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Abstract

In this paper, a novel ant colony optimisation and tabu Iggraach for the discovery of gene-gene interactions
in genome-wide association study data is proposed. Theameashtested on a number of diseases drawn from the
large established database, the Wellcome Trust Case C&ursortium which contains hundreds of thousands of
small DNA changes known as single nucleotide polymorphisfosanalyse full scale genome-wide association study
data, the standard ant colony optimisation algorithm hanbedapted, with tournament path selection, a subset
based approach, and tabu list included in the algorithms@&hmeodifications, in addition to the use of a statistical
test of significance of single nucleotide polymorphism riat¢ions as a fitness function, greatly increase execution
speeds and permit the discovery of combinations of singtgeotide polymorphisms that can discriminate cases and
controls. The methodology is applied to several largeesgeinome-wide association study disease datasets namely,
inflammatory bowel disease, rheumatoid arthritis, typeabdies and type Il diabetes patients to discover putative
gene-gene interactions in reasonable time on modest heedwa

Index Terms

Genome Wide Association Study, Ant Colony Optimisatiomgs Nucleotide Polymorphism.

|. INTRODUCTION

The advent of the sequencing of the human genome in 2003 lkasedr many opportunities for scientists to
understand the associations between an individual's geramd the propensity for disease. Recent advances in
sequencing techniques allow researchers to sequence tleengs of thousands of individuals and to compare
genomes across a large cohort of subjects. Such studieginkae genome-wide association studies (GWAS),
capture the small variations in genomes (known as singléentide polymorphisms (SNP<)|[1]) among individuals
and attempt to understand the association between thes@ndriation in phenotypic traits such as height, body
mass index and the propensity to develop certain diseasse®chtions between SNPs and a disease can be found
by iteratively exploring the association of each SNP in farrcomputationally complex but feasible problem. The
exploration of associations between more than one SNP ariseasg is a much more computationally complex
problem. So called gene-gene interactions can be invéstiges an additive model where the effects of possessing
two associated SNPs are simply added together or througih otechanisms such as epistasis where the individual

(or main) effect of each SNP might be small but in combinatibe effect is large [2].
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The first reported GWAS were developed around 2007 to iryatgithe genetic basis of type Il diabetes. Since
then many other disease datasets have been created fraamplajgcts such as the Wellcome Trust Case Control
Consortium (WTCCC) and UK Biobank. GWAS offer the potentialilluminate the genetic causes of diseases
and provide an opportunity for early treatment and planriargpatients leading to profound social and economic
benefits.

The GWAS investigated here are real-world disease dattets from the WTCCC set. The diseases explored are
the two types of diabetes type 1 diabetes (T1D) and type 2thal(T2D), Inflammatory Bowel Disease (IBD) and
Rheumatoid Arthritis (RA) and the heritability of these @hses has been the subject of numerous studies. Type I
Diabetes (T2D), characterized by insulin resistance afettifig hundreds of millions of people worldwide [3], is
studied in numerous GWAS [4][5]L[6]L[7]. Type | DiabeteB1D), a chronic autoimmune disorder with onset
usually in childhood, is tackled by Vella et al. in these GWfgp. Rheumatoid arthritis, a chronic inflammatory
disease characterized by the destruction of the synovilaisj@esulting in severe disability, is the subject [of [9].
For inflammatory bowel disease, the pathogenic mechanisenpa@orly understood and its heritability is studied
in [Z0].

From a computational perspective, GWAS present a significhallenge as there are hundreds of thousands of
SNPs (variables) per individual. In these datasets theyem@rded for thousands of individuals creating a database
of large proportions (almost 2.5bn elements in the expartméescribed later). Any computational approaches
used for analysis therefore must be scalable in the faceesktiarge-scale data. Many examples of GWAS data
analysis exist in the literature that successfully dentatstthe association between a single SNP and the disease.
When a SNP is strongly associated with a disease it is saia tonie of the main effects in the dataset and the
discovery of these single associations is computatiorfiedlgible with modern hardware. However the computational
challenge increases markedly when the task is to find SNP ioatitns associated with a disease that demonstrate
a significant gene-gene interaction.

There are known single associations for type Il diabetesteaits such as height for instance, however, there is
a considerable amount of missing heritability; for exampfdy approximately 10% of variation in height can be
explained by traditional single SNP GWAS. This missing tadility could be due to rare variants, or to combinations
of SNPs (gene-gene interactions) which are beginning txp®eed and increasingly becoming of interest. Standard
GWAS analyses are carried out through full enumeration (eegsoftware package Plink: which can perform a range
of basic, large-scale analyses in a computationally efftaieanner([111]). With modern hardware, the association of
hundreds of thousands of SNPs with a disease can be detéermitién reasonable computational time. However,
when combinations (pairs, triplets and higher) are comsuilethe computational load becomes highly burdensome
or completely intractable. This has led to a variety of apph®s[[1R] for the discovery of gene-gene interactions that
can be broadly divided into two groups, those that pre-sc&"Ps for their association and exhaustively search the
reduced dataset (known as the filter approach) and thosexphire the entirety of the dataset through a heuristic
technique (known as the wrapper approach). The filter methadten problematic for the discovery of epistasis

as all SNPs or SNP combinations must be investigated duniadiltering stage, leading to the exclusion of SNPs
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with weak marginal effects (single associations) if onlygte SNPs are considered, or extremely high computation
time if SNP combinations are considered. The wrapper approasually accomplished through a global search
technique, is able to search the space of all combinationsamnot guarantee to find the best combinations within
the dataset due to the exceptionally large search spacehargtéedy or stochastic nature of the algorithm.

The filter approach is investigated in numerous studiesudiol [13], where a Bayesian partitioning model and
a Markov chain Monte Carlo approach are used, [14] in kvRidimensionality reduction technique is used.
In [15] a hierarchical learning algorithm to search for camaltions of SNPs is investigated and [n][16] a novel
Bayesian graphical method, called BEAMS3, is introduced lfoge-scale association mapping. Furthermore, an
approach for genome-wide interaction analysis of casérgb8NP data and quantitative traits, called INTERSNP,
is presented if [17]. Among the filter approaches, one of thstmopular tools for exploring gene-gene interactions
in GWAS is BOOST[[18]. It is a fast approach based on a noniteranethod to approximate the likelihood ratio
statistic and is able to search through all pair-wise comtons by using log-likelihood analysis.

Wrapper approaches include decision tree [19], neural avé&sv[20], odds ratio[[21] and filtering-based ap-
proaches[[22] in addition to stochastic techniques suchasaony optimisation (ACO)[23],[[24]/[125] that has
been shown to be a promising technique. In our previous weekhave demonstrated how the ACO algorithm can
be used to search for gene-gene interactions for type lletksti25] in a full set of GWAS data, comprising many
SNPs and individuals without utilising expert knowledge.

The ACO technique is a strong candidate for this task as itahaatural fit with discrete optimisation problems,
and with a modification to allow for the selection of subsets/ariables and a highly configurable pheromone
deposition rule, is well suited to the problem of finding ggyeme interactions in large data. The ACO algorithm
has also been shown to deliver excellent results on discatinatorial test problem5[26] and has been widely
applied to real-world problems ranging from water disttibo system optimisatiori [27] to robotics [28].

In this paper, inspired by [29], elements of tabu search ererporated into the ACO approach in order to find
gene-gene interactions. Tabu seaifch [30], a local searthosheised for mathematical optimisation, searches the
neighbourhood of solutions around the current solution,idfiorbidden from moving to those solutions presented
on the tabu list (often a list of solutions that were prevlgusgsited). This process ensures that the algorithm
does not cycle among solutions and can be used to promotegingnareas of the search space. In the approach
described here, a tabu list is used to prevent the ACO algoritom continually selecting SNPs that are associated
with the main effects (individual SNP assocations) in th@askt. Tabu lists have been used in ACO approach since
their inception where they were applied to the travellingesaman problem [31]. However, the lists are used in
that application to remove visited cities from considenatin path selection during the optimisation, as opposed to
removing single variables between optimisation runs asrie=d here. In this application, SNPs that are associated
with the main effects are included in the tabu list when they detected. Once a SNP appears in the list it is
not available for selection by the algorithm from that poamt This modification allows the ACO to concentrate
on combinations of SNPs with smaller marginal effects which therefore those more likely to yield epistatic

interactions.
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This paper presents an ACO approach for the analysis oféalle GWAS data with the aim to find combinations
of SNPs that have associations with T2D, T1D, RA and IBD a@gpopulation of thousands of individuals. The
ACO algorithm incorporates pheromone trails and evapamabut is modified in several ways from a traditional
method, with the inclusion of a subset-based pheromonesitépoand tournament path selection. The following
sections describe the methods, the experiments and theisreBhe last section concludes and summarizes the

presented results.

II. METHOD

The ACO algorithm is run as a standard wrapper method foios&ing gene-gene interactions. In this method,
the algorithm selectd” SNPs (in this casé&'=2) from the full dataset and evaluates the combinationtfeirtability
to discriminate between controls and cases within the datage following subsections describe the specific ACO

approach used.

A. Algorithm

The basic ant colony optimisation approach for searchingdmbinations of SNPs that can discriminate between
controls and cases within a GWAS dataset is as follows. An(agent) selects a combination of SNPs from the
dataset randomly with a bias towards SNPs with the grealtesbmone value. The fithess (discrimination capability)
of the chosen combination of the two SNRspl and snp2 is calculated and the corresponding pheromone value
P(snpl+snp2) is deposited on each SNP. This is repeated for a populafiamts and then all pheromone values
are evaporated by applying a uniform multiplier (L.0) across the SNPs.

The algorithm can be described as follows:

1: Initialise pheromone on each SNP #eitpheromone;

2: repeat

3. for all nbant antsdo

4: Select two SNPs via tournament selection (see subsectiomwhe
5: Calculate the fitness of the combination;

6: end for

7:  Update the pheromone of the two SNPs with the best fitness;
8. for all SNPsdo
9: Evaporate the pheromone;
10:  end for
11: until the end of the execution
where nbant is the number of ants of the algorithm amditpheromone is the initial value of the amount of
pheromone for each ant that was experimentally chosen as 100
The algorithm described above and in Figlire 1 is a somewhatlatd ACO algorithm. However, certain novel

adaptations are required to configure the algorithm for uile the gene-gene interaction problem on real data.
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Fig. 1. Overview of the ant colony optimisation approach gearching for combinations of SNPs.
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1) Selection of SNPs: Selecting SNPs for new combinations based on their pheremvafues can be com-
putationally expensive in this ACO algorithm due to the higimber of SNPs (e.g. 400,000). In standard ACO
implementations, a structure similar to a biased rouletiealis used to make the path choice that is both stochastic
and biased towards the path with the greatest pheromoneewowthis approach breaks down when the number
of variables is high, as the case here. Therefore we make fuseimament selection to achieve stochastic path
selection as it has proven to be better for high dimensionablpms [32]. In the tournament-based approach, a
number of SNPsy(bt) are randomly selected from the possible set to form a tonema and the SNP with the
highest amount of pheromone among them is selected as p#risofolution. The tournament has many of the
same properties of the roulette wheel approach, in thatabkes a balance between selecting paths randomly with
lower amounts of pheromone and biasing the search towaods thith high pheromone. The size of the tournament
clearly has an effect on this balance between the exploratio exploitation capability of the algorithm. The setting
of this parameter is investigated in the later experimeseations.

2) Genotypes and Logical Combinations: Each SNP is comprised of one of three genotypes, common hemoz
gous (CH) (e.g. CC), rare homozygous (RH) (e.g. GG) and beygous (H) (e.g. CG). There are a number of
standard models of interaction between genes, for exameladditive model states that the effect of one gene adds
to the effect of another, in contrast in epistasis, SNPs hetegively small individual effects but the combined effec
of SNPs is large. This usually implements thé&/ D model of combination[[23], individuals will have one genogy
(e.g. RH) AND another genotype (e.g. H) if they are to be ideltiin the positive group. However, when considering
the details of the combination at the genotype level a numbeiifferent possibilities present themselves. In this
work, the algorithm can explore a number of combination sypeoviding it with greater expressive power. Initially
all logical boolean operations between two genotypes wensidered by the algorithm, but analysis revealed that
this can be reduced down to the following four combinatidret €ncompass all real-world possibilities.

In the approach described here, the following logical imt&pns between two SNPs are considered:
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« Anindividual is positive if and only if the first SNP takes aesjfic value and the second SNP takes a specific
value. (AND)

o An individual is positive if and only if the first SNP or the seel SNP takes their specific values. (OR)

o An individual is positive if and only if the first SNP takes aesjfic value and the second SNP does not take
a specific value. (AND NOT)

o An individual is positive if and only if exactly one of the tw®NPs takes a specific value and the other SNP

does not take a specific value. (XOR)

From the above list it can be seen that this extension alltwesalgorithm to search for more sophisticated
interactions between genotypes than the standaxd) relationship. During the search process, when two SNPs
are selected by the ACO approach, their genotypes are igatsd using all of these four logical combinations,
from which the best is selected to be used as the fithess ofotimdination.

3) Fitness Function: The fithess function must represent the discriminatoryitgbdlf a combination between
control individuals and cases. SNPs in combination withhhiigness values will receive more pheromone and
are therefore more likely to be selected for new combinatidrus this function leads the search process of the
algorithm and is therefore a key aspect of the algorithm.fithess function is based on standard statistical measures
that are implemented on a binary classification of contrats @ases in genome wide association studies [16], [23]
and are described below.

The efficacy of two SNPsnpl andsnp?2 in discriminating between the two classes is evaluated byntimbers
of positive () and negativer() individuals among the case®§ and D,,) and controls ¢, and C},), where the
determination of positive and negative individuals is agkd through the use of the logical combination rules

described previously, and according to the following pssce

1: Initialise two 4 by 4 tableSconirors aNdTegses;

2: for all controlsdo

3. Incrementlconrois[Value_of _snpl][Value_of_snp2] by 1;

4: end for

5: for all casesdo

6: IncrementTcyses[Value_of_snpl][Value_of_snp2] by 1;

7: end for

8: Cp (Cy) < sum of cells ofTcontrors fOr which the combination is true (false);
9: D, (Dy,) < sum of cells ofT,ses for which the combination is true (false);

The complexity of this calculation i©(n) wheren is the total number of individuals (controls and cases)sThi
is important because an ACO run may require over a milliore§itnevaluations, the main computational load of
the algorithm is devoted to the evaluation of the fithess tioncand therefore this must be as efficient as possible.

To calculate fitness, Pearson’s chi-squared test on a bgtasgification of controls and cases is used. The four

valuesC,, C,,, D, andD,, are used to calculate the expected valtes,,, £.C,,, E.D, andE.D,The chi-squared
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statistic X2, .,,2(v1,v2) is given by the formula:
E.D,—D,)? (E.D,—D,)? (E.C,—C,)? (E.C,—C,)?
X2 1.02) = ( P P n n p p n n 1
snpl,san(v ) U ) EDp + E.D, ECp + ECn ( )

As described previously, there are three possible valuesHCEnd RH forvl and again three possible values
for v2. Therefore there are 9 (8 3) different chi-squared values fenpl and snp2 and the largest of these is

selected as the fitness function valfignpl, snp2) of the combination of the two SNRsipl and snp2.

f(snpl, snp2) = maz{X?> (v1,v2)} such that(vl,v2) € {CH, H, RH}? 2

snpl,snp2

From the Pearson’s chi-squared the p-value (probabiligebieving this result through chance) of the association
can be calculated.

4) Updating pheromone: At each generation of the algorithm, each of thteint ants selects two SNPs to test
their combination. The amount of pheromone of the two SNPgaioed in the combination with the highest fitness

are updated. For the two pheromone levels the following dieg:

P(snpl) < P(snpl) + f(snpl, snp2) 3)

P(snp2) < P(snp2) + f(snpl, snp2) 4)

B. Memory Management

The database used is composed of samples of the genome okapately 2,000 individuals (Cases) with the
disease (1,999 for T2D, 2,000 for T1D, 2,005 for IBD and 1,889RA) and 3,004 control samples. Each sample
is composed of 490,294 SNPs and due to the diploid nature ehtiman genome each SNP consists of two
alleles (two among Adenine (A), Cytosine (C), Guanine (GJ ahymine (T)) leading to three possible genotypes
described above. Additionally, due to the sequencing ofgéileome, a genotype can be unknown and therefore a
fourth possible value of 'unknown’ exists for a SNP.

The data for approximately 5,000 individuals were storetbistat’ and 'plink’ formats [38] on a normal hard
drive and required more than an hour to open and to read thesddi each disease with an IflCore" i7-2600
CPU @3.40GHz processor.

An ACO run may require over a million fitness evaluations andesen a small improvement in complexity
of the fitness function will have a large impact on performenad clearly, a function that requires the searching
of a database on disk will lead to run times orders of mageitiothger than one in which it is stored in RAM.

However, with more than 2 billion elements to represent@8,thdividuals x 490,294 SNPs), each SNP cannot
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be represented by more than 1-2 bytes in memory. The repatisenbelow implements a lossless compression of

the data that enables it to be kept in memory when considevimge genome analysis.

C. Representation
In order to keep the database in memory when consideringengeiome analysis, a SNP is encoded as follows:

Unknown: 0

Common Homozygous (CH): 1

Heterozygous (H): 2

Rare Homozygous (RH): 3
By raising the SNP number to the power of the encoding abae, $NPs from an individual are encoded in one
byte @* = 256).

By using this lossless compression, the size of the databaeduced four-fold and crucially, enables the dataset
to be stored entirely in RAM on a standard PC with at least 16BAM. Furthermore, files using this representation
that are created on the hard drive can be read and openedsithlas one and a half minutes using the hardware
described above.

Although extra processing is required to compress and dpiess the data, the benefit from holding all data
in memory with no paging to disk easily outweighs this disatage. The compression method also provides
scalability in the presence of a greater number of indivislwat SNPs, a likely scenario in this field with larger

databases already on the horizon.

IIl. EXPERIMENTAL SETUP

Experimentation has been conducted using the modified dahyx@pproach on four real-world genome wide
association datasets taken from the Wellcome Trust Casé¢rdCdPonsortium, each consisting of approximately
500,000 SNPs (variables) and 5 000 individuals (recordsg fbllowing subsections discuss the SNP exclusion
criteria used and the experimentation conducted to deberthie best parameters for exploration and exploitation of
the dataset by the ACO algorithm. This experimentation $ecuon the size of tournament in the tournament selector
and the resulting coverage of SNPs in the dataset duringgoritm run. Furthermore, the use of permutation

testing to determine benchmark p-values is also explored.

A. Exclusion Criteria

A variety of exclusion criteria are required in GWAS datade¢fore processing can begin. Readers are referred
to the GWAS literature for more information on these craef84], [23]. The SNPs kept are those meeting the
following standard conditions in the 3,004 control samples

« HWE Exact Test> 5.7 x 10~7, minor allele frequency- 1 % and studywise missing data proportians%.

o Studywise minor allele frequency 5% OR studywise missing data proportienl%.

o 58C versus NBS 1dfTT p-value 5.7 x 107 and 58C versus NBS 2dfGT p-value5.7 x 10~ 7.
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Fig. 2. Evolution of the average best fitness over 10 runs @falgorithm with 50 ants and 100, 200, 500, 1,000 and 2,000tasraament
size.

There are three conditions in the approximately 2,000 sasnpf genomes of individuals with the disease: HWE
Exact Test> 5.7 x 10~7, studywise missing data proportian 5% and minor allele frequency 1%.

The remaining data after the application of these critesiatain 395,711 SNPs for T2D, 395,602 SNPs for T1D,
396,093 SNPs for IBD and 395,862 SNPs for RA.

B. Parameters

Stochastic search algorithms, such as ACO, often have afsetsociated parameter values that must be set
before experimentation can begin. The number of ants in alptipn, pheromone evaporation rate, and pheromone
deposition in ACO will all have an effect on the way in whiclethlgorithm runs. In the following experimentation
we focused on the tournament size for path selection, asighasnovel element of the algorithm, and also the
number of ants in the population. The pheromone evaporatitmwas kept constant at 1% and the pheromone

deposition was simply the fitness provided by the fithesstfonalescribed above without transformation.

o nbant: Number of ants of the algorithm.

o nbt: Number of SNPs in the tournament of the selection process.

An investigation into these parameters was conducted &rm@ie the effect of changing the population size and
tournament size on the execution of the algorithm. Inspingd32], the algorithm was run with the values 50 and
200 for the number of ants and the values 100, 200, 500, 1,80@ 800 for the tournament size. Ten algorithm runs
were conducted for each combination of values of these twanpeters on the type Il diabetes dataset taken from
the Wellcome Trust Case Control Consortium database. Tdteeht fitness values that have been found during each
run are stored and an average of these is then computed. Tihgoraof the highest fithess was considered against
the number of function evaluations, where the stoppingdh is set to a maximum of 100,000 such function

evaluations. The results of the algorithm with 50 ants an@ &6ts are described in the following subsections.

C. Algorithm Results

1) 50 Ants: The average of the highest fithess values was computed amch shdrigure[2 for 50 ants.
The overall best fithess from these runs is for a tournamestai 200. It is worth noting that before the first

30,000 evaluations of the fitness function, the highestdgrie for a tournament size of 2,000 items, then between
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Fig. 3. Evolution of the average best fitness over 10 runs efafgorithm with 200 ants and 100, 200, 500, 1,000 and 2,0GDtasrnament
size.

30,000 and 490,000 the highest fitness is for a tournameatasia,000, then between 490,000 and 900,000 the
highest fithess is for a tournament size of 500 and 200 thteredhis can be explained as larger tournament sizes
will result in more exploitation and less exploration leaglio better performance initially, but earlier convergenc
There would appear to be too much exploitation without emoegploration for 2,000, 1,000 and 500 items in
the tournament. For a population of 50 ants, 200 items in denment appears to be a reasonable setting as it
achieves the best performance in these runs.

2) 200 Ants: An average of the highest fithess values is shown in Figlre 200 ants.

For 200 ants the overall best fitness achieved by the algoigHor a tournament size of 2,000 at the beginning,
reducing to 500 items after 1,000,000 evaluations of thedgrfunction.

The 50 and 200 ants experiments have shown that populatienasid tournament size have an effect on one
another as expected. However, each of the population sedeavbs relatively consistently, achieving a chi-squared
value of just under 60 when configured with the correct tooremat size. As expected, the smallest tournament sizes
(i.e. 100) and largest tournaments (i.e. 2,000) performpamatively poorly indicating slow and early algorithm
convergence respectively. The best range for tournameqsaas to be between 200 and 1,000, a ratio of just
0.05-0.25% with respect to the number of variables, far En#gian would be expected in EA tournament selection
where a tournament size of 10% of the population is the noearty, the extent to which the algorithm exploits
and explores can be tuned by use of the tournament size prame

3) Dataset Coverage: A further key question regarding these parameter settinglse explorative capability of
the algorithm and in particular the extent to which the detta$ almost 400,000 SNPs is covered by the algorithm.
To this end, FigureEl4 (population of 50 ants) &ihd 5 (poputatf 200 ants) show the dataset coverage of the
algorithm as it progresses for differing tournament sitéissurprisingly, the tournament of size 100 explores more
of the space than any other, but as seen in the previous sigisebis comes at the expense of the discovery of
good combinations within reasonable time.

However, the exploration is not improved greatly for a t@ament size of 100 over the preferred figure of 200
for this number of ants as shown in Figle 4.

4) Summary: The extent to which the algorithm can cover the dataset aptbex combinations is important

in determining the level of exploration and exploitatiorthim the algorithm. The goal of these experiments is to
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Fig. 4. Evolution of the number of SNPs evaluated at leaseane@r 10 runs of the algorithm with 50 ants and 100, 200, 50@)QLand
2,000 as a tournament size.
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Fig. 5. Evolution of the number of SNPs evaluated at leaseaner 10 runs of the algorithm with 200 ants and 100, 200, 30800 and
2,000 as a tournament size.

determine parameter settings that ensure good coveragasbuisome eventual convergence on a set of likely SNPs
within the computation time available. The results in Fegl? and13 clearly show the number of ants and the size
of the tournament are not independent in this approach [@5thfese GWAS. In this experimentation, the fithess
is the highest for 50 ants and a tournament size of 200 anddheyhe chosen parameters of the algorithm for

further experiments.

D. Permutation Tests

A key aspect of the analysis of GWAS data is that any discalveoenbination should be validated to determine
the likelihood that it could exist by chance and lead to a tygeror [35]. As the database consists of hundreds
of thousands of SNPs and many statistical tests are cordlbgt¢he algorithm, a permutation test is a common
approach to estimating the p-values of associations thatbeaexpected purely by chance. The permutation test
establishes the baseline p-values that arise by chanceagrdddes a benchmark for the ACO results on unshuffled
real data.

To determine these p-values, the ACO algorithm is run onflgtuidatabases. 1,999 individuals among the
5,003 individuals (Cases + Controls) are randomly chosehetdhe individuals with the disease (Cases) while
the remaining individuals are those without the diseasen{{©ts). The process is repeated 200,000 times and the
algorithm is run for each set of shuffled data and the bestlyevaf each run is stored. There are 2,000 best
p-values (1% of 200,000) lower tharx20~*%. Any result obtained with the method on real data with a pwal

lower than 210~!! has less than 1% chance to exist by chance and therefore bie dyge | error.
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TABLE |
BEST COMBINATIONS OFSNPS DISCOVERED BY IDENTIFIER(RSNUMBER). CHROMOSOME NUMBER AND GENE NAME(WHERE
APPLICABLE) IN PARENTHESES

DISEASE COMBINATION p-VALUE
T2D rs9508846(13,hCA815504)=AA AND rs7901695(10, TCF7L2)=C{ 8x10~ 15
T2D rs11196205(10, TCF7L2)=GG OR rs10992923(9)=GA 3x10~1°
T2D rs7077039(10, TCF7L2)=TT XOR rs9783382(11)=GG 6x 1014
T2D rs9508846(13,hCA 8155043 GA AND rs7901695(10, TCF7L2)=C( 4x10~'6
IBD rs12242030(10)=AA AND rs17116117(11,HTR3B)=CC 2x10- 2%
IBD rs10210302(2,ATG16L1)=CC OR rs17116117(11,HTR3B)=TC| 1x10~3°
IBD rs7382225(6)=GG XOR rs17116117(11,HTR3B)=TC 3x10~27
IBD rs2076756(16,NOD23GG AND rs17116117(11,HTR3B)=CC | 4x10-3!
T1D rs3805006(3,ITPR1)=CT AND rs9270986(6,NCBI36)=AA | 7x10 2%
T1D rs9273363(6,HLA-DQB1)=GG OR rs3805006(3,ITPR1)=CC | 7x10~26
T1D rs9273363(6,HLA-DQB1)=TT XOR rs7859401(9,ZNF367)=CC| 6x10~27
T1D rs3805006(3,I TPRBEZC AND rs9270986(6,NCBI36)=AA 9x 10293

RA rs17104722(14)=CC AND rs4718582(7, TYW1)=CC 5x 10~ 103
RA rs4718582(7, TYW1)=AG OR rs2076533(6)=AA 8x 10101
RA rs4718582(7, TYW1)=AA XOR rs7295430(12)=AA 6x10~%7
RA rs9268403(6£TT AND rs4718582(7, TYW1)=TT 3x 10104

IV. GWAS RESULTS

In Tablell, the best results of an algorithm run over 20,00@egations with 50 and 200 ants as a tournament size
are presented for each disease. With these parameterseeatj@m of the algorithm requires an average of 0.13
seconds, meaning an optimisation run requires an averag@ wiinutes and 33 seconds on the hardware described
earlier.

The ACO algorithm found good results exceeding the perrmutdést threshold for combinations of two SNPs
concerning T2D, T1D, IBD and RA. This table demonstratesdfficacy of the ACO approach in discovering
SNP combinations with low p-values across a range of dise@ssociations where linkage disequilibrium (LD) is
expected to be involved (i.e. where SNPs are close togeth#teogenome and are correlated) have been removed,
and all the interactions described above have SNPs on d@iffeshromosomes, eliminating the possibility of LD.
The p-values vary widely among diseases, indicating thierdifice in strength of the underlying main effect in
each disease. An additional interesting point is that tlaeeea variety of logical combinations represented, from
these results it certainly does not appear that gene-géamations must be confined to 'and’-type relationships.

For T2D, all the best combinations contain the SNP rs7901686is in the gene TCF7L2 and is well known
to be associated with T2D [36]. This demonstrates that th® Approach is able to find SNPs that have been
associated with this disease in the literature.

For IBD, the ACO algorithm found combinations of SNPs with -@giue aroundl0—3° that contain the SNP
with rs17116117 that is in gene HTR3B that is a major deteamtirof serotonin-receptor function [37]. This SNP
or those close to it drive this effect and confirm the findinfpr@vious GWAS.

For T1D, rs9270986 and rs9273363 lead the results and ahe iHItA region that contains many genes involved
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in the immune system’s recognition and the latter is alsonmto be highly associated with type | diabetes| [34].

For RA, the results are driven by the main effect of rs4718%82 SNP is in the gene TYWL1 that is the human
homolog of a yeast gene essential for Wybutosine synth@8is [

Table] shows the impact of the combination of the SNPs angehglow p-values. For each disease, combinations
of two SNPs that can discriminate patients from controlsehlagen discovered by the ACO algorithm. For these
diseases, the above results show that the convergence afghithm is driven by one or two SNPs that are the
main effect of the associations (i.e. with the exception &f Ehat they have been previously identified in single
association studies to be highly associated with the diged%is demonstrates that the algorithm is capable of
discovering biologically plausible associations from th&a, but in many cases, one SNP is providing the main
effect and the effect of the interaction is rather small. AG@\ variant incorporating a tabu list was therefore

implemented to tackle this phenomenon and is the subjedteohéxt section.

V. ACO-TABU METHOD

This method is based on the ant colony optimisation methadriteed earlier in sectidnlll. The modified method
removes the main effects from the search as they are disweerd allows the ACO algorithm to concentrate on
combinations of SNPs with smaller marginal effects. In dlethe ACO algorithm runswumgen generations, the
SNPsnpl with the largest amount of pheromone is identified and all io@tions ofsnpl and all remaining SNPs
in the dataset are calculated. The combination with thedsgbhi-squared value is recorded amgh1 is removed
from the dataset for further combinations. The ACO-Tabuhoétcan be described by the following algorithm.

1: repeat

2: Run the ACO algorithmumgen generations;

3. Identify SNP with highest amount pheromonesa®1;
4:  Calculate all the combinations efipl and ;

5. Record the best combination;

6: Removesnpl from the dataset;

7: until end of the run

The number of generationsumgen between the removal of SNPs has been experimentally chodes 1,000.

A. Results

Figure[® shows a typical run of the execution of the ACO-Tahbrid, removing the most significant SNP at
every 1,000 generations. As would be expected, performdnmes for a time, before climbing to another peak.
Inevitably over time, the overall fithess drops as more tofPSHre deleted. The first four SNPs removed from the
database are present in the TCF7L2 gene and the fifth is thaatihe well-known FTO gene.

Over 100 runs of the algorithm of 5,000 generations eachnthmber of times each SNP that has been found

at least once is shown in Figure 7. A SNP in the gene TCF7L2uaddn every one of the hundred runs. Clearly,
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well-known in the literature and so it is more difficult to ifgrtheir biological plausibility. However some of the
SNPs from Tablé€1l, other than the SNPs in the genes FTO and’IZFare known to be associated with T2D
and are identified below.

The SNP with rs1481279 (combination X) is described as thstmatable signal contribution to T2D predisposi-
tion outside known loci[39]. The SNP with rs17139608 (conation 1X) is known to be associated with BMI in the
entire population-based full-heritage Pima Indian sanf@D}. In [41], interesting signals for epistasis are seatth
for and the strongest evidence for epistasis that is disedvies the combination of rs1935683 and rs11196205
(combination V). The SNP with rs11742692 (combination \#ljn the gene ARL15 that influences Adiponectin, a
protein inversely associated with risk of T2D mellitisI[4Zhe SNP with rs7767391 (combination IV) in the gene
CDKAL1 was identified to be significantly associated with TPE3]. The SNP with rs713129 (combination VII)
is in the gene SOCS6 and it has been shown that constitutiuegsion of SOCS6 protein in retinal neurons may

improve glucose metabolisrn [44].

TABLE Il
SAMPLE OF THE BEST COMBINATIONS OFSNPS DESCRIBED AS RSNUMBER (CHROMOSOME GENE ORINTERGENICREGION(IGR)) AND
THEIR P-VALUE THAT WERE DISCOVERED.

NUMBER COMBINATION p-VALUE
| rs4506565(10, TCF7L2)=AA AND rs2578050(10, IGR)=AA| 1x10 1

[ rs210357(14, IGR)=AA AND rs4506565(10, TCF7L2)=AA | 1x10~'6
1l rs4132670(10, TCF7L2)=AA AND rs210357(14, IGR)=AA | 1x10~'6
\Y rs7901695(10, TCF7L2)=CC AND rs7767391(6, CDKAL1)=C 1x10~'°
Y rs1935683(6, RFPL4B)=CC AND rs11196205(10, TCF7L2)=( 6x10~1°
VI rs11742692(5, ARL15)=CC AND rs8050136(16, FTO)=AA| 8x10~1°
VI rs7077039(10, TCF7L2)=TT AND rs713129(18, SOCS6)=C| 2x10~4
Vil rs7193144(16, FTO)=AA AND rs255761(5, ARL15)=GG | 6x10~ 4
IX rs9309325(2, IGR)=TT AND rs17139608(16, A2BP1)=GG| 5 x10~!2
X rs349586(5, IGR)=GA AND rs1481279(4, SLC9B2)=TT | 4 x10~!!
XI rs765534(11, IGR)=AC AND rs4765066(12, IGR)=CT | 4 x10~!!

B. Method comparisons

Firstly, a comparison is made between the ACO-Tabu appraadra Monte Carlo approach that consists of the
generation and testing of random pairs of SNPs. As expeat®thnte Carlo method on the type Il diabetes dataset
does not perform well over one million generated pairs, terage p-value yielded i3.5 x 10~ and the best is
1.9 x 10713, The ACO-Tabu search algorithm is compared here with otgujar algorithms designed to search
for gene-gene interaction in GWAS.

The comparison with methods such as BEANI3][16] is difficultBESAM3 cannot run on a dataset of the size
used here, namely 400,000 SNPs and 5,000 individuald._Th {h& algorithm was run on each chromosome
individually to select 3,809 SNPs from different chromossnand subsequently BEAM3 was run on these SNPs.
The ACO-Tabu search algorithm explored all combinationsmiunning on only 3,809 SNPs and can run on much

larger datasets as shown above. Due to the size of the ddtes@CO-Tabu, in our experimentation, discovered the
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TABLE Il
CALCULATION OF THE COMPUTATION TIME OFBOOST, ACO-TABU ALGORITHM, PLINK, INTERSNP. PLINKIS TESTED WITH THE
FAST-EPISTASIS OPTION AND WITHOUT THE CASEONLY OPTION. THE TIMINGS OF BOOST, PLINKAND INTERSNPARE CARRIED OUT
ONA 3.0 GHz CPUWITH 4GBMEMORY AND ACO-TABU ALGORITHMON A 3.4 GHz CPUUSING 2GB MEMORY.

DATA SIZE | BOOST | ACO-TABU ALGORITHM | PLINK | INTERSNP
5,000 INDIVIDUALS AND 1,000 SNPs | <2s 25s 106s 160s
5,000 INDIVIDUALS AND 5,000 SNPs | 42s 625s 2,703s |  4,277s
5,000 INDIVIDUALS AND 10,000 SNP§  170s 2,500s 10,915s|  15,805s

same set of gene-gene interactions as BEAM3 and therefer&@®-Tabu search algorithm performed equivalently
to BEAM3, in terms of results discovered, on this small detas

In [18], a fast approach to detecting gene-gene interasiinGWAS is presented, called BOOST. In this work, the
computation time of BOOST is compared with that of Plink|[ahld INTERSNP[[1I7] on small dataset sizes (5,000
individuals and 1,000, 5,000 and 10,000 SNPs). On thesdemnsates of data the ACO-Tabu search algorithm can
store all of the SNPs in the tabu list and therefore can téshalpairs of SNPs in computation times shown in
Table[l (The 10,000 first SNPs of chromosome 1 of the T2D skttavere used for this experiment).

The ACO-Tabu algorithm is faster than Plink and INTERSNParrttiese conditions, however, BOOST is faster
than the ACO-Tabu approach on these data sizes. Clearly BG&benchmark comparison here for the discovery
of gene-gene interactions from this type of data, partitylas it appears to be able to discover interactions from
large-scale data in a reasonable time frame. However, ateadpproach, BOOST will always be susceptible to
longer runtimes resulting from increase in the number of SkPthe data and the number of SNPs considered in
a gene-gene interaction and some studies have found thatSB@@n yield very high run times [45]. Although
the ACO algorithm would also require more resources to dpeva larger datasets, the link between runtimes and
dataset size is not as fixed as it is with the filter approadhneaddition, the ACO approach described here is also
capable of searching the space of possible logical interacbetween SNPs and is not reliant on a single model.
Finally, on the type Il diabetes dataset of the WTCCC with BEIQthe authors of [18] did not find non-trivial
interactions whereas the ACO-Tabu algorithm apparentigaliered a number of these as described in the previous
section. Nevertheless, it is interesting to discover hownynaf the gene-gene interactions discovered by BOOST
could be discovered by the ACO algorithm, despite it beintpahastic approach, and thus the following experiment
was carried out.

In this further experiment, the ability for the ACO-Tabu apgch to find the best SNP interactions in approxi-
mately the same computational time as BOOST was investigatee following experiment was conducted:

« Randomly select 100,000 SNPs in the database of T2D.

o Randomly select 400 individuals in the controls and 400vidldials in the cases of the database of T2D.

« Run BOOST to find the 100 best associations within these ddiizh took 125 minutes on our machine with

the executable file provided in [46].
« Run the ACO approach with 200 as a tournament size with thate ubing tabu list of sizes 200, 100 and
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TABLE IV
PERCENTAGE OF BEST INTERACTIONS DISCOVERED BY THACO-TABU APPROACH IN APPROXIMATELY EQUAL COMPUTATION TIME OVER
100INDEPENDENT RUNS

‘ TABU LIST ‘ TABU LIST ‘ TABU LIST

OF SIZE 50| OF SIZE 100| OF SIZE 200
FOR THE 100 BEST INTERACTION 77.1% 84.9% 94%
FOR THE 50 BEST INTERACTIONS 78.8% 88.6% 96.1%
FOR THE 10 BEST INTERACTIONS 93.6% 99.2% 100%

50, with each run in a similar timeframe with the definition®XP interactions taken from [118].

This size of data was chosen to be able to perform severalinuparallel and is also the size of the simulated
data sets used in BOOST [46]. As the version of BOOST that eatholwnloaded in[46] does not consider unknown
values, they have been converted into the value of the ¢l&¢B for the same individual in the dataset.

This experiment was performed 50 times and the average miage of best associations that were discovered
for various sizes of tabu lists (50, 100 and 200) are predentdable[TV.

This clearly shows that the ACO algorithm is able to find a éapgoportion of the best signals within a sizeable
database and lends confidence to the notion that it is segrtiése larger databases effectively. This is particular!
the case for the runs of a tabu list of 200 which correctly fifies 100% of the top 10 interactions identified by
BOOST and over 90% of the top 100. Additional experimentsewggrformed to determine how long the ACO
algorithm requires to find the top 10 interactions and ové&b i the top 100 interactions. Over ten runs of a tabu
list of 200, the longest the ACO algorithm needed to find the 10 interactions is 47 minutes and to discover
over 90% of the top 100 interactions identified by BOOST isyofs minutes.

The additional capability of the ACO algorithm to searchgtar databases, larger numbers of interacting genes

and more sophisticated interactions between SNPs is nedtbgre.

VI. CONCLUSIONS ANDFURTHER WORK

An ACO-Tabu list approach to the problem of discovering corabions of SNPs from large-scale GWAS data
that can discriminate various diseases has been described.

The algorithm has been adapted so as to be scalable to thef siagset both in terms of its memory requirements
through the use of a byte-wise representation of genomegshandgh the use of a tournament path selection to
greatly increase execution speeds. Due to a robust appesatithese novel modifications, the ACO algorithm is
able to operate on full-scale GWAS data and this is, to the besur knowledge, the first time that an ACO
method has been successfully applied to such data over a afrdjseases.

Combinations of two SNPs that can discriminate inflammabawyel disease, rheumatoid arthritis, type | diabetes
and type Il diabetes patients from controls have been d&eo\by the approach. The ACO algorithm has been able
to find some of the strongest statistical signals in the éatmsd has also found SNPs that have a known biological

relationship to the diseases. The investigation of logiealations has shown that these provide the algorithm with
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greater power to express the relationship between two oe 18bIPs. In particular, the NOT operator which allows
the system to exclude one genotype in a SNP and include tleesoith an important logical distinction.

For the combinations that were discovered, in many casesSdiP provided the main effect and the contribution
of the gene-gene interaction is rather small. An ACO vatiacdrporating a tabu list has therefore been implemented
to tackle this phenomenon. The ACO-Tabu hybrid allows tlgo@thm to investigate interactions between genes
once the main effects have been removed, an important matitficthat allows the ACO algorithm to provide
gene-gene associations that could generate new knowladfe ifield. Further work is required to examine these
relationships in more detail and to determine if they hawddgjical plausibility in addition to statistical signifinae.

The approach has been compared to some of the most popukafdoexploring gene-gene interactions in data,
in Plink, BOOST and INTERSNP and has been found to be competit terms of computational complexity and
the quality of interactions discovered. This is in addittorthe ability to process large datasets, investigate mgryi
logical combinations and higher order gene-gene intarastthat the ACO approach brings.

Although some of the discovered SNPs do not at present havewrkbiological function, it is this discovery
of plausible known information and targets for further istigation that make the approach a promising addition
to the GWAS toolbox.

The algorithm is also able to discover higher order cominatof SNPs (e.g. 3+ SNPs, not shown) that may
not be possible using existing methods and further workdsiired to assess the statistical and biological meaning

of these larger gene-gene interactions.
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