 (Multi-Query Problem) one party can make multiple queries, and if he
gets the distance portions from each query, he can then identify the private data. Let us
use an example to illustrate this problem. Assume that the query instance contains two
non-zero values, e.g., o = 1.2,4.3,0,--- ,0, and P, holds the first two attributes. Then,
the query requester can learn the private values of P, with two queries. First, he uses
z4 to get a distance value denoted as dist. He uses another x, = 5.6,4.8,0,---,0 to get

another distance value dist’. He can solve the following two equations to get the first and

103

second elements (denoted by y; and y2) of x; which are supposed to be private:

dist? = (3 — 1.2)% + (yo — 4.3)? (8.3)

dists = (y; — 5.6)> + (y2 — 4.8)? (8.4)

How do we privately compute the k nearest neighbors? Next, we develop a privacy-
oriented protocol to tackle this challenge.

Highlight of Protocol 14: Without loss of generality, assume P, has a private
distance portion of the ith training instance, sy, for i € {1, N],I € [1,n]. The problem
is to decide whether Y 7' | sy < > 85 for ¢,5 € [1, N](i # j) and select the k smallest
values, without disclosing each distance portion. In our protocol, we randomly select a
key generator, e.g., P,. The parties first seal their private data in a digital envelope,
and apply homomorphic encryptions to their data to compute e(>";" ; sy) for i € [1, N].
They then compute e(d ", —s;) for j € [1, N]. Finally, they compute the k nearest
neighbors by using privacy-oriented comparison protocol.

We present the formal protocol as follows:

Protocol 14 .
Step I: Compute (Y 1, su) fori € [1, N].

1. Key and random number generation
(a) P, generates a cryptographic key pair (e, d) of a semantically-secure homo-

morphic encryption scheme and publishes its public key e.

(b) P, generates N random numbers Ry, for alli € [1, N],l € [1,n].
2. Forward transmission

(a) P, computes e(s;; + Ry1), for i € [1, N], and sends them to Ps.

(b) Py computes e(si+Ri) Xe(sio+ Rig) = e(si1+8ia+Ra+Riz), whered € [1, N|,
and sends them to P;.

(c) Repeat 2a and 2b until P, obtains e(si + Sz + - -+ + Sin—1) + Rt + Ria +
-+ Rim—1)), for alli € [1, N].

(d) P, computes e(si), i € [1, N|, and sends them to P,_;.

8. Backward transmission

104

(a) P,_1 computes e{—Rin_1)), for i € [1, N] and sends them to P,_,.

(b) Pn_g computes €<_Ri(n—1)) X 6(—Ri(n-2)) = 6(—Ri(n_1) - Ri(n_g)), 1€ [1, N],
and sends them to P,_3.

(c¢) Repeat 3a and 3b until P, obtains e;; = e(—Ri — Rig — -+ — Ryn—1)), for all
i €[1,N].

(d) P, sends e;1, fori € [1,N], to P,_1.

4. Computation of e(d>_,—, su), fori € [1, N]
(a) Po_1 computes ejn_1) = (81484 - - +Si(n-1) F Rir+Rig+- - -+ Rign—1)) Xe(5)
= €(Si1 + LFD) + 0+ Si(n—l) + Sin + Ril -+ Rif)_ + -+ Ri(n—l)); 7 € [1,N]
(b) P,_1 computes ejn_1) X €5 = e(>_ 1, 8u), fori € [1,N] and l € [1,n].

Step II: Compute (D>, —sj) for j € [1, N].
1. Random number generation

(a) P, generates N random numbers R}, for all j € [1, N],1 € [1,n].

2. Forward transmission

(a) Py computes e(—s;1 + R};), for j € [1, N], and sends them to P.

(b) P, computes e(—sj1+ Rjy) X e(—=sjo+ Riy) = e(—sj1 — 8520+ Ry + Rjy), where
J € [1, N], and sends them to Ps.

(c) Repeat 2a and 2b until P, obtains e(—sj1 — $jo — -+ — Sj(n—1) + Fj; + Ry +
o+ Ry), forall j € LN

(d) P, computes e(—s;jn), j € [1, N], and sends them to P,_;.

8. Backward transmission

(a) Pa-1 computes e(—R,), for j € [1, N] and sends them to F,_».

(b) Pu-y computes e(— Ry, 1)) x e(=Rj, 5) = e(—Rj,_1y— Rjn_yy), J € [1, N],
and sends them to P,_3.

(c) Repeat Sa and 3b until Py obtains ej1 = e(—Rjy — Rjy— - — Ry, _,y), for all
je[1,N].

(d) P, sends ej1, for j € [1,N], to P,_1.

105

4. Computation of e(d__, —sj), for j € [1, N]

(a) Po-y computes ejin-1) = e(—=8j1—Sj2—"** = Sjn-1) T Rj1 + Rjg+- -+ R, 1)) ¥
e(—sjn) = e(—=sj1—8j2— = Sjm-1)—Sjn T+ Rj + Rjp+- -+ Ry, 1), j € [1, N].
(b) Pn_1 computes ejpm-1) X 1 = e(D> 1, —$;1), for j € [1,N] and | € [1,n].

Step III: Compute the k nearest neighbors

1. Py_y computes e(d> 1., su) x e(Dp —su) = e(> 1y su—p 11 Sj1), fori,j € [1, N},
and collects the results into a sequence & which contains N(N — 1) elements.

2. P,_1 randomly permutes this sequence and obtains the permuted sequence denoted
by ', then sends @' to P,.

3. P, decrypts each element in sequence ®'. He assigns the element +1 if the result
of decryption is not less than 0, and —1, otherwise. Finally, he obtains a +1/ — 1
sequence denoted by ®”.

4. P, sends ®" to P,_; who computes k smallest elements . They are the k nearest

neighbors for a given query instance z,. He then decides the class label for z,.

The Correctness Analysis of Protocol 14: To show that the protocol correctly
finds the k-nearest neighbors for a given query instance z,, we analyze it step by step.
In step I, P,_; obtains e(3;, su) for i € [1,N]. In step II, P,_; gets e(d>",, s;) for
J € [1, N]. The key issue is that P,_; actually obtains the k-nearest neighbors in step
ITI. This property directly follows the discussion of Protocol 4.

The Complexity Analysis of Protocol 14: The total communication cost is upper
bounded by (2N?+4nN—2N+3an*+an—« consisting of (1) the cost of 2anN from step
I; (2) the cost of 2anN from step II; (3) the cost of aN(N—1)+8N (N—1)+2an’+a(n—1)
where 3 is the number of bits of each plaintext and is assumed that § < «a.

The following contributes to the computational cost: (1) The generation of one cryp-
tographic key pair. (2)The generation of 2N random numbers. (3)The total number
of 4nN encryptions. (4)The total number of N? + 4nN + 3N multiplications. (5)The
total number of N(N — 1) decryptions. (6) 2nN additions. (7) gzsNlog(N) for sorting N
numbers.

Therefore, the total computation cost is g; + 294N + 24nN + N? + 4nN + 3N +
I3N(N — 1) + 2nN + gsNlog(N) = 14N? + 30nN + gsNlog(N) + 294N — 10N + g;.

1Using the similar technique presented in Protocol 4. Please refer to Chapter 3 for details.

106

Theorem 15 Protocol 14 preserves data privacy at a level equal to ADVp, .
Proof 15 We will identify the value of € such that
|Pr(T|CP) — Pr(T)| < ¢

holds for T = Tp,, i € [1,n], and CP = Protocol 1.

According to our notation in Section 3.7,

ADVp, = Pr(Tp,|VIEWp,, Protocol14) — Pr(Tp,|VIEWE,),i # n,

and

ADVp, = Pr(Tp,|VIEWp, Protocol14)) — Pr(Tp,|[VIEWE,),i # n,j # 1.

The information that P; where i # n obtains from other parties is encrypted by e that

15 semantically secure,

ADVp, = ADVs.

In order to show that privacy is preserved according to Definition 5, we need to know

the value of the privacy level e. We set

e = max(ADVp,, ADVp,) = maz(ADVp,, ADVs) = ADVp,.
Then
Pr(Tp|VIEWp,, Protocol 14) — Pr(Ta|VIEWs,) < ADVp, i #n,

and

Pr(Tp,|VIEWp,, Protocol14)) — Pr(Tp,|VIEWp,) < ADVp,,i #n,j #1,

which completes the proof 2.

2Note that all the information that P, obtains from other parties is €i(n—1) X €j(n-1) = e(d oy sa—
>oiey Sj1) where i,j € [1, N] but in a random order.

107

8.4 Privacy-Preserving Protocols for Horizontal Col-

laboration

In horizontal collaboration, given a query instance z,, each party can compute the dis-
tance between z,; and each her instance. She can then get the k nearest neighbors of z,
based on her own (local) training examples. How to obtain the k nearest neighbors based
on the global training examples, that contain all parties’ training examples, presents a
challenge. A naive solution is to let all the parties share the distances of their local k
nearest neighbors, they can then easily decide the global k nearest neighbors by com-
paring the distances. However, the naive solution causes private data disclosure because
of multi-query problem presented in Section 8.3. Therefore, the naive solution does not
work. The parties cannot share the distances of their local k nearest neighbors. To com-
pute the global k nearest neighbors, the key is to privately compare two distance values
belonging to different parties without actually disclosing them. Without loss of general-
ity, assume P, has a private vector w; with k; distance elements, P, has a private vector
wy With ks distance elements, and the number of parties involved is n > 3. The elements
in w; and w, are sorted in increasing order. The problem is to decide the smallest k3
(ks < ki + ky) elements of these two vectors without disclosing w; and ws.

How to privately conduct this comparison presents a challenge. Next, we will develop
a privacy-oriented protocol to tackle this challenge.

Highlight of Protocol 15: We first select two parties P, and F, among all the
parties where 0,q # 1,2. Let us assume F,; is the key generator who generates a cryp-
tographic key pair (e, d) of a semantically-secure homomorphic encryption scheme and
publishes its public key e. P, and P, computes e(—Ry;) X e(—Ry;) = e(—R1; — Ry;)
(for all ¢ € [1,k] and j € [1, ko]) and sends them to P;. F, and P, then compute the
ks-nearest neighbors.

We present the formal protocol as follows:

Protocol 15 INPUT: P;’s input is a vector wy, and P’s input is a vector wy. The

elements of the vectors are taken from the real number domain.

1. P, generates a cryptographic key pair (e, d) of a semantically-secure homomorphic

encryption scheme and publishes its public key e.

2. P, and P, perform the following:

108

(a) P, computes e(wy; + Ry;) (for all ¢ € [1, k;]) where Ry; is a random number
generated by PF.

(b) Py sends e(ws; + Ry;) (for all i € [1, k1)) to Ps.

(c) P, computes e(wy; + Ri;) X e(—wgj + Raj) = e(wy; — woj + Ri; + Ry;) (for
all i € [1,k1]) and j € [1,k]) and sends them to P, where Ry; is a random

number generated by F;.
(d) P, sends e(—Ry;) (for all i € [1, ko)) to Py.

(e) Py computes e(—Ry;) X e(—Ry;) = e(—Ry; — Ryj) (for all ¢ € [1,k] and
7 € [1, ks]) and sends them to P;.

3. P, and P, perform the following:

(a) Po computes 6(’Ll)1i — Wayy + Rli + jo) X 6(—R1¢ — jo) = 6(’LU1¢ — ng).

(b) P, randomly permutes the sequence (ey, eq,- - , €x,k,) Where e, = e(wy, — wo,)
and obtains the permuted sequence (€}, ¢, -+ , € 1,)-
(c) P, sends the permuted sequence (e}, €5, -+ , €} ;.) to P,

(d) P, computes d(e}) for [€ [1, k1ks]. If d(e;) > 0, he sets ¢] = +1, otherwise, he
sets €] = —1. Now, P, obtains a vector (denoted by u) of k1ks elements with
each element being either +1 or —1.

(e) P, sends vector p to P, who computes the smallest k3 elements. We will
describe in Section 8.4.1 how P, does this computation.

(f) P, tells P, and P, what are the ks-nearest neighbors.

8.4.1 How P, Computes the Smallest k3 Elements

We follow an idea similar to Protocol 4. P, has two sequences: one is e, = e(w;, — war)
sequence, the other is a +1/ — 1 sequence. The two sequences have the same number
elements. P, knows whether or not wy, is larger than w,, by checking the value of the
corresponding position in the second sequence. For example, if the first element in the
second sequence is —1, P, gets wy; < ws1. P, checks the two sequences and obtains the k3
smallest elements. For example, w; = (w1, wis) has two elements, wy = (war, Waz, Wa3)
has three elements. The +1/ — 1 sequence has six elements, e.g., (+1, -1, -1, +1, +1,
-1) which corresponds to wy; — wayj. P, creates another sequence which corresponds to

Woj — Wy, e.8., (-1,-1,-1, +1, +1, +1). P, assigns a score for each value of w;; by counting

109

the total number of elements that w;; is not greater than. The score (s)is equal to the
total number of elements that w;; is not greater than. P, then takes the k3 elements
which have the largest score values. In this example, wi; is not greater than wy, and
Wag, and wiy < wig, thus s(wiy) = 3; wis is only not greater than weg, thus s{wis) = 1;
wor < Wi, Wig, Was, Wez, thus s(woy) = 4; woy < wyg, wog, thus s(wee) = 2; wog is not
less than any other elements, thus s(w,3) = 0. P, sorts these elements according to
their score values and gets (wa1, w11, Wag, Wiz, Wes) denoted by S, where S; = wo;, Se =
w1, S3 = Wap, Sy = Wia, S5 = woz. P, then takes the set Spminwy = {5, ¢ € [1, ks]} for
i € [1, k3] as the k3 smallest values.

The Correctness Analysis of Protocol 15: To show that kj-nearest neighbors
are obtained, we analyze step by step. In step 2, P, gets e(Ry; + Rg;) and P, gets
e(wy; — wej + Ry + Ry;). They then send them to F,. In step 3, P, computes e(wy; —
wa;+ Ri;+ Raj) —e(R+ Raj) = e(wy; —wy;) according to Equation 3.2. P, then permutes
this sequence and sends the permuted sequence to P, who decrypts €'(wy; — wo;). P,
lets P, know which is smaller between wy; and wy; by setting the permuted sequence
to be +1 or —1. Since P, knows the permutation function, he can match the permuted
sequence to the original sequence. Hence he can compute which one is smaller between
wy; and wsy; in the original sequence. He selects the k3 smallest elements and lets P, and
P, know. Therefore, k3 nearest neighbors are correctly computed.

The Complexity Analysis of Protocol 15: The bit-wise communication cost of
this protocol is 4akiky + ki + ko consisting of (1) the cost of a(ki1ks + k1 + ko) from step
2; (2) the cost of 2ak; ky from step 3.

The following contributes to the computational cost: (1)The generation of two cryp-
tographic key pairs. (2)The total number of 2(k; + k2) encryptions. (3)The total number
of 3k1ky additions. (4)A permutation of N numbers. (5)k;ks decryptions. (6)gskilog(k:)
and gskslog(ks) for sorting wy and ws, respectively. (7)kiks to compute the k3 smallest
elements.

Therefore, the total computation cost is gy + 12(k1 + ko) + 3k1ke + goIN + 13k1 k2 +
gsk1log(ky)+gskolog(ko)+kiko = gaN+17Tk1kot-gskilog(ki)+gskalog(ka)+12(k1+ke)+91.

Theorem 16 Protocol 15 preserves data privacy at a level equal to ADVp,.
Proof 16 We will identify the value of € such that

|Pr(T|CP) — Pr(T)| < e
holds for T = Tp,, i € [1,n], and CP = Protocol 15.

110

According to our notation in Section 3.7,

ADVp, = Pr(Tp,|VIEWp,, Protocol15) — Pr(Tp,|VIEWE,),i # q,

and

ADVp, = Pr(Tp,|VIEWs,, Protocol 15) — Pr(Te,|[VIEWp,), i # q,i # j.

The information that P;, i # q obtains from other parties is encrypted by e that is

semantically secure,

ADVp, = ADVs.

In order to show that privacy is preserved according to Definition 5, we need to know

the value of the privacy level . We set

¢ = maz(ADVp,, ADVp,) = max(ADVp,, ADVs) = ADVp ,i # q,j # 1.

Then

Pr(Tp,|VIEWE,, Protocol15) — Pr(Tp,|VIEWp,) < ADVp,,i # q,

and

P’I‘(ijl‘/IEWpi, P’I"OtOCOl15) — PT(TPJ‘V[EWPZ) < ADVPq,i 7é q,i 75 j,
which completes the proof 3.

So far, we present a privacy-oriented protocol to let two parties compute the certain
number of nearest neighbors. The parties can be first paired up and compute the k nearest
neighbors between two different parties. To compute the global k-nearest neighbors, the

k-nearest neighbors obtained from the Protocol 15 need to be further compared with

®Note that all the information that P, obtains from other parties is €}, €3, - , €}, but in a random

order.

111

other parties’ local neighbors. For example, assume there are four parties: P; and P,
follows the Protocol 15 to get k-nearest neighbors kj. P; and Py follow the Protocol 15
to get k-nearest neighbors k. To compute the global k-nearest neighbors, k] and k5 need
further be compared. There are two cases needed to be considered: First, all the elements
of k7 or k) belong to a single party who can directly conduct the comparison. Second, the
elements of k] or kj distribute among all the parties. In other words, some of elements
of k] or k} belong to one party, and the other elements belong to other parties. For the
second case, the Protocol 15 can be applied for further comparison but the elements in
the input vectors may be less than k. Finally, the global k-nearest neighbor instances
are selected. Next step is to decide the class label for the query instance.

In the following, we provide a privacy-oriented protocol to deal with the most general
case where each party holds a set of instances that belong to local k-nearest neighbors.
Let us assume that the class label is denoted by either 1 or -1. Before the protocol, each
party computes the summation of the class labels for the set of his instances that belong
to k-nearest neighbors. Let us use €, €, - - -, €, to denote the integer each party obtains.

Highlight of Protocol 16: A key generator is selected, e.g., P, who generates a
cryptographic key pair (€/, d') of a semantically-secure homomorphic encryption scheme
and publishes its public key €’. P; then generates a random number R; in the real domain
where i € [1,n—1]. B,_; computes and gets €'(e;+€ea+- -+ €1+ Ry +Ro+- -+ Rp_1).
P; then gets ¢/(Ry+ Ro+- - -+ R,,_1). Finally, P, computes d'(¢/(e; + €24+ +€p_1)) +¢€n
=" €& and determines that class label of z,.

We present the formal protocol as follows:
Protocol 16 .

1. P, generates a cryptographic key pair (€', d') of a semantically-secure homomorphic
encryption scheme and publishes its public key €.

2. B, generates a random number R; in the real domain where ¢ € [1,n — 1].
3. Forward transmission

(a) Py computes €'(e; + Ry) then sends it to P,.

(b) Py computes €'(e3 + R1)+ €' (ea+ Ry) = €'(€1 + €2+ Ry + R»), then sends it to
B,

(c) Continue until P, getse'(e; + €3+ -+ + €1+ Ry + Ry + -+ + Ry1).

112

4. Backward transmission

(a) P,_1 sends €' (Ry,_1) to Py_s.
(b) P,_y computes € (R,_1) + € (Rp—2) = € (Ry—1+ Rn—2) and sends it to P,_3.
(c) Continue until Py gets €' (R; + Ra + -+ + Ry—1).

5. Py sends € (Ry+ Ry+ -+ Rp_1) to Py_y.

6. P,_1 computes e (e, +ey+--+e€p_1+R1+Ro+---+Ry1) — € (R1+Ro+---+Ry_1)
=¢€(e;+ e+ +€,-1) and sends it to P,.

7. P, computes d'(€'(e1 + €2+ -+ €y-1)) + €0 = D €. If D i€ > 0, then the
class label of x4 is +1, otherwise it is —1.

The Correctness Analysis of Protocol 16: P, obtains) ., ¢ which is exactly
the majority class since there are only two classes: if it is positive, then label is +1,
otherwise, it is —1. "1, ¢ means that the summation of the total number of positive
classes and the total number of negative classes. If these two numbers are equal, then
S i € = 0. If the number of positive classes in the k-nearest neighbors is greater than
the negative classes in the k-nearest neighbors, then > » ¢ > 0, otherwise, it is less
than 0. Therefore, P, correctly decides the class label for z,.

The Complexity Analysis of Protocol 16: The bit-wise communication cost of
this protocol is 2an consisting of (1) the cost of a(n — 1) from step 3; (2) the cost of
a(n —1) from step 4; (3) the cost of & from step 5; (4) the cost of a from step 6.

The following contributes to the computational cost: (1)The generation of two cryp-
tographic key pairs. (2)The total number of 2n — 2 encryptions. (3)The total number of
2n additions. (4)One decryption.

Therefore, the total computation cost of g; +12n — 12+ 2n+ 13 =14dn+g; + 1.

Theorem 17 Protocol 16 preserves data privacy at a level equal to ADVp,.
Proof 17 We will identify the value of € such that
|Pr(T|CP) - Pr(T)| <e

holds for T = Tk, i € [1,n], and CP = Protocol 16.

According to our notation in Section 3.7,

113

ADVp, = Pr(Tp|VIEWSs,, Protocol16) — Pr(Tp,|VIEWp,),i # n,

and

ADVp, = Pr(Tp,|VIEWp,, Protocol16) — Pr(Tp,|VIEWE,),i # n,j # i.

The information that P, where i # n obtains from other parties is encrypted by e that

1§ semantically secure,

ADVp, = ADV.

In order to show that privacy is preserved according to Definition 5, we need to know

the value of the privacy level . We set

¢ = maz(ADVp,, ADVp,) = max(ADVp, ADVs) = ADVp,.
Then
Pr(Tp,\VIEWE,, Protocol16) — Pr(Tp,|VIEWp) < ADVp_,i # n,

and

Pr(Tp;,|VIEWp,, Protocol16) — Pr(Te |VIEWp,) < ADVp,,i # n,j # 1,

which completes the proof.

8.5 Overall Complexity Overhead Analysis

In this section, we analyze the overall efficiency of our proposed solutions. We have
provided the computation cost and communication cost for each component protocol. We
will combine them in order to achieve privacy-preserving k-nearest neighbor classification.
The overall communication and computation overhead for vertical collaboration among
multiple parties is «(2N?+4nN—6N)i and (14N24-30nN+(2g,—10)N+g3Nlog(N)+g;)i

114

where 7 is the number of iterations that the algorithm needs to be run. The overall
communication and computation overhead for horizontal collaboration among multiple
parties is (dakiko+2an+ky +ko+ ks —2)i and (goN + 17k ko + g3(kilog(k1) +kalog(ks)) +
12(ky + ko) + 14n + 491 + 1)i where i is the number of iterations that the algorithm needs
to be run.

Chapter 9

Privacy-Preserving Support Vector

Machine Classification

9.1 Introducing Support Vector Machine

Support vector machines were invented by Vapnik [86] in 1982. The idea consists of
mapping the space of input examples into a high-dimensional feature space, so that the
optimal separating hyperplane built on this space allow a good generalization capacity.
Figure 9.1 shows the basic idea of support vector machines, which is to map the data
into some other space called the feature space F' via a nonlinear map ® : RN — F, and

perform the above linear algorithm in F.

Input space Feature space
O O
N
O 0 ©
O O

Figure 9.1: Input Space and Feature Space
In the last few years, there has been a surge of interest in Support Vector Machines

115

116

(SVM) [86]. SVM is a powerful methodology for solving problems in nonlinear classi-
fication, function estimation and density estimation which has also led to many other
recent developments in kernel based learning methods in general [25, 76, 75]. SVMs
have been introduced within the context of statistical learning theory and structural risk
minimization. As part of the SVM algorithm, to find the maximally separating hyper-
plane, one solves convex optimization problems, typically quadratic programs. It has
been empirically shown that SVMs have good generalization performance on many ap-
plications such as text categorization [46], face detection [64], and handwritten character
recognition [54]. The input examples become linearly or almost linearly separable in the
high dimensional space through selecting an adequate mapping [85]. Research on SVMs
is extensive since it was invented. However, to our best knowledge, there is no effort in
learning SVMs on private data. In this chapter, our goal is to provide privacy-preserving
protocols for multiple parties to collaboratively learn SVMs without compromising their
data privacy.

9.2 Overview of Support Vector Machine

SVM (Figure 9.2) is primarily a two-class classifier for which the optimization criterion
is the width of the margin between the different classes. In the linear form, the formula
for output of a SVM is

—
w

u=7w-7T +Db, (9.1)

where W is the normal vector to the hyperplane and 7 is the input vector. To maximize
margin, we need minimize the following [11]:

1
min =||w|}?, (9.2)

)

subject to (W - T; +b) > 1,Vi, where T; is the ith training example, and y; is the
correct output of the SVM for the ith training example. The value y; is +1 (resp. —1)
for the positive (resp. negative) examples in a class.

To decide the class label of the given testing instances, one needs to decide which
region a testing instance belongs to in the hyperplane (Figure 9.2). It leads to make a

decision based on the following non-linear decision function

N
f(z) = sgn() K (T,) +b)
1=1

117

WeX +b =0

Figure 9.2: Nllustration of SVM

118

where z is a testing instance and x;8 are support vectors.
Through introduction of Lagrangian multipliers, the above optimization can be con-
verted into a dual quadratic optimization problem.

mai}l\ll(a) guari— Zla ioyiyiK(zi, 77) Zal, (9.3)
’-]
where o; are the Lagrange multipliers, @ = a1, oo, ---, ay, subject to inequality

constraints: «; > 0, Vi, and linear equality constraint: Zf\il yic; = 0.

By solving the dual optimization problem, one obtains the coefficients o, ¢ = 1,--- | N,
from which the normal vector w and the threshold b can be derived [67).

To deal with non-linearly separable data in feature space, Cortes and Vapnik [22]
introduced slack-variables to relax the hard-margin constraints. The modification is:

N
1
min§||‘w||2+c;gi (9.4)

subject to y;(W - z; +b) > 1 — &, Vi, where & is a slack variable that allows margin
failure and constant C' > 0 determines the trade-off between the empirical error and the
complexity term. This leads to dual quadratic problem involving Equation 9.3 subject
to the constraints C > «; > 0,V7 and Ziil yia; = 0.

To solve the dual quadratic problem, we apply sequential minimal optimization [67]
which is a very efficient algorithm for training SVMs.

9.3 Introducing Sequential Minimal Optimization

Sequential Minimal Optimization (SMO) [67] is a simple algorithm that can efficiently
solve the SVM quadratic optimization (QO) problem. Instead of directly tackling the QO
problem, it decomposes the overall QO problem into QO sub-problems based on Osunna’s
convergence theorem [64]. At each step, SMO chooses two Lagarange multipliers to
jointly optimize, finds the optimal values for these multipliers, and updates the SVM to
reflect the new optimal values.

In order to solve the two Lagrange multipliers, SMO first computes the constraints
on these multipliers and then solves for the constrained minimum.

Normally, the objective function is positive definite, SMO computes the minimum
along the direction of the linear constraints Z?Zl yic; = 0 within the boundary C' >

119

™ = as + ya(Er — Ea) 1, (9.5)

where E; = y;0;K(z;, T) — y; is the error on the ith training example, 7, is the stored
training vector and 7 is the input vector, and 7 is the second derivative of Equation 9.3

along the direction of the above linear constraints:
0= K5, 5) + K33, 5) — 2K (5, 53). (9.6)

Next step, the constrained minimum is found by clipping the unconstrained minimum

to the ends of the line segment: a2 %P ig equal to H if a¢® > H, is equal to af€® if
g 2 2 2

L < af® < H, and is equal to o %! — [, if o2*® < L. If the target ; is not equal
to the target yo, L = max(0, as — 1), H = min(C, C'+ as — o). If the target y; is equal
to the target yo, L = max(0, a0 + a1 — C), H = min(C, as + o).

The value of a; is computed from the new, clipped, ay:

0B = oy + sy — oTeliPpedy (9.7)

where s = y11.

In the procedure of sequential minimal optimization, the only step accessing the actual
attribute values is the computation of the kernel function K. Kernel functions have
various forms. Three types of kernel functions are considered here: they are the linear

— —
kernel function K = (@’ - b), the polynomial kernel function K = ((@’ - b)+ 6)¢, where
.__)
d € N, € R are constants, and the sigmoid kernel function K = tanh((k(@ - b)) +6),
. — =57
where k,60 € R are constants, for instances a and b .

9.4 Privacy-Preserving Protocol for Vertical Collab-

oration

In vertical collaboration, the key point is to privately compute the kernel functions. The
only computation involving private data is to compute the vector product between two
instances. Since each party has partial attribute values, each of them can only compute
partial vector product. The challenge is how to combine these partial vector products

without disclosing each party’s private data. The problem is formally defined as follows.

Problem 14 Assume that there are two instance vectors, T, and T3, which contain
T =T, + Yy + -+ 7T, number of attributes. P has the attribute values of the first

120

T, attributes, and Py has the attribute values of the second Yo attributes, ---, P, has
the attribute values of the last Y,, attributes. We use x1; to denote the ith element
in vector Ty, and o to denote the ith element in vector T. In order to compute the
K(z1,73), the key issue is how the multiple parties compute the vector product between T1
and T3 without disclosing them to each other. Note that vector product is different from
computing the frequency count in that the vector the data consists of real numbers while
the frequency count applies frequency count applies to binary data. Before applying our
privacy-preserving protocol, P, computes 2?;11 Ty - To; and gets a count vy. Py computes
ZETHE Ty - To; and gets a count vy, - -+, P, computes ZZ.T:T_THH Zi; - To; and gets a

count v,. The goal is to privately compute > o v; = v1 + Vg + -+ + Uy.

j=1

The Protocol 3 in Section 3.7.3 can be applied to solve this problem.

9.5 Privacy-Preserving Protocol for Horizontal Col-

laboration

Conducting SMO algorithm in horizontal collaboration is much more challenging. Let us
revisit the algorithm step by step. For convenience, all quantities that refer to the first
multiplier will have a subscript 1, while all quantities that refer to the second multiplier
will have a subscript 2. The whole process contains many iterations. We describe one

iteration as follows.

9.5.1 Sequential Minimal Optimization Procedure

1. The algorithm first computes the second Lagrange multiplier cy and computes the
ends of the diagonal line segment in terms of . When y; # 45 or y; = ¥, the
following different bounds apply to as:

I = ma:c(O Qg — al) lf "N 7& Yo (98)
maz(0, a0+ — C) iy =1
mm(C as + aq) ify =y

2. The second derivative of the objective function along the diagonal line can be
expressed as

121

n=K(@i,n) + K(Z3,%3) — 2K(T1, T5).

. SMO computes the minimum along the direction of the linear constraints Z?:l YiQy =
0 within the boundary C' > a; > 0, i1 =1,2.

as™ = ag +ya(E; — Eq) m, (9.10)
where E; = y;0;K(7;,) — v; is the error on the ith training example, Z; is the
stored training vector and = is the input vector.

Then, the constrained minimum is found by clipping the unconstrained minimum
to the ends of the line segment:

H ifolev>H

ol if L <ol < H (9.11)
L ar <L

agew,clipped —

The value of ¢ is computed from the new, clipped, as:

ol = q + s(ay — oo eliped), (9.12)

where s = y175.

. To make the learning more efficient, SMO algorithm provides some heuristics for
choosing which multipliers to optimize. The algorithm iterates over the entire
training set, determining whether each example violates the Karush-Kuhn-Tucker
(KKT) conditions which are necessary and suflicient conditions for an optimal point
of a positive definite QP problem. The KKT conditions are as follows.

o =0y Zjil yio5K (T3, 7)) — 0] > 1,
O<ay<Ceuy Zj.v:l yia;[K(z7,7;) — b] = 1,
a=C &y Y, yoylK (T, T0) — b < L.

If an example violates the KKT conditions, it is then eligible for optimization.
The algorithm first selects the non-bound examples, whose Lagrange multipliers
are neither 0 nor C, to optimize, then selects the bound examples until the entire
training set obeys the KKT conditions. Asthe SMO algorithm progresses, examples
that are at the bounds are likely to stay at the bounds, while examples that are
not at the bounds will move as other examples are optimized. The SMO algorithm

therefore iterates over the non-bound subset until that subset is self-consistent,

122

then SMO scans the entire data set to search for any bound examples that have
become KKT violated due to optimizing the non-bound subset.

5. Once the first Lagrange multiplier is chosen, SMO chooses the second Lagrange
multiplier to maximize the size of step taken during joint optimization. SMO

computes |E} — Es| and selects E,, which makes |Ey; — Ey| maximal, to optimize.

6. The threshold b is re-computed after each step so that the KKT conditions are
fulfilled for both optimized examples.

new __ bi+by
b - 2

= Iyl(a?ew - al)(K(aj—l)7 m_{) + K(E—l)a $_2))
+yp(afeeimred _ o V(K (23, 73) + K(T7, 13))

+E, + Ey +2b

The technical core of the privacy-preserving SVM computation is the optimization
problem with quadratic constraints and objective functions. SMO provides an efficient
way to solve such a problem. To achieve privacy-oriented computation, we design the
privacy-preserving protocols.

Optimization involves recursion where desired results are usually obtained through
not one but many iterations of refinement and adjustment, and decision-making where
conditions must be evaluated before particular computation can be conducted subse-
quently. For recursive procedures, we want to ensure that intermediate computed results
generated during iterations will not reveal actual data values. In the presence of con-
ditional statements, we must decide how multiple parties are participating in handling
the dependency. Within our goal-oriented model, it is possible to prevent intermediate

disclosure (e.g., [83]) from executing recursion among multiple parties.

Specifically, we use homomorphic encryption and digital envelope techniques to design
the privacy-preserving protocols. The basic idea of our scheme is that all the compu-
tations are conducted under the encryption protection so that nobody knows the de-
crypted results for each iteration. In the meanwhile, the key generator is also prevented
from knowing the private data because of the way that the protocols are designed. The
privacy-preserving system guarantees that the private data will not be disclosed provided
that the computation server and key generator do not collude each other or with any of
private data owners.

123

Protocols for choosing which
multiplier to be optimized
(Protocol 9-13)

Continue
optimization

Protocols for solving two lagrange multipliers

(Protocol 1-8)

Stop optimization
Decision Making
Protocol 14
Answer Question

[Classification queﬂ

Figure 9.3: A Flow Chart of Protocols

124

9.5.2 Privacy-Preserving Computations of Kernel Functions

The computation of a3*¥ also involves the computation of ys(Ey — E,). During these
computations, they need to compute kernel functions. There are four types of kernel

functions typically considered. They are

T1 - Ta (Linear)
K(2y, 1) = (71 - 75 + 0)¢ (Polynomial) (9.13)
’ tanh(kZ) - 73 +0) (Sigmoid)
ewp(_lhg—lg_zﬂ”%ui) (Gaussian)

In this section, we develop a privacy-preserving protocol to compute each kernel
function. The inputs for each protocol are the same. P;’s input is a vector T = {z11,
Tig, -+ , 1y }. Py’sinput is a vector Ty = {Za1, Tag, - -, Tor}. The elements in the input
vectors are taken from the real domain.

Protocol 17 (Privacy-Preserving Computation of Linear Kernel Function)
1. P, performs the following operations:
(a) She computes e(zy;)s (¢ € [1,Y]) and sends them to Ps.
2. P, performs the following operations:

(a) He computes wy = e(x11)*?! = e(Z11 - T21), we = e(212)"2 = e(T12 - To2), - -,
wy = e(x17)*?T = e(T1y - Tov)-

(b) He computes w; X wy X -+ X wy = e(T11 - Ta + T12 - Tag + -+ + T1v - Tay) =

e(z71 - 73).

The Correctness Analysis of Protocol 17: The correctness of the protocol follows
the properties of homomorphic encryption. It can be seen that P, obtain e(a_:f . 55_2))

The Complexity Analysis of Protocol 17: The bit-wise communication cost of
this protocol is Ta.

The following contributes to the computational cost: (1)T encryptions. (2)Y exon-
erations. (3) T — 1 multiplications.

Therefore, the total computation cost is 67T + T + 7T —1 =87 — 1.

Theorem 18 Protocol 17 preserves data privacy at a level equal to ADVy.

125

Proof 18 We will identify the value of € such that
|Pr(T|CP) — Pr(T)| < ¢

holds for T = Tp,, i € [1,2], and CP = Protocol 17.

According to our notation in Section 3.7,

ADVp, = Pr(Tp,|VIEWp,, Protocol17) — Pr(Tp,|VIEWp,),

and

ADVp, = Pr(Tp,|VIEWSp,, Protocol17) — Pr(Tp,|VIEWp,).
Since Py doesn’t send data to Py,
ADVp = 0.

The information that Py obtains from Py is under a semantic encryption. Therefore,

ADVp, = ADVs.

In order to show that privacy is preserved according to Definition 5, we need to know
the value of the privacy level . We set

e = max(ADVp , ADVp,) = ADVs.
Then
Pr(Tp,\VIEWp,, Protocol17) — Pr(Tp,|VIEWp,) < ADV,

and

Pr(Tp |VIEWSp,, Protocol17) — Pr(Tp |[VIEWp,) < ADVs.

which completes the proof.

126

Protocol 18 (Privacy-Preserving Computation of Polynomial Kernel Function)
1. P, performs the following operations:
(a) She computes e(zy;)s (¢ € [1,T]) and sends them to Ps.
2. P, performs the following operations:
(a) He computes wy = e(z11)* = e(x11 - T21), w2 = e(x12)*2? = e(T19 - Taz), « -
wy = e(z17)*** = e(T17 - Tax).
(b) He computes wy X wg X «++ X wy = e(T11 * To1 + T12 - Tog + - + T17 - Tax)-
(c) He computes e((z1 - 73) +6) = e((Z1 - 72)) X e(6).
(d) He generates a set of t random numbers and computes e(R;), e(Rs), ---,
e(R;). Let us call the sequence ® be e((z7 - z3) +0), e(R1), e(Ra), -+, e(Ry).
(e) He randomly permutes ® and obtains @', then sends &' to K'S.
(f) KS decrypts each term in ® and computes R¢, RS, ---, R%, and (77 -Z5) +6)%

But KS does not know which one is ((Z; - Z3) + 6)¢ since it is in a random
form.

(g) KS then encrypts each computed term and sends them back to P;.
(h) P, gets e((z1 - 3) + 6)%).

The Correctness Analysis of Protocol 18: In Step 3 among FP,’s operation. Py
computes e((Z1 - T3) +0). The correctness follows the properties of homomorphic encryp-
tion. It can seen that P, finally obtains e((Z] - Z3) -+ 0)%) since he has the permutation
function.

The Complexity Analysis of Protocol 18: The bit-wise communication cost of
this protocol is (3T + 2)a.

The following contributes to the computational cost: (1)27T+1 encryptions. (2)2T+1
exponentiations. (3)2Y multiplications. (4)Y+1 decryptions. (5) A permutation of m+1
elements.

Theorem 19 Protocol 18 preserves data privacy at a level equal to ADVkg.
Proof 19 We will identify the value of € such that

|Pr(T|CP) — Pr(T)| < e

127

holds for T =Tp,, i € [1,2], T = Tp,, and CP = Protocol 18.

According to our notation in Section 3.7,

ADVp, = Pr(Tp,|VIEWp,, Protocol18) — Pr(Tp,|VIEWp,),

ADVp, = Pr(Tp,|VIEWSp,, Protocol18) — Pr(Tp |VIEWp,),
and
ADVp, o = Pr(Tp|VIEWp,, Protocol 18) — Pr(Tp|VIEWp,).
Since Py doesn’t send data to P,
ADVp, = 0.

Since all the information that Py obtains from Py is encrypted by a semantically secure

scheme,
ADVp, = ADVs.

In order to show that privacy is preserved according to Definition 5, we need to know

the value of the privacy level . We set

¢ = max(ADVp,, ADVp,, ADVp,) = maz(ADVs, ADVkg) = ADViks.
Then

Pr(Tp,|VIEWp,, Protocol 18) — Pr(Tp,|VIEWp,) < ADVs,

Pr(Tp, |VIEWp,, Protocol18) — Pr(Tp,|VIEWp,) < ADVks,

Pr(Tp|VIEWp, ., Protocol18) — Pr(Tp,|VIEWp,) < ADVks.

which completes the proof *.

!Note that the information that K.S obtains from P; is the sequence e((Z; - T3) + 6), e(R1), e(Ra),
---, e(R¢) but in random order.

128

Protocol 19 (Privacy-Preserving Computation of Sigmoid Kernel Function)

1. P, performs the following operations:

(a) She computes e(kzy;)s (¢ € [1,T]) and sends them to Ps.

2. P, performs the following operations:

(a) He computes w; = e(kx11)*' = e(kZ11 - Ta1), we = e(KL19)"> = e(KT12 - Ta2),
<o wy = e(kTyy)*?Y = e(KT1y - Tov)-

(b) He computes wy X wy X « -+ X wy = €(KT11 - Toy + KT12 Tog + * - + KTy - Tov) =
e(kT1 - T3).

(¢) He computes e((kZ] - T3) + 0) = e((kT1 - T3)) x e(0).

(d) He generates a set of m random numbers and computes e(R;), e(Rs), - - -,
e(R,). Let us call the sequence ® be e((kZ1-73) +0), e(R1), e(Ra), - -, e(Ry).

(e) He randomly permutes ® and obtains @', then sends &’ to K'S.

(f) KS decrypts each term in @' and computes tanh(Ry), tanh(Ry), - - -, tanh(Rry),
and tanh(kz; - Z3) + 0). But KS does not know which one is (kZ; - Z5) +)

since it is in a random form.
(g) KS then encrypts each computed term and sends them back to Ps.
(h) P, gets e(tanh((z7 - 73) + 6)%)).

The Correctness Analysis of Protocol 19: In Step 3 among F5’s operations.
P, computes e((k77 - T3) + 0). The correctness follows the properties of homomorphic
encryption. It can seen that P finally obtains e(tanh((z7 - Z3) + 6)%)) since he has the
permutation function.

The Complexity Analysis of Protocol 19: The bit-wise communication cost of
this protocol is (37 + 2)c.

The following contributes to the computational cost: (1)2T + 1 encryptions. (2)

27 + 1 exonerations. (3)2Y multiplications. (4)T + 1 decryptions. (5)A permutation of
T + 1 elements.

Theorem 20 Protocol 19 preserves data privacy at a level equal to ADVp, .
Proof 20 We will identify the value of € such that

|Pr(T|CP) — Pr(T)| < e

129

holds for T =T, i € [1,2], T = Tp,, and CP = Protocol 19.

According to our notation in Section 3.7,

ADVp, = Pr(Tp,\VIEWp,, Protocol19) — Pr(Tp,|VIEWp,),

ADVp, = Pr(Tp,|VIEWp,, Protocol19) — Pr(Tp,|VIEWp,),

and

ADVPKS = PT(TPi

VIEWp,, Protocol19) — Pr(Tp,|VIEWp,,).
Since Py does not send data to P,
ADVp = 0.

Since all the information that P, obtains from Py is encrypted by a semantically secure

scheme,
ADVp, = ADV5s.

In order to show that privacy is preserved according to Definition 5, we need to know

the value of the privacy level e. We set

€= ma:c(ADVpl,ADsz, ADVPKS) = max(ADVS, ADVPKS) = ADVPKS'
Then
Pr(Tp,|VIEWp,, Protocol19) — Pr(Tp,|VIEWp,) < ADVp,,

Pr(Tp1|VIEWp2, P?“OtOCOl]g) - PT(TP1|VIEWPZ) SPKS’

and

Pr(Tp|VIEWS,, Protocol19) — Pr(Tp|[VIEWp,) < ADVp, ..

which completes the proof 2.

2Note that the information that K S obtains from P; is the sequence e((Z7 - Z3) + 6), e(R1), e(Ra),

---, e(R:) but in random order.

130

Protocol 20 (Privacy-Preserving Computation of Gaussian Kernel Function)

1. P, performs the following operations:

(a) She computes e(3";, 22) and sends them to P,.

(b) She computes e(z1;)s (i € [1,Y]) and sends them to P.
2. P, performs the following operations:

(a) He computes wy = e(z11) 722 = e(—2111-T91), Wy = e(219)"%22) = e(~2x15-

Tag), -+, wr = e(zry) (72 = e(—2z17 - Tov).
(b) He computes t = w; Xwy X+ - - X wy = e(—2(ZT11 To1 +T12- Tag+- - - +Ti7 Tax)).
(c) He computes e({[z1 — @2[|?) = 6(23:1 7%) X e(3oy oh) X t.
(d) He generates a set of m random numbers and computes e(R;), e(Rsg), -+,
e(Ry). Let us call the sequence @ be e(||z; — z2||?), e(R1), e(Rz), -+, e(Ry).
(e) He randomly permutes ® and obtains @', then sends &' to KS.

(f) KS decrypts each term in & and computes , ea:p(%gi), e:rp(:oi?), e emp(%i),
_ 2 . _ 2 .
and exp(—_”xla—fz“). But KS does not know which one is exp(%) since

it is in a random form.

(g) KS then encrypts each computed term and sends them back to P,.
(h) Py gets exp(llzgzelly,

o2

The Correctness Analysis of Protocol 20: In Step 3 among F;’s operations. P,
computes e(||z; — z3||?). The correctness follows the properties of homomorphic encryp-
tion. It can be seen that P finally obtains eacp(_Hm;—;sz) since he has the permutation
function.

The Complexity Analysis of Protocol 20: The bit-wise communication cost of
this protocol is (31 + 3)a.

The following contributes to the computational cost: (1)2T + 2 encryptions. (2) 2

Upsilon + 1 exonerations. (3) T + 1 multiplications. (4) T + 1 decryptions. (5)A
permutation of T + 1 elements.

Theorem 21 Protocol 20 preserves data privacy at a level equal to ADVp, .

131

Proof 21 We will identify the value of € such that
|Pr(T|CP) — Pr(T)| <

holds for T =T, i € [1,n], T = Tp,,, and CP = Protocol 20.

According to our notation in Section 3.7,

ADVp, = Pr(Tp,|VIEWp,, Protocol20) — Pr(Tp,|VIEWE,),

ADVp, = Pr(Tp,|VIEWSp,, Protocol20) — Pr(Tp,|VIEWp,),

and

ADVp,, = Pr(Tp|\VIEWp,, Protocol20) — Pr(Tp,|VIEWp,).
Since Py does not send data to Py,
ADVp = 0.

Since all the information that Py obtains from Py is encrypted by a semantically secure

scheme,
ADVp, = ADV5.

In order to show that privacy is preserved according to Definition 5, we need to know

the value of the privacy level e. We set

€ = ’ITL(J,.Z'(ADVpl, ADVPQ, ADVPKS) = maa:(ADVS, ADVPKS) = ADVPKS-
Then

Pr(Tp,|VIEWp,, Protocol20) — Pr(Tp,|VIEWp,) < ADVp,.,

Pr(Tp, |VIEWp,, Protocol20) — Pr(Tp,|VIEWp,) < ADVp,,

132

and

Pr(Tp,|VIEWp, ., Protocol20) — Pr(Tp|\VIEWp,) < ADVp,,.

which completes the proof 3.

9.5.3 Privacy-Preserving Computations of Lagrange Multipli-

ers

In our protocols, the private data are protected by encryptions and digital envelopes.
Prior to applying any of the protocols, K'S generates a cryptographic key pair (e, d) of a
semantically-secure homomorphic encryption scheme and publishes its public key e. We
will design privacy-preserving protocols for each steps of learning.

To compute the margin for Lagrange multipliers (e.g., @; and as), one needs to
compare the class labels, y; and y,, whose values are either 1 or -1. Since the values
for the class label are also treated as private data, a naive solution, where y; and y, are
compared in plaintext, does not work. To make the comparison privacy-preserving, a
key generator(KS) generates a homomorphic encryption key pair which will be used for
designing the protocol.

Protocol 21 Privacy-Preserving Comparison Between y; and ys

1. P, and P, agree on two random digital envelopes Ry and Ry respectively. If their
class labels are 1, they apply Ry to hide their class labels, otherwise, they apply Ry
to hide their class labels. As we will analyze, Ry and Ry should satisfy the following
conditions: Ry # —1, Ry # 1, R1 # —Rs, Ry # Ry + 2, and Ry # Ry — 2.

2. Py throws a fair coin. Ifit is head, P; first sends e(y,+R;), then sends e(—{(y1+R;)),
to C'S where i € [1,2]; Otherwise, P, sends them in the reverse order to CS.

3. Py throws a fair coin. If it is head, P, first sends e(ys + R;), then sends e(—(y2 +
R;)), to CS where j € [1,2]; Otherwise, P, sends them in the reverse order to CS.

4. CS computes the multiplications of all the combinations, e.g, e(y1 +R; +y2+ R;) =
e(yr + Ri) x e(y2 + Rj), e(yr + Ri — (y2 + Ry)) = e(yn + Ri) X e(—(y2 + Ry)),

®Note that the information that KS obtains from P; is the sequence e((Z; - Z3) + 6), e(R1), e(Ra),
--+, e{(R¢) but in random order.

133

e(y2+ By — (n1 + Ri)) = e(y2 + Rj) x e(— (1 + R)), and e(~(y1 + Ri) — (g2 + R;)) =
e(—(y1+ R)) x e(—(y2 + R;)). CS then sends them to KS. Note that neither C'S
nor KS knows which one is e(yy + R; + y2 + R;), or e(y1 + R; — (y2 + R;)), or
e(y2+ Rj — (1 + Ri)), ore(—(y1 + Bi) — (32 + Ry)).

5. K S decrypts them and sends the decrypted terms to CS.

6. CS knows whether y; = yo. If there are two zeros, then y; = yo; Otherwise, y1 # ys.

The Correctness Analysis of Protocol 21: To show the comparison result is
correct, we need to consider the following cases:

e y; =y = 1. Inthis case, KS obtains y1 + R1+y,+R1 = 2R1+2, y1+Ri—y:— Ry =
0, y2+R1 "yl_Rl = 0, and —Y1 —Rl —yQ—RQ = —2R1 — 2. Since R1 7é —].,
there are only 2 zeros.

e y1 =1y =—1. KSobtainsy; + Ro+y2+ R =2R; — 2, y1 + Ry —yo — Ry = 0,
Yo+ Ry —y1 — Ry =0, and —y; — Ry — yo — Ry = —2Ry + 2. Since Ry # 1, there
are only 2 zeros.

oy =1y,=-1. KSobtainsy; + Bi+yp+Ro=Ri+ Ry, 1 + 1 —yp — Ry =
2+ Ry~ Ry, o+ Ro—y1 — Ry = =2+ Ry~ Ry, and —y; — Ry —yo— Ry = —R1 — Ro.
Since Ry # Ry — 2 and R; # — Ry, all terms are non-zero.

ey =-1yo=1 KSobtainsyi + Ro+yp+tRi=Ri+ Ry, 1+ Re—yo— Ry =
—2+4+Ry~Ry, yo+Rey—yn— Ry =2+ Ry~ Ry, and —y; — Ry —ys— Ry = —R; — Ry.
Since Ry # Ry — 2, Ry # Ry + 2, and Ry # —R;, all terms are non-zero.

When y; = 1o, KS obtains 2 zeros among all the decrypted terms; Otherwise, K'S ob-
tains no zero among all the decrypted terms. Therefore, the protocol correctly compares
the two class labels.

The Complexity Analysis of Protocol 21: The bit-wise communication cost of
this protocol is 14a.

The following contributes to the computational cost: (1)The generation of two cryp-
tographic key pairs and two digital envelopes. (2) 8 encryptions. (3) 4 multiplications.
(4)4 decryption. (5) 8 additions.

Theorem 22 Protocol 21 preserves data privacy at a level equal to ADVp, .

134

Proof 22 We will identify the value of € such that
|Pr(T|CP) - Pr(T)| < e

holds for T = Tp,, i € [1,2], and CP = Protocol 21.

According to our notation in Section 3.7,

ADVPCS = PT(TpiIVIEWCs, P’I"OtOCOlQ]) - PT(TpiIVIEWCs),’L' = 1, 2,

and

ADVp, . = Pr(Tp,|VIEWgg, Protocol21) — Pr(Tp,|VIEWksg).

Since all the information that CS obtains from P, and Py in Protocol 21 is e(A; +
R; % X) for 1 <i < N and e is semantically secure,

ADVp,, = ADVs.

In order to show that privacy is preserved according to Definition 5, we need to know

the value of the privacy level e. We set

€ = maz(ADVp,,, ADVp, ;) = maz(ADVs, ADVp,).
Then
Pr{(Ts|VIEWes, Protocol21) — Pr(Te|VIEWes) < ADVp,,i=1,2,

and

Pr(Tp,|VIEWkg, Protocol21) — Pr(Tp|VIEWks) < ADVp,,.
which completes the proof.

Once the relation between y; and ¥, is obtained, the margin L and H can be computed
via the following protocol. Since L = maz(0, ag—ay) and H = min(C, C+ag—a;) when

Y1 # Yo; L = maz(0,as + a1 — C) and H = min(C, ap + a1) when y; = yo. The purpose

135

of computing L and H is to compute Lagrange multipliers, we will compute e(as — o)
and e(C + ap — o) when y; # yo; e(as + a3 — C) and e(as + aq) when y; = y5. We
will not obtain the exact L and H in this protocol. The encrypted terms of L and H will

serve one of the components in computing Lagrange multipliers.
Protocol 22 (Privacy-Preserving Computation for L and H)
1. P, sends e(ay) and e(—ay) to CS.
2. P, sends e(aw), e(C), and e(—C) to CS.

3. If y1 = ya, CS computes e{ay — a1) = e(ag) X e(—ay) and e(C + as — 1) =
e(C) x e(ag — o).

4. If y1 # ya2, CS computes e(as + a1) = e(ag) X e(ay), and e(az + a1 — C) =
e(as + ay) x e(—C).

The Correctness Analysis of Protocol 22: The correctness of the protocol follows
the property of homomorphic encryptions. It can be seen that C'S obtains e(as —)
and e(C + ay — «;) when y; # ys; e(ag + a3 — C) and e(as + «;) when y; = yo.

The Complexity Analysis of Protocol 22: The bit-wise communication cost of
this protocol is 5a.

The following contributes to the computational cost: (1)3 encryptions. (2) 2 multi-
plications.

Theorem 23 Protocol 22 preserves data privacy at a level equal to ADVs.
Proof 23 We will identify the value of € such that
|Pr(T|CP) — Pr(T)| < ¢

holds for T'=Tg,, it € [1,n], and CP = Protocol 22.
According to our notation in Section 3.7,

ADVp_., = Pr(T|\CP) = Pr(Tp,|VIEW¢g, Protocol 22) — Pr(Tp|VIEWes),i =1, 2.

Since all the information that CS obtains from P; is under encryption,

ADVp., = ADVs.

136

In order to show that privacy is preserved according to Definition 5, we need to know

the value of the privacy level e. We set

€= ADVS

Then

Pr(T|CP) = Pr(Tp,|VIEWgs, Protocol22) — Pr(Ts|VIEWgs) < ADVs,i=1,2.

which completes the proof.

To compute the optimized «; and «g, we need to compute 7. For convenience of

new

computing af®", instead of computing 1, we compute e(l). It be used to compute

7

Lagrange multipliers.

Protocol 23 (Privacy-Preserving Computation of n)

1.

2.

P, computes e(K(z1,71)) and sends it to P;.

P, computes e(K(73,73)).

Py and P, computes e(K(z1,T3)) using the protocols provided in Section(9.5.2).
Py computes e(—2K (1, 73)) = e(K (21, 73))

Py computes e(n) = e(K (7, 7)) x e(K(73,5)) x e(—2K (7, 5))).

Py generates a set of random numbers, Ry, Ry, -+-, R, and computes e(Ry), ---
e(Ry).

P sends the sequence e(n), e(Ry), ---, e(R:) in a random order to K.S.

K S decrypts each term in the sequence and computes e(%), e(Ril), e e(Rit) without
knowing which one is e(%), then sends these terms to Ps.

Py getse(ny) = e(%) and sends it to CS.

137

The Correctness Analysis of Protocol 23: Step 4 and Step 5 exactly follow
the property of homomorphic encryption. In Step 5, P, correctly computes e(n). After

receiving the sequence elements from K.S, P, can exactly obtain e(%) since he has the
permutation functions.

The Complexity Analysis of Protocol 23: The bit-wise communication cost of
this protocol is 2a.

The following contributes to the computational cost: (1) two multiplications. (2) one
summation.

Theorem 24 Protocol 23 preserves data privacy at a level equal to
mCLZE(ADVpl, ADVPz, ADVPKS) .

Proof 24 We will identify the value of € such that
|Pr(T|CP) — Pr(T)| <

holds for T =Tp,, i € [1,2], and CP = Protocol 23.

According to our notation in Section 3.7,

ADVp, = Pr(Tp,|VIEWp,, Protocol28) — Pr(Tp,|VIEWb,),

ADVp, = Pr(Tp,\VIEWp,, Protocol23) — Pr(Tp,|VIEWp,),

ADVp, . = Pr(Tp|VIEWp, ,, Protocol23) — Pr(Tp|VIEWp,,),

and

ADVp,, = Pr(Tp,|VIEWp,,, Protocol23) — Pr(Tp,|VIEWp,,).

All the information that C'S obtains from P; is e(n/) which is encrypted by a semantic
encryption, thus,

ADVp,, = ADVs.

138

In order to show that privacy is preserved according to Definition 5, we need to know
the value of the privacy level e. We set

¢ = maz(ADVp,, ADVp,, ADVp, ., ADVp_.)
= max(ADVpl, ADVPZ, ADVPKS, ADVS)
= max (ADVpl, ADVP2, ADVPKS)-

Then

Pr(Tp,|VIEWSp,, Protocol28) — Pr(Tp,|VIEWp,) < maz(ADVp,, ADVp,, ADVp,),

Pr(Tp,|VIEWp,, Protocol23) — Pr(Tp,|VIEWs,) < maz(ADVp,, ADVp,, ADVp,),

Pr(Tp|VIEWp,, Protocol23) — Pr(Tp,|VIEWp,) < max(ADVp,, ADVp,, ADVp,),

and

Pr(Tp|VIEWp,,, Protocol23) — Pr(Tp|VIEWp,s) < maz(ADVp,, ADVp,, ADVp,),

which completes the proof.

The core computation is to compute Lagrange multipliers. The following protocol is
target it.

Protocol 24 (Privacy-Preserving Computation for Lagrange Multipliers)
1. P; and P, compute e(K(z;,71)) following the protocols provided in Section 9.5.2.
2. P; and Py compute e(K (T3, T3)) following the protocols provided in Section 9.5.2.
3. Py computes e(y; xa x [e(K (T}, F)~ K (T}, B)]) = e(K (5, 5)~ K (@), 5.
4. Py sends ey, x a5 x [e(K (T, 5) - K@, B)) to P

5. Py sends e(—y;) to Py who computes e(—y1y2) = e(—y1)¥2.

10.

11.

139

P, computes e(€) = e(ya(3,, yjoulK (25, 1) — K (%5, 73)]) + 43 ~ y1y2) =
e(Z;.V:lyjaj[K(fj, T1) — K(z,73)])¥ X e(y2?) x e(—y1y2), then sends it to CS.

CS computes e(03™) = e(0s) x [e((€ X e(=py2)) X (1)) = ().

CS generates a set of random numbers Ry, ---, Ry. If y1 = yo, CS sends KS
(g™ — 0), e(a3™ — (a2 + a1 = 0)), e(ag™ — C), e(a5* — (a2 + 1)), e(hRy),
e(Ry), -, and e(R;) in a random order. If y1 # y2, CS sends KS e(ab®™ — 0),
e(af® — (ap — a1)), e(ad® — C), e(ad®™ — (C + ag — a1)), e(R1), -, e(R;) in a

random order.

K S decrypts and evaluates them. If it is greater than 0, then KS sends back +1,
otherwise, KS sends back —1.

CS computes o PP based on the evaluation results of KS.
CS computes e(af®) = e(ay) x ((e(ag) X (e(agew’dipmd)_l))ylyz.

The Correctness Analysis of Protocol 24: The correctness of Step 3, 5, 6, 7

follows the properties of homomorphic encryptions. In Step 10, C'S obtains

new,clipped

since he knows the permutation function. The correctness of Step 11 also follows the

properties of homomorphic encryptions.

The Complexity Analysis of Protocol 24: The bit-wise communication cost of
this protocol is (2T + 5)a.

The computational cost is (1) The generation of t random numbers. (2)A permutation

of t numbers. (3) t encryptions. (4) t decryptions. (5) one exponentiations . (6) 6
multiplications. (7) 3 kernel functions.

Theorem 25 Protocol 24 preserves data privacy at a level equal to ADVp, ..

Proof 25 We will identify the value of € such that

|Pr(T|CP) — Pr(T)| < ¢

holds for T =Tp, i € [1,2,--+ ,n,KS,CS], and CP = Protocol 2.
According to our notation in Section 3.7,

ADVp, = Pr(Tp,|VIEWp, Protocol2{) — Pr(Tp,|[VIEWp,),i # j,

140

ADVp., = Pr(Tp,|\VIEWp,, Protocol24) — Pr(Tp,|VIEWp,,),
and
ADVp, . = Pr(Tp,|VIEWp,, Protocol24) — Pr(Tp,|VIEWp,,).

Since all the information that P; obtains from P; is under encryption of e which is

semantically secure,

ADVp, = ADVs.

The information that C'S obtains from P; is under encryption of e which is semanti-

cally secure,

ADVp,, = ADV.

In order to show that privacy is preserved according to Definition 5, we need to know

the value of the privacy level . We set

€ = mar(ADVp,, ADVp_ ., ADVp,.) = maz(ADVs, ADVp,) = ADVp,,.
Then

Pr(Tp,|VIEWp,, Protocol24) — Pr(Tp,|VIEWp) < ADVpyg,i # j,

Pr(Tp|VIEWg,g, Protocol24) — Pr(Tp|VIEWe,) < ADVp,.,
and
Pr(Tp,|VIEWp,, Protocol24) — Pr(Tp,|VIEWp,) < ADVp,.

which completes the proof *.

4Note that the information that K S obtains from P; is hidden by t random numbers.

141

9.5.4 Privacy-Preserving Protocols for Optimized Multipliers

Selection

SMO also provides some heuristics for choosing which multipliers to optimize so that
learning process is faster. We design the following two protocols to make the heuristics

choice privacy-preserving.

Protocol 25 (Privacy-Preserving KKT conditions Checking)
1. P; and P; computes e(K (T, T;)) following the protocols provided in Section 9.5.2.
2. P; computes e(y;o; K(z;,7;)) = e(K(T;, ;)% , then sends it to P,.

3. P, computes e; = ely,(370, v, K (75, %) = 8] = e[(T, yj04 K (35, 77)) — b)Y for
i € [1, N]and sends it to CS.

4. CS generates a set of random numbers and sends e1, eq, --+, en, e(Ry), -, e(R:)

to KS in a random order.

5. KS decrypts them. If it is greater than 1, then KS assigns +2; if it is equal to 1,
then K S assigns 1; If it s smaller than 1, then K S assigns -2. K S then sends the
sequence of +2, 1, or —2 to CS.

6. CS sends KS e(a;) mized with a set of m random numbers in a random order.

7. KS decrypts them. If the result is 0, then assigns +2; if the result is C, then assigns
—2; if the result is between 0 and C, then assigns 1. KS then sends the resultant
sequence to C'S.

8. CS decides which one violates the KKT condition.

The Correctness Analysis of Protocol 25: The correctness of Step 3 follows the
properties of homomorphic encryptions. In the last step, C'S can correctly check which
one violates the KKT condition since he knows the permutation function. By removing
the permutation effects of the sequences received from K S, CS obtains the information
about which instance violates the KKT condition.

The Complexity Analysis of Protocol 25: The bit-wise communication cost of
this protocol is (3N + 47T + 3).

The computational cost is 28N + 26t 4 g2t and one Kernel function.

142

Theorem 26 Protocol 25 preserves data privacy at a level equal to ADVp,,.
Proof 26 We will identify the value of € such that

|Pr(T|CP) — Pr(T)| < ¢
holds for T =Tp, i € [1,2,--- ,n,KS,CS], and CP = Protocol 25.

According to our notation in Section 3.7,

ADVp, = Pr(Tp,|VIEWE, Protocol25) — Pr(Tp,|VIEWE,),i # J,

ADVp,, = Pr(Tp,|VIEWp,, Protocol25) — Pr(Tp|VIEWp.y),
and
ADVp,, = Pr(Tp,|VIEWp, , Protocol25) — Pr(Tp,|[VIEWp,).

Since all the information that P obtains from P; is under encryption of e which is

semantically secure,

ADVp, = ADVs.

The information that C'S obtains from P; is under encryption of e which is semanti-

cally secure,

ADVp,, = ADVs.

In order to show that privacy is preserved according to Definition 5, we need to know

the value of the privacy level e. We set

€= mLLQS(ADVPi, ADVPKS, ADVPCS) = ma:c(ADVpKS, ADVS) = ADVPKS-
Then
PT‘(ij ‘V[EWPN P’f‘OtOCOl25) - P’I‘(ij |VIEWP1) S ADVPKS,i 7é j,

Pr(Tp,|VIEWp,, Protocol 25) — Pr(Tp |[VIEWp,,) < ADVp,.,
and
PT‘(TpiIVIEWPKS, PTOtOCOl25) - PT(TPZ.\VIEWPKS) S ADVPKS-

which completes the proof 3.

®Note that the information that K'S obtains from P; is hidden by t random numbers.

143

Protocol 26 (Privacy-Preserving Computation for |Er — Eyf|)

1.

2.

10.

11.

P, and P; compute e(K (;,T1)) according to the protocols provided in Section 9.5.2.
P; computes e(y;a; K(7;,71)) = e(K (T}, 71))%%, then sends it to CS.

P, computes e(y,an K(77,71) — y1) = e(yiar K (71, 71)) X e(—vy1), then sends it to
CS.

Py and P; compute e(K (7}, T3)) according to the protocols provided in Section 9.5.2.

P; computes e(y;ja; K(;,73)) = e(K (T, T5))¥i% and sends them to CS.

8
)

P, computes e(yo0a K (T3, T3) — y2) = e(yo02 K(T3,T3)) X e(—yz), then sends it to
CS.

CS computes e(E; — Ey) = e(Zj.V:l yiou K (Z;, 1) — Z;\;l Yo K(T;,73) +yo — y1)-
Repeat to compute for all e(E; — E;) fori,j € [1, N].

CS generates a set of m random numbers Ry, ---, R;. He then sends KS the
sequence of e(E; — Ej) 1,7 € [1,N] and e(R,), - -+, e(R:) in a random order.

K S decrypts them and assigns them a ranking integer according to their absolute
value, e.g., —5.4 > 5.1, if 5.1 assign value +5, then —5.4 will be assigned at least
+6. KS then sends the ranking number to CS.

CS then decides maz |Ey — Es| by their ranking numbers.

The Correctness Analysis of Protocol 26: The correctness that Step 2-7 fol-
lows the properties of homomorphic encryption. The last step is also correct since the
maximum of |E; — E,| can be exactly determined through the ranking assigned by KS.

The Complexity Analysis of Protocol 26: The bit-wise communication cost
of this protocol is a(4N? + 2m + 8) where « is the number of bits for each encrypted
element, and m is the number of attributes in each instance. The computational cost is
N2 + 19t + N + 4 and one kernel function.

Theorem 27 Protocol 26 preserves data privacy at a level equal to ADVp,_ .

144

Proof 27 We will identify the value of € such that
|Pr(T|CP) — Pr(T)| < e

holds for T =Tp,, i € [1,2,-+- ,n, KS,CS], and CP = Protocol 26.
According to our notation in Section 3.7,

ADVp, = Pr(Tp,|VIEWE,, Protocol26) — Pr(Te,|VIEWp,),i # j,

ADVp, s = Pr(Tp|VIEWp,,, Protocol 26) — Pr(Tp,|VIEWE,,),

and

ADVp,, = Pr(Tp|VIEWp,, Protocol 26) — Pr(Tp|VIEWp,).

All the information that P,_; obtains from other parties is e(t;) for 1 < i < n,
i #n—1, and the sequence ¢’

The probability of correctly guessing t; given ¢’ is sufficiently small, and e is seman-
tically secure, therefore

ADVp, , = maz(ADVy, ADVY).

Since all the information that P; obtains from P; is under encryption of e which is
semantically secure,

ADVp, = ADV.

The information that C'S obtains from P; is under encryption of e which is semanti-
cally secure,

ADVp,, = ADVs.

In order to show that privacy is preserved according to Definition 5, we need to know
the value of the privacy level e. We set

145

¢ = mazx(ADVp,, ADVp,s, ADVe,)—aDve .

Then

Pr(Tp,|VIEWp,, Protocol26) — Pr(Te,|VIEWp,) < ADVp, i # j,

Pr(Tp,|VIEWp,,, Protocol26) — Pr(Tp|VIEWp,,) < ADVp,_,,

and

Pr(Tp,|VIEWp,, Protocol26) — Pr(Tp|\VIEWp,) < ADVp,_,.

which completes the proof ©.

The threshold b is updated after each step so that the KKT conditions are fulfilled
for both optimized examples.

Protocol 27 (Privacy-Preserving Computation for b™")
1. P, sends e(y1 K(71,%1)) to CS.
2. Py sends e(y2K(73,73)) to CS.
3. P, and Py compute e(K(z7,T3)) following the protocols provided in Section 9.5.2.
4. P, computes e(y1 K (Z1,73)) = e(K(71,73))¥1, then sends it to CS.
5. Py computes e(y, K (71, 73)) = e(K(z1,T3))", then sends it to CS.

6. CS computes e(b™") = e(232) where by = By + yi(af® — ay)[K(21,21) +
K(z1,23)] +b
by = By + ya(a™" """ — 0o)[K (%3, T3) + K (&1, @3)] + 0.
Therefore, e(§+%) = e(5(Fi+Ez)) x|e(y1 K (71, 71))+e(z05* —a)] [(le(ﬂflaﬂC_z’))
e(3(af — an)] x [e(yeK (T3, T3)) + e(3(az™ P! — az))] le(y

[
6(% (a;ewclzpped))]

6Note that the information that K S obtains from P; is hidden by t random numbers.

146

The Correctness Analysis of Protocol 27: The correctness of the protocol follows
the properties of homomorphic encryptions.

The Complexity Analysis of Protocol 27: The bit-wise communication cost of
this protocol is 4. The computational cost is 17.

Theorem 28 Protocol 27 preserves data privacy at a level equal to ADVs.
Proof 28 We will identify the value of € such that
|Pr(T|CP) — Pr(T)| < ¢

holds for T =Tp,, i € [1,2,--- ,n,CS], and CP = Protocol 27.
According to our notation in Section 3.7,

ADVp, = Pr(Tp,|VIEWp,, Protocol27) — Pr(Tp,|VIEW,),i # j,

and

ADVp,, = Pr(Tp,|VIEWE,,, Protocol27) — Pr(Tp,|VIEWp.).
Since all the information that P; obtains from P; is under encryption of e which is
semantically secure,
ADVp, = ADV5.

The information that C'S obtains from P, is under encryption of e which is semanti-
cally secure,

ADVp,, = ADVs.

In order to show that privacy is preserved according to Definition 5, we need to know
the value of the privacy level e. We set

¢ = max(ADVp, ADVp,) = ADV5s.

147

Then
Pr(Tp,|VIEWp,, Protocol27) — Pr(Tp,|VIEWE,) < ADVs,i # j,

and

Pr(Tp,|VIEWp,,, Protocol27) — Pr(Tp|VIEWp,,) < ADVs.

which completes the proof.

9.5.5 Unusual Conditions

When the kernel functions such as polynomial kernel function obey the Mercer’s condition
[85], it will be positive definite. In other words, > 0. In the last section, we consider the
normal scenarios where n > 0. However, how the multiple parties compute the Lagrange
Multiplier privately. SMO provides the method to do it. The challenge is how to make it
privacy-preserving. In this section, we first describe how the SMO deals with this case,
we then present a privacy-preserving protocol.

In this unusual circumstance, the objective function 7 should be evaluated at each

end of the line segment [67]:

fr=u1(By +b) — K (1, %7) — saa K (271, 73),
fo=y2(Ba+b) — son K (71, 23)) — a K (23, T5),
Ly = a; + s(ag — L),

Hy =01 +s{as — H),

1 1
wL = L1f1+Lf2+§L%K(£E1, 1)+ LZK()+SLL K(.fl,l'z)

1 1 1
= K(31,21)(—501+ 55" (02— L))+ K (73, 33) (5 1" — 0 L) + Zyja] (Z7, %) —y2) Lo

+K (71, 73) (—sayay— 8202 +25%ay L— s> L*) + Eyja] m],xl —y1) (a1y1 —sy1(ag— L)),

1 1
Yy = Hifr + Hfy + 5HfK(acl, T7) + H2K(T3) + sHH K (Z1,73)

148

1
SZ(ag—H)z)ﬁ—K(B,R)(*—opH)+ Zy]a] iL'j,.’Eg —Yo)yo H

N
+K (77, .’175)(—SOQO(Q—82053+282042H—82H2)+(Z yjozjK(a:_;, 1) —y1) (i +sy1aa—sy H).
je=1

The computation process is similar for ¢y and ¥g. In this following, we only describe

how to compute vy,.

Protocol 28 (Privacy-Preserving Computation of)
1. To compute e(K(z1,71)(—3a? + 1s%(as — L)?)).

(a) P; sends e(K(z1,71)) and e(—3a?) to CS.
(b) P, sends (ay — L)? to CS.
(c) CS computes e(K(T1,71)(—1a? + £s*(an — L)?)).

2. To compute e(K (T}, Ts)(—sai0p — 8203 + 25200 L — s°L?))

(a) P, and P, compute e(K(71,T3)) and sends it to CS.

(b) Py sends e(a) to CS.

(c) Py sends e(ay) to Ps.

(d) Py computes e(ayang) = e(ag)®?

(e) P, sends e{aiay), e(a?), e(asl), and e(L?) to CS.

(f) CS computes e(K(z],T3)(—saras — s2a3 + 2s2ay L — s2L?)).
3. To compute 6((2?:1 Y, K(z7,71) — y1)(aays — sy (g — L))

(a) P, sends e(K(z3,73)) to CS.

(b) P computes e(K(z3,5)(3L? — asL)).

(c) P; and P, compute e(I(Z;,77))

(d) Pj computes e(y; x a; x [e(K(Z;,T1))]) = e(K(Z;,71))¥% and sends it to CS.
(e) Py sends e(ag — L) to Py.

(f) P. computes e(—y(ae — L)) = e(ag — L)Y,
(9) P1 sends e(oqyr) and e(—y1(ag — L)) to CS.
(h) CS computes e((Z;yzl y;a; K(z7, 1) — y1)(oayr — syi(ae — L))).

4. To compute e(vr).

(a) P; and Py compute e(K(Z;,%3)).
(b) P; computes e(y; X o X [e(

(c) Py sends e(—y2) and e(y2) to CS.

(d) CS computes e(ijl Y05 K (T3, T3) — y2) La).-

(e) CS computes e(yr).

to

149

K(z},73))]) = e(K(Z;,T3))%% and sends it to CS.

The Correctness Analysis of Protocol 28: The correctness of the protocol follows

the property of homomorphic encryptions.

The Complexity Analysis of Protocol 28: The bit-wise communication cost of

this protocol is 18a. The computational cost is 6N + 99 and four kernel functions.

Theorem 29 Protocol 28 preserves data privacy at a level equal to ADV.
Proof 29 We will identify the value of € such that
|Pr(T|CP) — Pr(T)| < e

holds for T'=Tp,, i € [1,2,--- ,n,CS], and CP = Protocol 28.
According to our notation in Section 3.7,

ADVp, = Pr(Tp,|VIEWE, Protocol(28)) — Pr(Tp,|VIEWp,),i # j,

and

ADVp,, = Pr(Tp,|VIEWp,,, Protocol(28)) — Pr(Te|VIEWp,).

Since all the information that P; obtains from P; is under encryption of e which is

semantically secure,

150

ADVp, = ADVs.

The information that CS obtains from P; is under encryption of e which is semanti-
cally secure,

ADVp,, = ADVs.

In order to show that privacy is preserved according to Definition 5, we need to know
the value of the privacy level e. We set

¢ = mazx(ADVp, ADVp,) = ADV5s.
Then
Pr(Tp,[VIEWp,, Protocol(28)) — Pr(Tp,|VIEWs,) < ADVs,i # j,

and

Pr(Tp|\VIEWp,,, Protocol(28)) — Pr(Tp|VIEWE,,) < ADVs,

which completes the proof.

Note that we need check whether n = 0, we didn’t provide privacy-preserving protocol
for checking. The following protocol can be applied.

Protocol 29 (Privacy-Preserving Checking of n)
1. P, sends e(K(E:—{,ET)) to C'S.
2. P, sends e(K(z3,73)) to CS.
8. P, and Py compute e(K(z1,73)) and send it to CS.

4. CS compute e(n) = e(K(z1,77) + K(Z3,T3) — 2K(Z1,73)) = e(K(z],17)) X
(K (%5, 53)) x e(K(7,53).

10.

11.

151

CS generates m random numbers denoted by Ry, R, -+, and R;. Note that the

set of numbers generated should contain sufficient number of zeros and non-zeros
respectively.

CS computes e(Ry), e(Ra), -+, e(R;). Let us denote the sequence e(n),e(R1),
€(R2), T e(Rt) by le-

CS randomly permutes the sequence ¢1 and obtains a permuted sequence denoted
by ¢ .
CS sends ¢ to KS.

KS decrypts each element in the sequence ¢ and creates another sequence ¢f.
If the decrypted element is greater than 0, then the corresponding element in @Y
becomes 1; if the decrypted element is less than 0, then the corresponding element

in @Y is -1; if the decrypted element is 0, then the corresponding element in ¢ is

0.
KS sends the sequence ¢ to CS.

CS decides whether n is greater than 0, 0 or less than 0.

The Correctness Analysis of Protocol 29: In Step 4, C'S computes e(n). The
correctness follows the properties of homomorphic encryptions. In Step 11, C'S obtains

whether 7 >, =, < 0 since he knows the permutation functions.

The Complexity Analysis of Protocol 29: The bit-wise communication cost of

this protocol is a(2Y + 5). The computational cost is (2gs + 19)t + 12 and one kernel
function.

Theorem 30 Protocol 29 preserves data privacy at a level equal to ADVp, .

Proof 30 We will identify the value of € such that

|Pr(T|CP)— Pr(T)| <€

holds for T =Tp, i € [1,2,--- ,n,CS,KS], and CP = Protocol 29.
According to our notation in Section 3.7,

ADVp, = Pr(Tp,|VIEW,, Protocol29) — Pr(Tp,|VIEWp,),i # j,

152

ADVp,, = Pr(Tp|VIEWp,,, Protocol29) — Pr(Tp,|VIEWp,),
and
ADVp, o = Pr(Tp,|VIEWp,, Protocol 29) — Pr(Tp,|VIEWp,,).

Since all the information that P obtains from P; is under encryption of e which is

semantically secure,

ADVp, = ADVs.

The information that C'S obtains from P; is under encryption of e which is semanti-

cally secure,

ADVp,, = ADVs.

In order to show that privacy is preserved according to Definition 5, we need to know

the value of the privacy level e. We set

¢ = maz(ADVp,, ADVp o, ADVp,) = max(ADVs, ADVp,,) = ADVp,,.
Then

Pr(Tp,|VIEWp,, Protocol29) — Pr(Tp,|VIEWp,) < ADVp,s,i # j,

Pr(Tp,|VIEWp,4, Protocol29) — Pr(Tp|VIEWp.,) < ADVp,.,
and
Pr(Tp|VIEWp,, Protocol29) — Pr(Tp,|VIEWp,) < ADVp,.

which completes the proof .

"Note that the information that K S obtains from F; is hidden by t random numbers.

153

9.5.6 Privacy-Preserving Decision Making

To decide the class label of the given testing instances, one needs to make a decision

based on the following non-linear decision function

flz) = Sgn(z v K (7, 1) +b)

Protocol 30 .

. CS computes (X yios K(T, 7)) +b) = e(Cn v K(T, 7)) x e(b).

. CS generates m random numbers, e.g., R1, Ry, ---, and R;, and computes e(R1),
e(Rg), -+, and e(Ry).

. CS randomly permutes the sequence ¢ = e(> 1, v K (T, T;) + b),e(Ry), - - , e(Ry)
and get the permuted sequence ¢'.

. CS sends ¢ to KS.

. K S decrypts each element of ¢'. If it is not less than 0, then he assigns the value

+1, otherwise, he assigns the value -1. Finally, KS obtains a sequence ¢" of
+1/ - 1.

. KS sends CS the sequence ¢".

. C'S removes the permutation effects and gets the result of the decision function

f(z).

The Correctness Analysis of Protocol 30: It can be seen that the protocol is

correct. We have already show how C'S compute 6(21‘1\;1 K (T, T3)).
The Complexity Analysis of Protocol 30: The bit-wise communication cost of
this protocol is Ya. The computational cost is 3N + (2g2 + 19)t + 20 + go.

Theorem 31 Protocol 30 preserves data privacy at a level equal to ADVp, .

Proof 31 We will identify the value of € such that

|Pr(T|CP) — Pr(T)| < ¢

holds for T'=Tp,, i € [1,n], and CP = Protocol 30.

154

According to our notation in Section 3.7,

ADVp_, = Pr(Tp|\VIEWEp,, Protocol30) — Pr(Tp,|VIEWp.),

and

ADVp, , = Pr(Tp|VIEWp, ., Protocol30) — Pr(Tp,|VIEWp,).

The information that CS obtains from P; is under encryption of e which is semanti-

cally secure,
ADVp s, = ADV.
In order to show that privacy is preserved according to Definition 5, we need to know
the value of the privacy level e. We set
e = maz(ADVp,s, ADVp,) = maz(ADVs, ADVp,) = ADVp,,.
Then

Pr(Tp|VIEWp,4, Protocol30) — Pr(Tp |VIEWp,,) < ADVp,,

and

Pr(Tp|VIEWp,, Protocol30) — Pr(Tp,|VIEWp,) < ADVp,,

which completes the proof 8.

9.6 Overall Complexity Overhead Analysis

In this section, we analyze the overall efficiency of our proposed solutions. We have pro-

vided the computation cost and communication cost for each component protocol. We

8Note that the information that KS obtains from P, is hidden by t random numbers.

155

will combine them in order to achieve privacy-preserving support vector machine classifi-
cation. The overall communication and computation overhead for vertical collaboration
among multiple parties is a(n — 1)i and (9n + 13 + g1)¢ where 7 is the number of itera-
tions that the algorithm needs to be run. The overall communication and computation
overhead for horizontal collaboration among multiple parties is c:(4N?+3N + 307 +45)i
and (N2 + 38N + (7gy + 73)t + 10K ernelCost + 304 + g2)i where 4 is the number of
iterations that the algorithm needs to be run and KernelCost the computation time to
compute the kernel. Specifically, the computation cost for computing the linear kernel
function is 8Y + 1, the polynomial kernel and sigmoid kernel is (gs +29)Y + 20+ g9, and
the Gaussian kernel is (go + 28)Y + 27 + go.

Chapter 10

Privacy-Preserving k-Medoids
Clustering

10.1 Background

Clustering is the process of grouping a set of objects into classes or clusters so that
objects within a cluster have similarity in comparison to one another, but are dissimilar
to objects in other clusters [43]. In other words, clustering is a process of finding natural
groupings in a set of data. It has been widely used in the applications such as marketing,
city planning, insurance, medicine, chemistry, remote sensing, and so on. A complete
review of the current state-of-the-art of clustering techniques can be found in [10]. There
are many clustering algorithms such as k-means method, k-medoids method, probabilistic
clustering, etc. We focus on k-medoids method since it allows arbitrary objects that are
not limited to numerical attributes [50]. In k-medoids clustering, a cluster is denoted
by one of its points. It is an easy solution in that it covers any attribute type and that
medoids are resistant against outliers. Once medoids are chosen, clusters are defined as
subsets of points close to respective medoids, and the objective function is described as
the distance between a point and its medoid. We target k-medoids clustering instead of
k-means clustering. From the privacy protection point of view, the k-medoids clustering
seems more challenging than the k-means clustering [84] because we always use the real
instance to compute the distances in k-medoids clustering while we use the mean instance

whose values are the means of the real instance values to compute the distances.

156

157

10.2 Overview of k-Medoids Clustering Algorithm

The k-medoids method divides a distance-space into k clusters. A medoid [50], that
is selected from the dataset, represents a cluster. The algorithm chooses k medoids
to denote the k clusters. Clusters are then created by assigning each of the remaining
instances to the nearest medoid. Although the k-medoids clustering algorithm is different

from the k-nearest neighbor classification algorithm, both algorithms do have similarity.

e Similarity: Both algorithms need to compute and compare the distance between a
special instance and each of other instances. In k-medoids clustering, we need to
compute the distance between a medoid and other instances. In k-nearest neighbor
classification, we need to compute the distance between a query instance and other

instances.

o Difference: The purposes of both algorithms are different. The purpose of k-
medoids clustering is to compute the distance between one instance and each of k
medoids, then assign this instance to a medoid with the smallest distance value,
and repeat this process for all the instances. However, the purpose of k-nearest
neighbor classification is to compute the distance between a query instance and
each instance in the dataset, select k closest instances, and assign a class label for

the query instance by the majority class principle.

We describe the k-medoids clustering algorithm in the following.

Algorithm 6 .
1. Arbitrarily select k instances from the dataset as medoids.
2. Assign each remaining (non-medoid) instance to the cluster with the nearest medoid.

3. Compute the compactness of a clustering, denoted by T Doyrrent-

k
TD =Y TD(Cy) (10.1)
TD(C;) =Y dist(t,mc,) (10.2)
teC;

4. For each pair (medoid M and non-medoid NM)

158

o Compute the value of TD for the partition that results from swapping M with
NM, denoted by T Dypr— 1.

5. Select the non-medoid NM for which T' Dy pr 18 minimal.
6. IfTDNM<—>M < TDcurrent

o Swap NM with M
o Set TDeyrrent 10 be TDnpre— -
o Go to Step 4.

The algorithm requires a distance function. For instance, the distances can be defined
in terms of standard Euclidean distance. As we will discuss, each party computes her
own portion of the distance and utilization of certain distance measure does not cause
privacy violation. Therefore, other distance functions can be applied as well.

10.3 Notations

We define the following notations for illustration purposes.

e k: the total number of medoids.
e t: a non-medoid instance.

e m¢,: the medoid of the cluster C;.

M: a general term for medoids. It contains all possible medoids.

NM: a general term for non-medoids. It contains all possible medoids.
e T'D(C;): the measure of the compactness for a cluster C;.

e T'D: the measure of the compactness of a clustering that contains all the clusters.

10.4 The Scenarios Where the Private Data Maybe
Exposed

The key step of the k-medoids clustering algorithm is the computation of the distance

between each non-medoid ¢ and its medoid m¢, without disclosing their private data.

159

There are two cases where we need privacy-oriented computations: (1) Assign each non-
medoid instance to the cluster with the nearest medoid. (2) Compute T'D. That is,
for a particular cluster, computing the distances between each non-medoid instance and
its medoid; then adding all the distances together to obtain TD(C;). T D can then be
computed by summation of TD(C;) for all k clusters. Given a non-medoid instance ¢,
multiple parties want to compute the distance between ¢ and its medoid instances mc;.
Privacy-oriented protocols are developed in the next section to enforce such computations
without sacrificing data privacy.

10.5 Privacy-Preserving Protocols for Vertical Col-

laboration

In vertical collaboration, since each party holds only a portion of attributes for each
instance, each party computes her portion of the distance(called the distance portion
which is the square of the standard Euclidean distance) according to her attribute set.
To decide the nearest medoid of ¢, all the parties need to sum their distance portions
together, then compare the summation. For example, assume that the distance portions
between t and the medoid instance m¢, are sij, S12, - -+, Sin; and the distance portions
between t and the medoid instance mc, (i # j) are sa1, Saz, - -+, Son Where s1; and sy;
belong to P; for j € [1,n]. To compute whether the distance between the medoid instance
me, and t is larger than the distance between the medoid instance mg, and ¢, we need
to evaluate the expression » ., s1; > > i ; 2.

Problem 15 Assume that P; has a private distance portion of the ith instance, s, for
i € [1,k],5 € [1,n], the problem is to decide whether 377, si; < 35, 815 for i,1 € [1, k]
(¢ # 1) and select the smallest value T D(C;), without disclosing each distance portion.

Highlight of Protocol 31: Our protocol has four steps. (1) Key and digital envelope
generation: multiple parties select one of them, e.g., P,, as the key generator, who creates
a cryptographic key pair (e, d) of a semantically-secure homomorphic encryption scheme.
Each party generates k digital envelopes. (2) Computing e(3_7_, (s + Ry;)) for i € [1, k]:
each party puts her private distance portion into a digital envelope and sends it to F,_;.
(3) Computing e(Z?zl R;;), for all i € [1,k]: each party encrypts her digital envelopes
and sends them to Py. (4) P, P,_; and P, jointly compute the nearest medoid.

We present the formal protocol as follows:

160

Protocol 31 .
Step 1. Key and digital envelope generation.

1. Pjs for j € [1,n] randomly select a key generator, e.g., P,.

2. P, generates a cryptographic key pair (e, d) of a semantically-secure homomorphic
encryption scheme and publishes its public key e.

3. Each party independently generates k digital envelopes, i.e., P; generates k digital
envelopes R;;, for alli € [1,k],7 € [1,n].

Step 1I: To compute e(3_5_, (sij + Ry)) fori € [1,k].
1. Py computes e(s;1 + Ri), fori € [1,k], and sends them to P,.

2. Pg computes 6(81'1 + Ril) X G(Sig -+ Rig) = 6(Si1 + S50 + Ril -+ Rig), where 1 € [1, k],
and sends them to Ps.

3. Repeat sub-step 1 and 2 of step II until P,_; obtains e(s;; + Sig + -+ - + Sitn—1) +
Rhi+Ro+---+ Ri(n—l)); fOT alli € [1, k]

4. P, computes e(si, + Rin) fori € [1, k], and sends them to P,_.

5. Po_1 computes e(si1+ Sig+ -+ + Sin—1) + R + Ria + - - - + Ri(n—1)) X &(Sin + Rin) =

e(8i+Sia+ -+ -+ 8in—1) +8in + Rin + Rig++ - - + Rin—1) + Rin) = 6(2?:1(8@' + Rij)),

i € [1,k]. Let e(S + R) denote the k encrypted elements as follows: [e(S1 + R1),
6(82 + RQ), ey, e(Sk + Rk)], where Si = 27:1 Sij and Ri = Z?:l RZ]
Step II1: To compute e(} 7, Ri;) for alli € [1,k].

1. P, computes e(Ry,) fori € [1,k] and sends them to P,_;.

2. P,y computes e(Rin) X e(Rin—1)) = e(Rin + Rin—1)) for i € [1, k], and sends them
to Pn_g.

3. Repeat the sub-step 1 and 2 of step I1I until P; obtains e(R;; + R+ - -+Ri(n_1)) X
e(Rin) = e(3_)_; Rij), for all i € [1,k]. The k encrypted elements are denoted by
e(R) that contains the following: [e(Ry), e(Ry), -+, e(Ry)] where Ry =377 Ryj.

Step IV: To compute the nearest medoid.

1. Computation between Py and P,.

161

(a) Py randomly permutes e(Ry), e(Ry), -+ -, e(Ry), then sends the permuted ele-
ments to P,.

(b) P, decrypts each element and sends them to P; in the same order as Py did.

(c) Py computes R that contains the following: [Ry, Ra, - - , Ri]. Note that P, can
do it since she has the permutation function.

2. Computation between P,_1 and P,.

(a) P,_1 randomly permutes e(S;), €(Sa), -+, e(Sk), then sends the permuted
elements to P,.

(b) P, decrypts each element and sends them to P,_1 in the same order as P,_;
did.

(c) P,_1 computes [S1+ Ry, So+ Ry, -+, Sk+ Ry denoted by S+ R. Note that: (1)
P,_1 can do it since she has the permutation function. (2) The permutation

function that Py used is independent from the permutation function that P,_1
used.

3. P,_1 and Py, compute e(S; — S}) = e(Z;.l:l Sij — Z?:1 sij), for 4,1 € [1,k](i # 1),
and collects the results into a sequence ® which contains k(k — 1) elements. This

computation can be achieved via the following process:

(a) Py computes e(R;) and e(—R;) fori,l € [1,k](i # 1), then sends them to P,_1.
(b) P,_y computes e(S; — S;) fori,l € [1,k](i #1) as follows:

o ¢(S;+ R;) X e(—R;) = e(S;).

e ¢(—S; — R) xe(R) =e(=9)).

e ¢(S) xe(—S) =e(S;—9).

4. Computation between P,_; and P,.

(a) P,_1 randomly permutes this sequence ® and obtains the permuted sequence
denoted by ', then sends @' to P,. Note that the permutation is independent
from the ones she used.

(b) P, decrypts each element in sequence ®'. He assigns the element +1 if the
result of decryption is not less than 0, and —1, otherwise. Finally, he obtains
a +1/ — 1 sequence denoted by D".

162

(c) P, sends ®" to P, who computes the smallest element. (Details are given
in Protocol 4.) It is the nearest medoid for a given non-medoid instance t. He
then decides the cluster to which t belongs.

The Correctness Analysis of Protocol 31: To show that the protocol correctly
finds the nearest medoid for a given non-medoid instance ¢, we analyze step by step. In
step II, P,_1 obtains e(s;; + Ri1) X e(si2 + Rio) X e(8;3 + Riz) X - X €(8in + Rin)) =
e(si+ Ry +sp+ R+ -+ 8m+ Rin) = e(z?zl(Sij + R;;)), for i € [1,k]. In step III,
Py finds e(Ry) x (Rig) X -+ x e(Ri) = e(X]), Ryy), for 4 € [1,k]. In step IV, during
sub-step 1-3, P,—1 obtains e(} 7 s — > i, s1;) for 4,1 € [L,k](i # [). Following the
detailed description on how to compute the smallest element, we know that P, ; finds
the nearest medoid for a given non-medoid, which is the desired result.

The Complexity Analysis of Protocol 31: The communication cost of this pro-
tocol is a(3n + k* + 5k — 3).

The computational costs are contributed by: (1)The generation of kn digital en-
velopes. (2)nk additions. (3) k* + k + (2n — 2)k multiplications. (4)2kn encryptions. (5)
k(k—1) decryptions. (6)4k + k(k-1) permutations. (7) 3k(k — 1) assignments when P,
computes P”.

Therefore, the total computation cost is gskn + nk + k? + k + (2n — 2)k + 12kn +
BE(k —1) + g2(4k + k* — k) + 1k(k — 1).

Theorem 32 Protocol 81 preserves data privacy at a level equal to ADVp, .
Proof 32 We will identify the value of € such that
|Pr(T|CP) — Pr(T)| < ¢

holds for T = Tp,, i € [1,n|, and CP = Protocol 1.

According to our notation in Section 3.7,

ADVp, = Pr(Tp,|VIEWp,, Protocol31) — Pr(Tp|VIEWp,),i # n,

and

ADVp, = Pr(Tp,|VIEW,, Protocol31) — Pr(Tp,|VIEWp,),i # n,j # i.

163

The information that P; where i = n obtains from other parties is encrypted by e that

1s semantically secure,

ADVp, = ADVs.

In order to show that privacy is preserved according to Definition 5, we need to know

the value of the privacy level . We set

e = max(ADVp,, ADVp,) = mar(ADVp,,ADVs) = ADVp,.
Then
Pr(Tp,|VIEWE,, Protocol81) — Pr(Tp,|VIEWE,) < ADVp,,i # n,

and

Pr(Tp,|VIEWE,, Protocol31) — Pr(Tp,|VIEWp,) < ADVp,,i # n,j # i,
which completes the proof *.

Next, we will discuss how to privately compute T'D.

10.5.1 Privacy-Preserving Protocol for Computing 7'D

Once each non-medoid instance is assigned to the nearest medoid, we need to compute

the compactness of a clustering.

k k
TD=> TD(C;) =Y > dist(t,me,), (10.3)
To compute T'D, each party computes her local distance portions between each non-
medoid instance and the corresponding medoid instance, and adds them together. For
the purpose of illustration, let us assume that P; gets a distance portion v; for j € [1, n).

In order to compute T'D, we need to compute > -

=1 Y;- The Protocol 3 can be applied

to solve this problem. Please refer to Section 3.7.3 for details.

!Note that all the information that P, obtains from other parties is E?zl Sij — Z?:l sij, for 4,1 €
[1,k](¢ # 1) in random order.

164

10.6 Privacy-Preserving Protocol for Horizontal Col-

laboration

In horizontal collaboration, the problem is reduced to how to compute the distance

between two instances without disclosing private data.

Problem 16 Assume that P; has an instance vector T; and P, has an instance vector
z,. Both vectors have Y elements. We use z4; to denote the ith element in vector 7,
and x4 to denote the ith element in vector T,. The goal is to compute the dist(Z},Z,)
without disclosing their actual data to each other.

Highlight of Protocol 32: In our privacy-oriented protocol, Py denotes the party
who has the medoid instance, and F, denotes the party who has the non-medoid instance
t. P; generates a cryptographic key pair (e, d) of a semantically-secure homomorphic
encryption scheme and publishes its public key e. She encrypts each element of zy;
for ¢ € [1,Y] and sends them to P,. P, computes e(zy —), e[(z;; — z4)?], and
e[S (x5 — x40)%). P, sends e[S, (T — 74:)?] to Py who decrypts it and compute the
dist(xzs,z4). We describe this more formally as follows.

We present the formal protocol as follows:

Protocol 32 .

INPUT: Ps’s input is a vector ; = {xs1, Tfo, -+ , Ty}, and P,’s input is a vector
E_Z = {zg1, Tg2, -+, Tgr}. The elements in the input vectors are taken from the real
number domain.

OQUTPUT: dist(zy,z,).
1. Py performs the following operations:

(a) Py generates a cryptographic key pair (e, d) of a semantically-secure homo-

morphic encryption scheme and publishes its public key e.

(b) Pr sends e(xs1), e(zfa), -+, e(zyr) to Py.

2. P, computes the following operations:

(a) e(zs1) xe(—zg1) = e(Ts1 —Tg1), e(Tf2 X e(~Tg2)) = €(Tr2a—Tga), -+, €(Tpr) X
e(—zgr) = e(zsy — zgr).

(b) e(zp1—zq) +e(zp—z01) = €l(Tf1—201)°], -+, e(Tpr —2gr) +e(Tpr —2g7) =
el(zpr — z4r)?]-

165

(c) ellwsr — 291)%] X e[(zp2 = 2g2)?] X -+ X el(wsr — 247)] = e(dist(zy, zy)).

(d) P, sends e(dist(zy,zg4)) to Py.
3. Py computes dle(dist(zs,z4))] = dist(xy, z4).

The Correctness Analysis of Protocol 32: To show that the protocol correctly
computes dist(z¢, z4). P, has three encrypted sequences: (1) the sequence of e(zy;); (2)
the sequence of e(zs; — z4); (3) the sequence of e[(zy; — z4)?] where ¢ € [1,Y]. The
first sequence is sent by Alice. The second sequence is computed by e(zy;) X e(—z4) =
e(xs; — xg), for i € [1,k], according to Equation 3.1. The third sequence also fol-
lows Equation 3.1, e.g., e(zy — z4) + e(xp; — 55) = e((zgi — 74)*). Bob computes
el(zp1— zg1)?] X e[(zf2 — 2g2)?] X - -+ X e[(xyr — z4r)?] Which is e(dist(zs, z4)) according
to Equation 3.1 and Equation 3.1. P, then sends e(dist(zy,z,4)) to Py who decrypts it
and obtains dist(xy, z4).

The Complexity Analysis of Protocol 32: The bit-wise communication cost of
this protocol is a(Y + 1) where T is the number of attributes in each instance.

The computational cost is caused by the following: (1)The generation of a crypto-
graphic key pair and T digital envelops. (2)One decryption. (3)The total number of 27
encryptions. (4)27T — 2 multiplications. (5)One summation.

Therefore, the total computation cost is g4 T +13+ 12T +2Y —2+4+1 = (g4 +14)T +14.

Theorem 33 Protocol 32 preserves data privacy at a level equal to ADVp, .
Proof 33 We will identify the value of ¢ such that
|Pr(T|CP) — Pr(T)| < ¢

holds for T =Tp,, i € [1,n], and CP = Protocol 32.

According to our notation in Section 3.7,

ADVp, = Pr(Tp|VIEWp,, Protocol32) — Pr(Tp,|VIEWp,),i # g,

and

ADVp, = Pr(Te,|VIEWp,, Protocol32) — Pr(Tp,|VIEWp,),i # f.

166

Since all the information that P, obtains is e(xy;) fori € [1,T] and e is semantically

secure,

ADVp, = ADVs.

In order to show that privacy is preserved according to Definition 5, we need to know
the value of the privacy level . We set

¢ = maz(ADVp,, ADVp) = max(ADVs, ADfo) = ADVp,.
Then
Pr(Tp,|VIEWE,, Protocol32) — Pr(Tp,|VIEWp,) < ADVp,,i # g,
and
Pr(Tp,|VIEWE,, Protocol 32) — Pr(Tp|VIEWp,) < ADVp,,i # f,
which completes the proof.

Now, there are k distances. Assume that each party holds one of them, to compute
the nearest medoid, k parties need to be involved in the computation. (Note that, if any
party holds more than one distance, then she only takes the smallest one to compare
with other distance held by other parties.) To obtain the smallest distance, one distance
needs to be compared against all other distances to decide whether it is smaller than
any one of them. If it is, then the smallest is found; otherwise, we need to take another
distance and compare it with all others. One distance will be always smaller than all
the others, or equal to some of them. In the following, we show how one distance can be
privately compared with all other distances.

Highlight of Protocol 33: A key generator is randomly selected, assume that it is
Py, who generates a cryptographic key pair (e, d) of a semantically-secure homomorphic
encryption scheme and publishes its public key e. P, generates k — 2 digital envelopes
denoted by R; for i € [2,k — 1]. P, computes e(S; + R; — S;) X e(—R;) = e(S1 — S;) for
i € [2,k]. Py finally computes the smallest element.

We present the formal protocol as follows:

Protocol 33 . INPUT: P;’s input is a distance S; j € [1,k].
OQUTPUT: Whether Sy is the smallest element.

167

1. Key and digital envelope generation

(a) A key generator is randomly selected, assume that it is Py.

(b) Py generates a cryptographic key pair (e, d) of a semantically-secure homo-
morphic encryption scheme and publishes its public key e. Let e(.) denote

encryption and d(.) denote decryption.

(c) Py generates k — 2 digital envelopes denoted by R; fori € [2,k — 1].
2. Computation between Py and P; fori € [2, k]

(a) Py sends e(S1+ R;) to P, fori € [2,k—1].

(b) P; computes e(S1 + R;) x e(—S;) = e(S1+ R; — S;) fori € [2,k—1].
(c) P; sends e(S1+ R; — Sy), fori€[2,k—1], to P,.

(d) Py sends e(—Sg) to Pi.

(e) Py computes e(S1 + R; — S;) x e(—R;) = e(S1 — S;) fori € [2,k].

3. Communication of permuted sequence

(a) P, randomly permutes the following sequence: e(S1—S5), e(S1—Ss3), €(S1—S4),
-+, e(Sy — Sk). Let’s denote the permuted sequence by E,. P, then sends F;
to PQ.

(b) P, randomly permutes Ey and gets Es, then sends Ey to Ps.
(c) Repeat (a),(b) until P,_y gets Ex_; and sends FEy_1 to Py.

4. Py decrypts each element of Eyp_1. If all the decrypted elements are less than or
equal to 0, then Py concludes that Sy is the smallest element; otherwise, Sy is not
the smallest element.

To obtain the smallest element, the above protocol needs to be run k times in the
worst case.

The Correctness Analysis of Protocol 33: To show that the protocol outputs
yes if S1 is the smallest element, No otherwise, we analyze step by step. In step II,
P, obtains e(S; — S,), €(S; — Ss), - -+, e(S1 — Sk). In step III, P, obtains e(S; — Sa),
e(S1 — S3), ---, e(S1 — Sk) in a permuted form. In step IV, P, decrypts each element
of the permuted sequence. Py then gets Sy — S3, S; — S3, -+, S1 — S in the permuted
order. Py knows that if S; < S; for ¢ € [2,k], then S} — S; < 0 and §; is the smallest

168

element. Otherwise, S; is not the smallest element. Note that there are possible more
than one smallest element.

The Complexity Analysis of Protocol 33: The communication cost of this pro-
tocol is a(k? — 3) where k is the total number of parties involved into this protocol.

The computational costs are contributed by: (1)The generation of a cryptographic
key pair and k-2 digital envelopes. (2) k — 2 additions. (3) k-1 multiplications. (4) 2k-3
encryptions. (5) k-1 decryption. (6)A permutation of k-1 random numbers of E; in step
3.

Therefore, the total computation cost is g1 + ga(k—2) +k—2+k— 1412k — 18 +
13k =134+ go(k — 1) = 27T+ g2 + ga)k + g1 — g2 — 294 — 34.

Theorem 34 Protocol 33 preserves data privacy at a level equal to ADVp, .
Proof 34 We will identify the value of € such that
|Pr(T|CP) — Pr(T)| < ¢

holds for T =Tp,, i € [1,n], and CP = Protocol 38.
According to our notation in Section 3.7,

ADVp, = Pr(Tp,|VIEWp,, Protocol33) — Pr(Tp|VIEWs,),i # 1,

and

ADVp, = Pr(Tp,|VIEWp,, Protocol33) — Pr(Tp|VIEWp,), k # 1,k # 1.

Since all the information that Py obtains is e(S1 — S;) (i € [2,k —1]) and e is
semantically secure,

ADVp, = ADVs.

In order to show that privacy is preserved according to Definition 5, we need to know
the value of the privacy level e. We set

¢ = max(ADVp,, ADVp,) = maz(ADVs, ADVp,) = ADVp,.

169

Then

Pr(Tp,|VIEWp,, Protocol33) — Pr(Tp|VIEWp,) < ADVp,,i # 1.

Pr(Tp,\VIEWp,, Protocol33) — Pr(Tp,|VIEWR,) < ADVp , k # 1,k #i.
which completes the proof 2.

Next, to privately compute T'D, Protocol 3 in Section 3.7.3 can still be utilized again.

10.7 Overall Complexity Overhead Analysis

In this section, we analyze the overall efficiency of our proposed solutions. We have
provided the computation cost and communication cost for each component protocol.
We will combine them in order to achieve privacy-preserving k-medoids clustering. The
overall communication and computation overhead for vertical collaboration among mul-
tiple parties is a(3n + k% + 5k — 3)i and ((8 + g2)k% + (15 + g2)kn + (392 — 8)k)i where
7 is the number of iterations that the algorithm needs to be run. The overall communi-
cation and computation overhead for horizontal collaboration among multiple parties is
T + k? — 2)i and ((14 + g2) Y + 12+ g1 + 27k + 2gok — 392 + g1 — 34)i where i is the
number of iterations that the algorithm needs to be run.

2Note that the information that Py obtains from other parties is S; —S; (i € [1, k]) in random order.

Chapter 11

Conclusion and Future Work

Privacy concerns have become one of the major societal concerns surrounding information
technology. Due to the legal privacy rules and people’s concerns for their data privacy, the
need for privacy has been well recognized in the field of data mining. It is demanding to
ensure that beneficial data mining computation does not violate legal /commercial norms
for the safety of private data. The framework of data mining with data privacy being
preserved was formulated as Privacy-Preserving Data Mining. The ways of conducting

privacy-oriented data mining can be categorized into two types.

e Client to Sever (C2S) model: The idea is that there are many clients. Each of
them has a private dataset. These clients trust a server who collects the dataset
from the clients and forms a large database, then conducts data mining over this
database. In this model, the server can be totally trusted where the clients send
their private datasets without hiding anything from the server. The server can be
partially trusted where the clients disguise their private data before sending it to
the server. The private data is hidden so that the server cannot know the private
data by obtaining the disguised data. But the server is trusted to perform the
mining over the disguised data.

e Peer to Peer (P2P) model: In this model, we do not assume that there exists an
extra server who helps the data mining process. Instead, the clients conduct the
mining solely by themselves.

The C2S model can be applied in certain scenarios. However, with the increasing
needs of privacy in data mining applications, the P2P model is more attractive from the
privacy-preserving point of view.

170

171

We follow the P2P model and propose various solutions for the common data mining
tasks. We design protocols for privacy-preserving association rule mining and privacy-
preserving sequential pattern mining. By reducing privacy preserving association rule
mining and sequential pattern mining to the problem of privacy-preserving computation
of the frequency count, we design a set of privacy-oriented protocols for collaborative
association rule mining and sequential pattern mining. A series of privacy-oriented pro-
tocols for classifications have been developed, which include privacy-preserving naive
Bayesian classification, privacy-preserving decision tree classification, privacy-preserving
k-nearest neighbor classification and privacy-preserving support vector machine classifi-
cation. We introduce the privacy-preserving k-medoids clustering problem and provide
the solutions for both horizontal and vertical collaboration.

Privacy-preserving data mining has generated many research successes. However, we
do not yet have accepted definitions of privacy [19] and a challenging research question
in the area of privacy-preserving data mining is to better understand and define privacy.
In this thesis, we propose a formal definition of privacy. The idea is to express the
potential disclosure of private data due to collaborative data mining as the advantage
that one party gains via collaboration to obtain the private data of other parties. We
measure that as the probability difference Pr(T|PPDMS) — Pr(T), i.g., the probability
that private data T is disclosed with and without privacy-preserving data mining schemes
being applied. We use the definition to measure the privacy level for each of our solutions.

In this thesis, we define our attack model as Goal-Oriented Attack Model where all
the collaborative parties need to follow their goals. The basic goal of collaborative data
mining is to obtain desired data mining results. Any attacks can be applied as long
as they follow their goal. We require that the purpose of the attacks of one party (or
a group of parties) is to gain useful information about the data of the other party (or
the other group of parties). In the history of privacy-preserving data mining, especially
nowadays, many people raised a challenging question: how the privacy-preserving data
mining scheme can protect against malicious attacks. It is not clear what is the formal
definition of a malicious attacker. To make the concept clearer, we propose the concept
of inside attackers and outside attackers in privacy-preserving collaborative data mining.
We categorize them based on whether or not an attacker belongs to the collaborating
parties. An inside attacker is a party who belongs to the collaborating parties while an
outside attacker is a party who does not belong to the collaborating parties. Often, the
outside attackers refer to the general network attackers since the collaborating parties

need to communicate through the networks. To protect against network attackers, the

172

collaborative parties need to use a secure channel to communicate. As for the inside
attackers, we beleive that the basic goal of collaborative data mining is to obtain valid
data mining results. Without this basic goal, the collaborative data mining does not
make sense. As stated above, we therefore assume that the first priority of the parties
involved in the collaborative data mining is to obtain correct data mining results.

We have proposed to use homomorphic encryption [65] and the digital envelope tech-
nique [15] to achieve collaborative data mining without sharing the private data among
the collaborative parties. Compared with other approaches such as random perturba-
tion [5], homomorphic encryption provides more privacy since it is semantically secure.
The fundamental tools developed in this thesis have a broader impact. For example,
the component protocols provided in chapter 3 can be utilized for other privacy-oriented
computations. We provide the complexity analysis for our solutions. The complexity
overhead is reasonable with respect to various parameters such as the number of parties,
the size of dataset, the key size, etc.

As future work, we will develop privacy-oriented protocols for other data mining
computations which have not been addressed in this thesis. We will examine other
research domains where preserving the data privacy is both demanding and challenging
such as bioinformatics. In the following, we outline some of our visible future works.

Artificial neural network classification: The basic idea of artificial neural network [80]
is as follows. We process records one at a time, and learn by comparing the classification
of the record with the known actual classification of the record. The errors from the
initial classification of the first record is fed back into the network, causing the system
to adjust the weights for application to the next record to be processed, and so on for
many iterations. Let us use a simple neural network to illustrate.

Figure 11.1 shows a two-layer neural network. Figure 11.2 shows a typical unit of a
neural network. Each unit performs a simple computation: it receives signals from its
input links and computes a new activation level that it sends along each of its output
links. The computation of the activation level is based on the values of each input signal
received from a neighboring node, and the weights on each input link. The computation
is split into two components: a linear component called the input function, in;, that
computes the weighted sum of the unit’s input values, and a nonlinear component called
the activation function, g, that transforms the weighted sum into the final value that
serves as the unit’s activation value, a;. The elementary computing step in each unit is
to compute the new activation value for the unit by applying the activation function, g,
to the result of the input function:

173

0; Output units

Hidden units

Iy, Input units

Figure 11.1: A Two-layer Neural Network

174

a; = g(in;
aj Wj’z i) g (Z)
\ T
Input mny; g ai/ .
___/
Links
Input Activation

Output
Function Function

Figure 11.2: An Example of Neural Unit

a; «— g(in;) = Q(Z Wi - a;).

j

If there is no privacy concern, this iterative training process can be conducted straight-
forwardly. The challenging issue is how we implement this process from privacy-preserving
collaborative data mining point of view. We observe that the main computation which
may cause private data disclosure is the product between the weight vector W and input
vector a;. Therefore, our Protocol 2 in Section 3.7.2 can be utilized for this training
process. The detailed privacy-oriented algorithm needs to be developed in the future.

Anomaly detection: In anomaly detection [80], the goal is to find objects that are
different from most other objects. Anomalous objects are known as outliers since they
lie far away from other data points on a scatter plot of the data. Anomaly detection is
also known as deviation detection because anomalous objects have attribute values that
deviate significantly from the expected or typical attribute values. There are a variety
of anomaly detection approaches from several areas including statistics, machine learn-
ing, and data mining with many potential applications such as fraud detection, intrusion
detection, public health, etc. Therefore, it is important to examine whether the collab-
orative parties can perform the anomaly detection together without compromising each
party’s privacy. The key elementary computation in anomaly detection is to calculate
the distance between instances. We have developed several protocols in Chapter 8 and

Chapter 9 for distance computation. We will investigate whether those protocols can be

175

utilized for the purpose of anomaly detection.

Privacy-Preserving Software Toolkit: In our solutions, we do not offer experimental
results since it is not clear what such an implementation would add to the research
results. It is clear that both the data and the results from these algorithms with the
added encryption are identical to the normal version of the very same algorithms, so no
empirical evaluation is needed. One thing that we could gauge from an implementation
is the overhead on the normal version of the algorithms due to the additional encoding
and communication cost, but we have provided analytical formulae for those costs, so we
know exactly what to expect. On the other hand, we would like to extend our results
to a software toolkit so that the privacy-preserving version of collaborative data mining
will be available to the public.

Bioinformatics: Bioinformatics is a field which uses computers to store and analyze
molecular biological information [8]. Using this information in a digital format, bioin-
formatican can then solve problems of molecular biology, predict structures, and even
simulate macromolecules. Data mining is a very important tool to extract useful knowl-
edge out of biological databases. The knowledge that people want to obtain can be the
relationships among genes, between genes and diseases, between diseases and risk fac-
tors, among proteins, etc. Let us use an example to illustrate. Suppose that there are
several laboratories with each laboratory containing some information on certain genes.
To find the relationship among these genes, the laboratories need to collaborate and
conduct data mining over their joint gene database. Due to legal privacy concerns, this
computation cannot be implemented straightforwardly. The question is how to let these
laboratories realize such a collaboration without compromising data privacy. An inter-
esting complication in bioinformatics is that the gene dataset is usually huge, and so the
high efficiency of the developed algorithm is needed.

Finally, we would like to build an economic model of privacy-preserving data mining.
As we discussed in Chapter 2, there are many techniques to conduct privacy-preserving
data mining. For a given problem, which technique we should select is a demanding
question. To answer this question, we must analyze the cost for each technique. We
think that this question is beyond the technology itself. For instance, suppose that we
apply a less strong privacy protection method, the performance may be better but the
private data may be disclosed with higher probability. Even if it does not raise any
privacy problems for the current moment, it may cause problems in the future. On the
other hand, we may apply a stronger privacy protection method with more complexity

overhead but it may eliminate privacy problems in the future. An interesting question

176

we may ask is: can we develop an economic model of the privacy enhancing techniques
for the purpose of data mining such that it helps the decision making in practice? As
future work, we would like to build an economic model of various privacy protection
techniques. The idea is that different techniques have different properties. It is desirable
that we analyze which technique should be used in certain scenarios from the economic
point of view.

Bibliography

1]

[6]

[7]

M. Ackerman, L. Cranor, and J. Reagle. Privacy in e-commerce: Examining user
scenarios and privacy preferences. In Proceedings of the ACM Conference on Elec-
tronic Commerce, pages 1-8, Denver, Colorado, USA, November, 1999.

D. Agrawal and C. Aggarwal. On the design and quantification of privacy preserv-
ing data mining algorithms. In Proceedings of the 20th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, pages 247-255, Santa
Barbara, CA, May 21-23, 2001.

R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets
of items in large databases. In P. Buneman and S. Jajodia, editors, Proceedings of
ACM SIGMOD Conference on Management of Data, pages 207216, Washington
D.C., May 1993.

R. Agrawal and R. Srikant. Mining sequential patterns. In Philip S. Yu and Arbee
S. P. Chen, editors, Fleventh International Conference on Data Engineering, pages
3-14, Taipei, Taiwan, 1995. IEEE Computer Society Press.

R. Agrawal and R. Srikant. Privacy-preserving data mining. In Proceedings of the
ACM SIGMOD Conference on Management of Data, pages 439-450. ACM Press,
May 2000.

A. Aho, J. Hopcroft, and J. Ullmann. The Design and Analysis of Computer
Algorithm. Addison-Wesley, 1974.

M. Atallah, E. Bertino, A. Elmagarmid, M. Ibrahim, and V. Verykios. Disclo-
sure limitation of sensitive rules. In Knowledge and Data Engineering Fxchange
Workshop (KDEX’99), pages 25-32, Chicago, IL, November 8, 1999.

177

178

[8] A. Baxevanis and F. Ouellette. Bioinformatics- A Practical Guide to the Analysis

1)

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

of Genes and Proteins. John Wiley Sons, Inc., Hoboken, New Jersey, 2005.

J. Benaloh. Dense probabilistic encryption. In Proceedings of the Workshop on
Selected Areas of Cryptography, pp. 120-128, Kingston, Ontario, May, 1994.

P. Berkhin. Survey of clustering data mining techniques. Technical report, Accrue
Software, San Jose, CA, 2002.

C. Burges. A tutorial on support vector machines for pattern recognition. Data
Mining and Knowledge Discovery, 2(2):121-167, 1998.

B. Cestnik. Estimating probabilities: A crucial task in machine learning. In Pro-
ceedings of the Ninth Furopean Conference on Artificial Intelligence. Stockholm,
Sweden: Pitman, 1990.

P. Chan. An Eztensible Meta-Learning Approach for Scalable and Accurate Induc-

tiwe Learning. PhD thesis, Department of Computer Science, Columbia University,
New York, NY, 1996.

P. Chan. On the accuracy of meta-learning for scalable data mining. In Journal of
Intelligent Information Systems 8:5-28, 1997.

D. Chaum. Security without identification. In Communication of the ACM, 28(10):
10301044, October, 1985.

R. Chen, K. Sivakumar, and H. Kargupta. Distributed web mining using bayesian
networks from multiple data streams. In The 2001 IEEE International Conference
on Data Mining, San Jose, CA, November 29 - December 2, 2001.

D. Cheung, V. Ng, A. Fu, and Y. Fu. Effficient mining of association rules in
distributed databases. In IEEFE Transactions on Knowledge and Data Engineering,
8(6):911-922, December, 1996.

P. Clark and T. Niblett. The c¢n2 induction algorithm. In Machine Learning, 3,
pp. 261-283, 1989.

C. Clifton. What is privacy? critical steps for privacy-preserving data mining. In
IEEE ICDM Workshop on Security and Privacy Ascepts of Data Mining, Houston,
Texas, USA, 27 - 30, November, 2005.

[20]

[21]

[22]

[23]

[24]

[28]

[29]

[30]

179

S. Cockcroft and P. Clutterbuck. Attitudes towards information privacy. In Pro-
ceedings of the 12th Australasian Conference on Information Systems, Australia,
2001.

T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms,
volume of . MIT Press and McGraw-Hill, , second edition edition, 2001. .

C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273—
297, 1995.

T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Transactions
on Information Theory, 13:21-27, January 1968.

G. Crescenzo, Y. Ishai, and R. Ostrovsky. Non-interactive and non-malleable com-
mitment. In Proceedings of the Annual ACM Symposium on the Theory of Com-
puting STOCIS, pages 141-150, 1998.

N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines.
Cambridge University Press, 2000.

J. DeCew. Privacy. In Edward N. Zalta, editor, The Stanford Encyclopedia of
Philosophy. 2002.

D. Dolev, D. Dwork, and M. Naor. Non-malleable cryptography. In Proceedings of
the Twenty-third Annual ACM Symposium on Theory of Computing, New Orleans,
Lowisiana, USA, Pages: 542 - 552, 1991.

J. Domingo-Ferrer. A provably secure additive and multiplicative privacy homo-
morphism. In Information Security Conference, 471-483, 2002.

W. Du and Z. Zhan. Building decision tree classifier on private data. In IEEFE
Workshop on Privacy, Security, and Data Mining, Maebashi City, Japan, December
9, 2002.

W. Du and Z. Zhan. Using randomized response techniques for privacy-preserving
data mining. In Proceedings of The 9th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. Washington, DC, USA. August 24 -
27, 2003.

[31]

32]

[35]

[40]

[41]

180

R.O. Duda and P.E. Hart. Pattern Classification and Scene Analysis. New York,
NY: Wiley, 1973.

C. Elkan. Boosting and naive bayesian learning. Technical Report CS97-557,
University of California, San Diego, 1997.

Epic. Privacy and human rights an international survey of privacy laws and devel-

opments. Electronic Privacy Information Center, www.epic.org, May, 2003.

A. Evfimievski, J. E. Gehrke, and Ramakrishnan Srikant. Limiting privacy breaches
in privacy preserving data mining. In Proceedings of the 22nd ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems (PODS 2003),
San Diego, CA, June 2003.

A. Evfmievski, R. Srikant, R. Agrawal, and J. Gehrke. Privacy preserving mining
of association rules. In Proceedings of the Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 217-228, Edmonton,
Alberta, Canada, July 23-26, 2002.

S. Garfinkel. Database Nation: The Death of the Privacy in the 21st Century.
O’Reilly Associates, Sebastopol, CA, USA, 2001.

B. Goethals, S. Laur, H. Lipmaa, and T. Mielikainen. On secure scalar product
computation for privacy-preserving data mining. In Proceedings of The Tth Annual
International Conference in Information Security and Cryptology, volume 3506 of

Lecture Notes in Computer Science, pages 104—120, Seoul, Korea, December 2-3,
2004.

O. Goldreich. Foundations of cryptography. Class notes, Technion University,
Spring 1989.

O. Goldreich. A uniform complexity treatment of encryption and zero-knowledge.
In Journal of Cryptology, Vol. 6, pp. 21-53, 1993.

0. Goldreich. Secure multi-party computation.
http://www.wisdom.weizmann.ac.il /home/oded/public_html/foc.html, 1998.

O. Goldreich. The Foundations of Cryptography. Cambridge University Press,
2004.

[42]

[43]

[47]

[48]

[49]

[50]

[51]

181

S. Golwasser and S. Micali. Probabilistic encryption. Journal of Computer and
System Sciences, 28:270299, 1984,

J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kauf-
mann, 2000.

D. Hand, H. Mannila, and P. Smyth. Principles of Data Mining. MIT Press, 2001.

P. Jefferies. Multimedia, cyberspace and ethic. In Proceedings of International

Conference on Information Visualisation, pages 99-104, London, England, July,
2000.

T. Joachims. Text categorization with support vector machines: learning with
many relevant features. In Claire Nédellec and Céline Rouveirol, editors, Proceed-
ings of ECML-98, 10th European Conference on Machine Learning, number 1398,
pages 137-142, Chemnitz, DE, 1998. Springer Verlag, Heidelberg, DE.

M. Kantarcioglu and C. Clifton. Privacy-preserving distributed mining of associ-
ation rules on horizontally partitioned data. In The ACM SIGMOD Work- shop
on Research Issues on Data Mining and Knowledge Discovery (DMKD’02), pages
24-31, Madison, WI, June, 2002.

M. Kantarcioglu and C. Clifton. Privacy preserving data mining of association
rules on horizontally partitioned data. In Transactions on Knowledge and Data
Engineering, IEEE Computer Society Press, Los Alamitos, CA, 2004.

H. Kargupta, S. Datta, Q. Wang, and K. Sivakumar. On the privacy preserv-
ing properties of random data perturbation techniques. In Proceedings of the
Third IEEE International Conference on Data Mining (ICDM’08), Melbourne, FL,
November 19-22, 2003.

L. Kaufman and P. Rousseeuw. Finding groups in data. Wiley, New York, NY,
1990.

M. Klusch, S. Lodi, and G. Moro. Distributed clustering based on sampling local
density estimates. In Proceedings of International Joint Conference on Artificial
Intelligence (IJCAI 2003), Mezxico, 2003.

[52]

182

I. Kononenko. Comparison of inductive and naive bayesian learning approaches
to automatic knowledge acquisition. In B. Wielinga (Ed.), Current Trends in
Knowledge Acquisition. Amsterdam, The Netherlands: I0S Press, 1990.

P. Langley, W. Iba, and K. Thompson. An analysis of Bayesian classifiers. In
National Conference on Artificial Intelligence, pages 223-228, 1992.

Y. LeCun, L. Botou, L. Jackel, H. Drucker, C. Cortes, J. Denker, I. Guyon,
U. Muller, E. Sackinger, P. Simard, and V. Vapnik. Comparison of learning algo-
rithms for handwritten digit recognition. In F. Fogelman and P. Gallinari, editors,
International Conference on Artificial Neural Networks, pages 53—-60, Paris, 1995.

X. Lin, C. Clifton, and M. Zhu. Privacy preserving clustering with distributed em
mixture modeling. In Knowledge and Information Systems, 2004.

Y. Lindell and B. Pinkas. Privacy preserving data mining. In Advances in Cryp-
tology - Crypto2000, Lecture Notes in Computer Science, volume 1880, 2000.

M. Luby. Pseudorandomness and Cryptographic Applications. Princeton University
Press, January 1996.

S. Merugu and J. Ghosh. Privacy-preserving distributed clustering using generative
models. In Proceedings of the 9th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Washington, DC, USA, August 24-27,
2003.

S. Micali, C. Rackoff, and R. Sloan. The notion of security for probabilistic cryp-
tosystems. In SIAM Journal on Computing, April, 1988.

D. Naccache and J. Stern. A new public key cryptosystem based on higher residues.
In Proceedings of the 5th ACM conference on Computer and Communication Se-
curity, pp. 59-66, San Francisco, California, United States, 1998.

T. Okamoto and S. Uchiyama. A new public-key cryptosystem as secure as factor-
ing. In Eurocrypt’98, LNCS 1403, pp.308-818, 1998.

S. Oliveira and O. R. Zaiane. Privacy preserving clustering by data transformation.
In Proceedings of the 18th Brazilian Symposium on Databases (SBBD 2003), pp
304-318, Manaus, Brazil, 6-8 October, 2003.

[63]

[66]

[72]

73]

183

S. Oliveira and O. R. Zaiane. Privacy-preserving clustering by object similarity-
based representation and dimensionality reduction transformation. In Workshop
on Privacy and Security Aspects of Data Mining (PSDM’04) in conjunction with
the Fourth IEEE International Conference on Data Mining (ICDM’04), pp 21-30,
Brighton, UK, November 1, 2004.

E. Osuna, R. Freund, and F. Girosi. Training support vector machines:an appli-
cation to face detection. In IEEE Conference on Computer Vision and Pattern

Recognition. citeseer.ist.psu.edu/osuna97training.html, 1997.

P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In Advances in Cryptography - EUROCRYPT °99, pp 223-238, Prague, Czech Re-
public, 1999.

M. Pazzani, J. Muramatsu, and D. Billsus. Syskill & webert: Identifying interest-
ing web sites. In Proceedings of the Thirteenth National Conference on Artificial
Intelligence (pp. 5461). Portland, OR: AAAI Press, 1996.

J. Platt. Sequetial minimal optimization: A fast algorithm for training support
vector machines. Technical Report MST-TR-98-14, Microsoft Research, 1998.

J. Quinlan. Induction of decision trees. In Machine Learning, 1:81 106, 1986.

J. Quinlan. C4.5 Programs for Machine Learning. Morgan Kaufmann, San Fran-
cisco, 1993.

J. Quinlan. Learning decision tree classifiers. In ACM Computing Surveys, 28(1),
1996.

R. Rivest, L. Adleman, and M. Dertouzos. On data banks and privacy homo-
morphisms. In Foundations of Secure Computation, eds. R. A. DeMillo et al.,
Academic Press, pp. 169-179., 1978.

S. Rizvi and J. Haritsa. Maintaining data privacy in association rule mining. In
Proceedings of the 28th VLDB Conference, Hong Kong, China, 2002.

A. Rosenberg. Privacy as a matter of taste and right. In E. F. Paul, F. D. Miller,
and J. Paul, editors, The Right to Privacy, pages 68-90, Cambridge University
Press, 2000.

[74]

[75]

[76]

[77]

[80]

[81]

[82]

[84]

184

Y. Saygin, V. Verykios, and C. Clifton. Using unknowns to prevent discovery of
association rules. In SIGMOD Record, 30(4):45-54, December, 2001.

B. Schlkopf, C. Burges, and A. Smola, editors. Advances in Kernel Methods -
Support Vector Learning. MIT Press, 1998.

B. Schlkopf, A. Smola, and K. Mller. Nonlinear component analysis as a kernel
eigenvalue problem. In Neural Computation, 10, 1299-1519, 1998.

F. D. Schoeman. Philosophical Dimensions of Privacy. Cambridge University
Press, 1984.

C. Shannon. Communication theory of secrecy systems. Bell System Technical
Journal, 28(4):657 — 715, 1949.

P. Shenoy, J. Haritsa, S. Sundarshan, G. Bhalotia, M. Bawa, and D. Shah. Turbo-
charging vertical mining of large databases. In Proceedings of the Nineteenth ACM
SIGMOD International Conference on Management of Data, pages 22-33, Dallas,
TX, 2000.

P. Tan, M. Steinbach, and V. Kumar. Introduction To Data Mining. Pearson
Addison Wesley Publishers, 2006.

J. Vaidya. Privacy Preserving Data Mining Over Vertically Partitioned Data. PhD
thesis, Purdue University, 2004.

J. Vaidya and C. Clifton. Privacy preserving association rule mining in vertically
partitioned data. In Proceedings of the 8th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, Edmonton, Alberta, Canada, July 23-
26, 2002.

J. Vaidya and C. Clifton. Privacy-preserving decision trees over vertically par-
titioned data. In 19th Annual IFIP WG 11.8 Working Conference on Data and
Applications Security, University of Connecticut, Storrs, CT, U.S.A., August 7-10,
2005.

J. Vaidya and C. W. Clifton. Privacy preserving k-means clustering over vertically
partitioned data. In Proceedings of the 9th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, Washington, DC, USA, August 24-27,
2003.

[85]

[88]

[89)]

[90]

[91]

[92]

185

V. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, New York,
1995.

V. Vapnik. Estimation of Dependences Based on Empirical Data. Springer-Verlag,
New York, 2002.

S. L. Warner. Randomized response: A survey technique for eliminating evasive
answer bias. The American Statistical Association, 60(309):63 — 69, March 1965.

J. Weight. Ensuring trust in the electronic health record. In FElectronic Health
Information and Privacy Conference, Ottawa, Canada, 2005.

A. F. Westin. The Right to Privacy. New York: Atheneum, 1967.

R. Wright and Z. Yang. Privacy-preserving bayesian network structure computa-
tion on distributed heterogeneous data. In Proceedings of the 10th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD), 2004.

Z. Yang and R. Wright. Improved privacy-preserving bayesian network parameter
learning on vertically partitioned data. In Proceedings of the ICDE International
Workshop on Privacy Data Management, pp. 43-52, 2005.

Z. Yang, S. Zhong, and R. Wright. Privacy-preserving classification of customer
data without loss of accuracy. In Proceedings of the 2005 SIAM International
Conference on Data Mining (SDM), pp. 92-102, 2005.

A. C. Yao. Protocols for secure computations. In Proceedings of the 23rd Annual
IEEE Symposium on Foundations of Computer Science, 1982.

Z. Zhan and L. Chang. Privacy-preserving collaborative data mining. In IEEFE
Intertional Workshop of Foundations and New Directions in Data Mining, Mel-
bourne, Florida, USA November 19 - 22, 2003.

Z. Zhan and L. Chang. Privacy-preserving collaborative sequential pattern min-
ing with horizontally partitioned datasets. In International Conference on Data
Privacy and Security in a Global Society, Skiathos, Greece, May, 2004.

Z. Zhan, L. Chang, and S. Matwin. Privacy-preserving collaborative data mining.
In Foundation and Novel Approach in Data Mining, FEdited by T.Y. Lin, S. Ohsuga,
C.J. Liau, and X. Hu, Springer-Verlag, 2004.

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

186

Z. Zhan, L. Chang, and S. Matwin. Privacy-preserving data mining in electronic
surveys. In 4th International Conference on Electronic Business, Beijing, China,
Dec. 5-9., 2004.

Z. Zhan, L. Chang, and S. Matwin. Privacy-preserving electronic voting. In Journal
of Information and Security, Vol. 15, pp. 165-180, 2004.

Z. Zhan, L. Chang, and S. Matwin. Privacy-preserving multi-party decision tree
induction. In 18th Annual IFIP WG 11.3 Working Conference on Data and Ap-
plication Security, Sitges, Catalonia, Spain, July 25-28, 2004.

Z. Zhan, L. Chang, and S. Matwin. Privacy-preserving naive bayesian classification.
In TASTED International Conference on Artificial Intelligence and Applications,
Innsbruck, Austria, February 16-18, 2004.

Z. Zhan, L. Chang, and S. Matwin. Building k-nearest neighbor classifiers on
vertically partitioned private data. In International Journal of Network Security,
vol. 1, no. 2, pp. 69-78, 2005.

Z. Zhan, L. Chang, and S. Matwin. Collaborative association rule mining by shar-

ing private data. In Montreal Conference On E-Technologies, Montreal, Canada,
January 20-21, 2005.

Z. Zhan, L. Chang, and S. Matwin. Privacy preserving k-nearest neighbor classifi-
cation. In IEEFE International Conference on Granular Computing, Beijing, China,
July 25-27, 2005.

Z. Zhan, L. Chang, and S. Matwin. Privacy-preserving sequential pattern mining
over vertically partitioned data. In 5th International Conference on FElectronic
Business, Hong Kong, December 5-9, 2005.

Z. Zhan, L. Chang, and S. Matwin. Private mining of association rules. In I[EEE In-
ternational Conference on Intelligence and Security Informatics (IEEE ISI-2005),
Atlanta, Georgia, May 19-20, 2005.

Z. Zhan, L. Chang, and S. Mawin. How to prevent private data from being dis-
closed to a malicious attacker. In IEEFE International Workshop on Foundations
of Semantic Oriented Data and Web Mining, Houston, Texas, USA, November 27
- 30, 2005.

[107]

[108]

109]

[110]

[111]

112]

[113]

[114]

[115]

187

Z. Zhan and S. Matwin. Multi-party sequential pattern mining over private data. In
IEEE ICDM Workshop on Multi-Agent Data Warehousing and Multi-Agent Data
Mining, Houston, Texas, USA, 27 - 30, November, 2005.

Z. Zhan and S. Matwin. Privacy-preserving decision tree classification over ver-
tically partitioned data. In IFEE International Workshop on Multi-Agent Data
Warehousing and Multi-Agent Data Mining, Houston, Texas, USA, 27 - 30,
November, 2005.

Z. Zhan and S. Matwin. Privacy-preserving nave bayesian classification over hori-
zontally partitioned data. In 5th International Conference on Electronic Business,
Hong Kong, December 5-9, 2005.

Z. Zhan and S. Matwin. Privacy-preserving nave bayesian classification over ver-
tically partitioned data. In IEEE ICDM Workshop on Foundations of Semantic
Oriented Data and Web Mining, Houston, Texas, USA, 27 - 30, November, 2005.

Z. Zhan, S. Matwin, and L. Chang. Building support vector machines on private
data. In International Conference on Artificial Intelligence, University of Podlasie,
September 22-23, 2005.

Z. Zhan, S. Matwin, and L. Chang. Privacy-preserving clustering over vertically
partitioned data. In International Conference on Artificial Intelligence, University
of Podlasie, September 22-23, 2005.

Z. Zhan, S. Matwin, and L. Chang. Privacy-preserving collaborative association
rule mining. In 19th Annual IFIP WG 11.8 Working Conference on Data and
Applications Security, University of Connecticut, Storrs, CT, U.S.A., August 7-
10, 2005.

Z. Zhan, S. Matwin, and L. Chang. Privacy-preserving decision tree classification
over horizontally partitioned data. In 5th International Conference on Electronic
Business, Hong Kong, December 5-9, 2005.

Z. Zhan, S. Matwin, and L. Chang. Privacy-preserving multi-party association rule
mining. In Journal of Network and Computer Applications (JNCA), Special issue

on Innovations in Agent Collaboration, cooperation and Teaming, 2005.

188

[116] Z. Zhan, S. Matwin, and L. Chang. Privacy-preserving support vector machine

learning. In 5th International Conference on Electronic Business, Beijing, China,
December 5-9., 2005.

[117) Z. Zhan, S. Matwin, N. Japkowicz, and L. Chang. Privacy-preserving associa-

tion rule mining. In 4th International Conference on Electronic Business, Beijing,
China, Dec. 5-9., 2004.

