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Abstract—Multivariate Analysis (MVA) comprises a family
of well-known methods for feature extraction which exploit
correlations among input variables representing the data. One
important property that is enjoyed by most such methods is
uncorrelation among the extracted features. Recently, regularized
versions of MVA methods have appeared in the literature,
mainly with the goal to gain interpretability of the solution.
In these cases, the solutions can no longer be obtained in a
closed manner, and more complex optimization methods that
rely on the iteration of two steps are frequently used. This paper
recurs to an alternative approach to solve efficiently this iterative
problem. The main novelty of this approach lies in preserving
several properties of the original methods, most notably the
uncorrelation of the extracted features. Under this framework, we
propose a novel method that takes advantage of the `2,1 norm to
perform variable selection during the feature extraction process.
Experimental results over different problems corroborate the
advantages of the proposed formulation in comparison to state
of the art formulations.

I. INTRODUCTION

Multivariate Analysis (MVA) comprises a collection of
tools that play a fundamental role in statistical data analysis.
These techniques have become increasingly popular since the
proposal of Principal Component Analysis (PCA) in 1901 [1].
PCA was proposed as a simple and efficient way to reduce
data dimension by projecting the data over the largest variance
directions. As illustrated in Fig. 1, PCA learns from a given
dataset a set of projection vectors, so that data can be repre-
sented in a low-dimensional space that preserves the directions
of the input space where the data shows the largest variance. A
typical example to illustrate PCA is face recognition, where the
projection vectors are known as eigenfaces [2]. Nevertheless,
PCA has been used in many other applications, and can indeed
be considered as one of the most widely-used tools for feature
extraction.

Other MVA algorithms have emerged that are especially
suited to supervised learning tasks (e.g., in regression and
classification). In these problems, the goal is not just to
represent the input data as efficiently as possible, but it actually
becomes of major importance to keep the directions of the
input space that are more highly correlated with the label
information. This is the case of algorithms such as Canonical
Correlation Analysis (CCA) [3], Partial Least Squares (PLS)
approaches [4], [5], and Orthonormalized PLS (OPLS) [6].
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Consider for instance a toy classification problem in Fig. 2. In
this problem, the direction of the maximum variance extracted
by PCA (left subplot) results in overlapping distributions of
the two classes along this direction, while a supervised method
like OPLS (right subplot) successfully identifies the most
discriminative information. Although this toy example is based
on a classification task, the same advantages of supervised
MVA over standard PCA are encountered in regression tasks—
see [7] for a detailed theoretical and experimental review of
these methods.

The simplicity of these methods, as well as the availability
of highly-optimized libraries for solving the linear algebra
problems they involve, justifies the extensive use of MVA
in many application fields, such as biomedical engineering
[8], [9], remote sensing [10], [11], or chemometrics [12],
among many others (see also [7] for a more detailed review
of application-oriented research in the field).

An important property of PCA, OPLS, and CCA is that they
lead to uncorrelated variables, so that the feature extraction
process provides additional advantages:

• The relevance of each extracted feature is directly given
by the magnitude of its associated eigenvalue, which
simplifies the selection of a reduced subset of features, if
necessary.

• Subsequent learning tasks are simplified, more notably,
when the covariance matrix inversion is required. This
is the case of least-square based problems, such as
Ridge Regression or lasso (least absolute shrinkage and
selection operator) [13].

Standard versions of MVA methods implement just a feature
extraction process, in the sense that all original variables
are used to build the new features. However, over the last
few years there have been many significant contributions to
this field that have focused on gaining interpretability of the
extracted features by incorporating sparsity-inducing norms,
such as the `1 and `2,1 norms [14], as a penalty term in the
minimization problem. When these regularization terms are
included, the projection vectors are favored to include zeros
in some of their components, making it easier to understand
the process to build the new features and thus gaining in
interpretability. In fact, the `2,1 rewards solutions that perform
a real variable selection process, in the sense that some of the
original variables are excluded from all projection vectors at
once. In other words, only a subset of the original variables
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Fig. 1: Feature extraction with Multivariate Analysis. During the training phase, MVA methods learn the most relevant directions
for a particular dataset (in face recognition these vectors are known as eigenfaces when the PCA method is applied). Feature
extraction is then carried out multiplying any vector in the input representation space with these eigenvectors. Subsequent
learning tools can then be applied on this new subspace of reduced dimensionality.

(a) PCA (b) OPLS

Fig. 2: Projected data over the first eigenvector of PCA and OPLS in a binary classification task.

are used to build the new features.

Some of the most significant contributions in this direction
are sparse PCA [15], sparse OPLS [8], group-lasso penalized
OPLS (also known as Sparse Reduced Rank Regression,
SRRR) [16], and `2,1-regularized CCA (or L21SDA) [17]. All
these approaches are based on an iterative process which com-
bines the optimization of two coupled least-squares problems,
one of them subject to a minimization constraint. Since the in-
spiring work [15], this constrained least-squares minimization
has been typically treated as an orthogonal Procrustes problem
[18], an approach that can still be considered mainstream (see,

e.g., the very recent works [19], [20]).
A first objective of this paper is to highlight and make

the computational intelligence community aware of some
limitations derived from the use of orthogonal Procrustes in
the context of regularized MVA methods. As explained in [21],
these methods

1) do not converge to their associated non-regularized MVA
solutions when the penalty term is removed,

2) are highly dependent on initialization, and may even fail
to progress towards a solution,

3) do not in general obtain uncorrelated features.
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As solution to these problems, [21] proposes an alternative
optimization procedure avoiding the use of the Procrustes
solution. In this paper, we will briefly review the frame-
work presented in [21] to derive regularized MVA versions,
and illustrate the approach and its associated advantages
by introducing a novel MVA method using the `2,1 norm
[14] as regularization term. Apart from the advantages we
have already discussed implying variable selection over the
original variables, this norm holds the property of rotational
invariance, a fact that we will exploit to significantly reduce
the computational cost of the training phase. Although some
authors have already adapted the robust variable selection
method [14] to the MVA scenario (see, e.g., the group-lasso
penalized OPLS method [16] or the `2,1-regularized CCA
[17]), these adaptations are based on orthogonal Procrustes
and the rotational invariance property of the `2,1 norm is not
exploited, taking unnecessary extra computational burden.

In short, the main contributions of this paper can be sum-
marized as:
• Review a framework for regularized MVA methods,

and explain an alternative to the most commonly used
Procrustes solution to overcome the limitations of this
approach.

• Obtain novel MVA algorithms based on `2,1 regulariza-
tion.

• Illustrate the effectiveness of these algorithms to carry
out feature extraction and, at the same time, obtain some
understanding of the original input variables.

The rest of the paper is organized as follows. Section II
reviews the common framework for regularized multivariate
analysis, and explains an advantageous alternative to the use
of orthogonal Procrustes in this context. Then, Section III
particularizes the MVA framework by including an `2,1 norm
penalty, explaining in detail how to derive a computationally
efficient solution and pointing the differences between our
proposal and other existing solutions. Section IV is devoted
to experiments and Section V draws the main conclusions of
our work.

II. REGULARIZED MVA FRAMEWORK: ENFORCING
FEATURE UNCORRELATION

Let us assume a supervised learning scenario, where the
goal is to carry out feature extraction in the input space,
learning the projection vectors from a training dataset of N
input-output pairs {xi,yi}Ni=1, where xi ∈ <n and yi ∈ <m

are the input and output vectors, respectively. Therefore, n
and m denote the dimensions of the input and output spaces.
For notational convenience, we define the input and output
data matrices: X = [x1, . . . ,xN ] and Y = [y1, . . . ,yN ], with
columnwise arranged patterns. It will be assumed throughout
the paper that these matrices are centered [22], so that sample
estimations of the input and output data covariance matrices,
as well as of their cross-covariance matrix, can be calculated
as CXX = XX>, CYY = YY> and CXY = XY>, where
we have neglected the scaling factor 1

N , and superscript >

denotes vector or matrix transposition. The goal of linear
MVA methods is to find nf relevant features by combining

the original variables, i.e., X′ = U>X, where the kth column
of U = [u1, . . . ,unf

] is a vector containing the coefficients
associated to the kth extracted feature. Note that we are
referring to the components of x as variables, whereas the
components of x′ = u>x are being referred to as features.
Consequently, feature extraction implies obtaining x′ from x,
whereas variable selection is the process of selecting a subset
of the original variables in x. Besides, the feature extraction
process can also imply variable selection when the projection
matrix U has some of their rows equal to zero.

In this paper, we deal with MVA methods which force the
extracted features to be uncorrelated; this applies, at least, to
PCA, CCA, and OPLS. MVA methods that do not enforce
feature uncorrelation, more notably PLS, are therefore left
outside the scope of this paper. A common framework for
these regularized MVA methods can be set including an
uncorrelation constraint, U>CXXU = I, over the formulation
of [23]:

minimizeW,U ‖Ω 1
2

(
Y −WU>X

)
‖2F + γR (U) (1)

subject to U>CXXU = I

where W is an m × nf matrix of regression coefficients,
parameter γ trades off the importance of the regularization
term R (U), ‖A‖F = Tr{AA>} denotes the Frobenius norm
of matrix A, and Tr{·} is the trace operator. Finally, different
selections of matrix Ω give rise to the considered MVA
methods, in particular Ω = C−1

YY for CCA, Ω = I for OPLS,
and Ω = I with Y = X for PCA [23], [24].

The objective function in (1) is composed of two terms.
The first term tries to minimize the reconstruction error when
matrix Y is estimated from the projected data as WX′ =
WU>X. Note that this is different from standard least-squares
since the introduction of matrix U imposes a representation
bottleneck [25], i.e., matrix Y needs to be approximated from
a matrix X′ with less features than the original matrix X. The
regularization term R (U) is usually a particular matrix norm
that gives a desired property to the solution. Three common
regularization terms are:
• R (U) = ‖U‖2F =

∑
ij U

2
ij , where Uij is the element

in the ith-row and jth-column of U. This term is known
as Tikhonov, ridge, or `2 regularization, and it is used to
improve the conditioning of the solution.

• R (U) = ‖U‖1 = maxj

∑N
i=1 |Uij |, where |Uij | is

the absolute value of Uij . This term is known as lasso
regularization [13] and it is frequently used to induce
sparsity on the solution matrix (i.e., to nullify some
elements of U).

• R (U) = ‖U‖2,1 =
∑n

i=1 ‖ui‖2, being ui the ith row
of U. This is known as `2,1 regularization and penalizes
all nf coefficients corresponding to a single variable as
a whole, making them drop to zero jointly, thus favoring
variable selection.

Fig. 3 depicts the solution matrix U for the above regular-
ization terms over a toy problem. As it can be seen, `1 and
`2,1 penalties result in many elements of U dropping to zero.
Furthermore, `2,1 norm provides the sparsity in a structured
way, i.e., the coefficients of U are annulled by rows. Since
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Fig. 3: Examples of the provided projection matrices U for
a case with n = 40 and nf = 4 and considering the
regularizations `2, `1, and `2,1. Coefficients that take a zero
value have been identified and represented in white.

each row of U is associated to a different input variable,
this structured sparsity implies that many input variables
are completely ignored during the feature extraction, so that
variable selection is also achieved in this case.

When using non-derivable penalties, such as `1 or `2,1
norms, the solution of the minimization problem in (1) can-
not be obtained in closed-form. However, as shown in [24]
an equivalent formulation can be obtained by replacing the
uncorrelation constraint in (1) by W>ΩW = I, leading to

minimizeW,U ‖Ω 1
2

(
Y −WU>X

)
‖2F + γR (U) (2)

subject to W>ΩW = I.

As demonstrated in [24], (1) and (2) provide the same
solution, but using (2) is normally more efficient for the
common case m � n. Furthermore, placing the constraint
on matrix W allows to solve the problem with the two-step
iterative method that we describe in Algorithm 1 (please, refer
to [24] for further details). For simplicity, the solution of the
W-step has been written in terms of a new matrix V = Ω

1
2 W.

As it can be seen, the minimization problems involved by
the U- and W-steps are coupled, so it becomes necessary to
iterate both steps until some convergence criterion is met.

The U-step is a regularized least-squares problem that can
take advantage of a great variety of existing efficient solvers
[14], [26], [27]. With respect to the W-step, it is important
to point out that uncorrelation has to be enforced. When this
is not the case, the above steps can provide infinite coupled
pairs of solutions which are rotated versions of the desired
ones, and the uncorrelation property of the extracted features
is lost.

In fact, in the literature W-step is typically solved by using
the orthogonal Procrustes approach. As it has been proved
in [21], this solution neglects the uncorrelation among the
extracted features. In spite of this limitation, since its initial
proposal in [15] for the sparse PCA algorithm, it has been
later extended to supervised approaches such as sparse OPLS
[8], group-lasso penalized OPLS [16], and `2,1-regularized
CCA (or L21SDA) [17]. In this respect, this paper aims (1)
to highlight the limitations of Procrustes when used as part of
the above iterative method, and (2) to encourage the adoption
of an alternate method for the W-step that pursues feature
uncorrelation.

A. Solving the W-step with Orthogonal Procrustes

The minimization problem in the W-step is known as
orthogonal Procrustes, and its optimal solution is given by
VP = QP>, where Q and P are the matrices of the
singular value decomposition CȲX′ = QΣP> [18], with
CȲX′ = ȲX′>, and where Ȳ was defined in Algorithm 1.

However, when the Procrustes solution is adopted, the
uncorrelation of the extracted features is not explicitly imposed
during this step. In the simplest case when the regularization is
not used (γ = 0), this causes that the extracted features differ
from those of the corresponding standard MVA formulation
(see [21] for further details and experimental results). For the
general case in which γ > 0, the Procrustes solution results
in higher correlation among the features than when using the
alternative method described in the next subsection, as will
also be illustrated in Section IV.

Apart from the correlation among the extracted features, the
use of Procrustes also makes the algorithm highly dependent
on initialization. For instance, it can be shown that when the
regularization is removed and V is initialized as an orthogonal
matrix the algorithm fails to progress at all.

B. Solving the W-step as an Eigenvalue Problem

In [21], it is proven that the uncorrelation of the extracted
features can be obtained if the W-step is solved by means of
the following eigenvalue problem:

Ω
1
2 C>XYUU>CXYΩ

1
2 V = VΛ, (3)

being Λ the diagonal matrix containing the nf largest eigen-
values arranged in decreasing order.

The desired uncorrelation is obtained due to this eigen-
value problem forces the diagonalization of the matrix
U>CXYΩ

1
2 V, which is a necessary condition to meet the

uncorrelated extracted features.
Table I includes a summary of the U- and W-steps for the

particular cases of regularized CCA, OPLS and PCA, when
formulating the W-step as an eigenvalue problem. Remember
that W can be straightforwardly computed from V using the
relation W = Ω−

1
2 V.

III. MVA METHODS WITH `2,1 PENALTY

In this section, we particularize the presented MVA frame-
work for the `2,1 regularization norm. In this way, we can take
advantage of the variable selection property enjoyed by this
norm and obtain an algorithm that can simultaneously perform
dimensionality reduction and variable selection.

For this purpose, let us replace R (U) = ‖U‖2,1 in (2).
Rewriting also the minimization problem in terms of V =
Ω

1
2 W, we arrive at

minimizeV,U ‖Y′ −VU>X‖2F + γ‖U‖2,1, (4)

subject to V>V = I,

where Y′ = Ω
1
2 Y is the new output matrix.

Considering the iterative solution detailed in Subsection
II-B, the solution of (4) can be obtained by an iterative
procedure consisting of two coupled steps:
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1.- Input: X, Y, Ω.
2.- Optimization algorithm:

2.1.- Initialize W(0) = I.
2.2.- For k = 1, 2, . . .

2.2.1.- (U-Step) For fixed W (satisfying W>ΩW = I):
U∗ = arg minU ‖Y′ −U>X‖2F + γR (U)

with Y′ = W>ΩY.
2.2.2.- (W-Step) For fixed U:

V∗ = arg minV ‖Ȳ −VX′‖2F
subject to V>V = I

with V = Ω
1
2 W, Ȳ = Ω−

1
2 Y, and X′ = U>X.

2.2.3.- Back to 2.2.1. until convergence criterion is met.
3.- Output: U, V.

Algorithm 1: Summary of the two steps involved in the minimization problem (2).

TABLE I: Proposed solution for the two coupled steps of most popular regularized MVA methods.

U-step (reg. LS) W-step (eigenvalue problem)

reg. CCA argmin
U

‖Y′ −U>X‖2F + γR (U) C
− 1

2
YYC>XYUU>CXYC

− 1
2

YYV = VΛ

reg. OPLS argmin
U

‖Y′ −U>X‖2F + γR (U) C>XYUU>CXYV = VΛ

reg. PCA argmin
U

‖X′ −U>X‖2F + γR (U) C>XXUU>CXXV = VΛ

1) U-step. For fixed V, find the matrix U that minimizes
the following regularized least-squares problem,

‖Y′ −VU>X‖2F + γ‖U‖2,1. (5)

In the next subsection, we will further analyze this
minimization problem to obtain an efficient solution that
exploits the properties of `2,1 regularization.

2) W-step. For fixed U, matrix V is obtained solving the
eigenvalue problem (3). As already discussed, existing
algorithms solve this step by using orthogonal Procrustes
with the undesired consequences described in previous
sections.

A. An Efficient Implementation for the U-step

To solve the U-step, we start from the iterative solution
proposed in [14], where U is redefined as U = U′V and U′

is obtained as:

U′ =

{
(CXX + γG)−1CXY′ if n < N

G−1X(X>G−1X + γI)−1Y′> if n > N,
(6)

being G a diagonal matrix, where its ith diagonal element is
Gii = 1

2‖ui‖2 , u
i is the ith row of U, n is the number of

input variables (i.e., the number of rows of U), and N is the
number of training data. The straightforward application of
this solution would result in a U-step involving two coupled
iterative processes: one between U and G, and other between
U and V (note that they are coupled by means of matrix U).

However, these processes can be decoupled by taking ad-
vantage of the fact that V is the solution of an eigenvalue

problem (i.e., VV> = I) and rewriting each diagonal term of
G as a function of U′:

Gii =
1

2‖ui‖2
=

1

2‖u′iV‖2
=

1

2
√
u′VV>u′>

=
1

2‖u′i‖2
.

(7)
In this way, the solution of the U-step is independent of
matrix V. This result, known in the literature as the rotational
invariance property for rows of the `2,1 norm [14], allows us
to follow this simplified procedure:
• Find the optimum U′ by iterating expressions (7) (for
i = 1, . . . , nf ) and (6) until a stopping criterion is met.1

• Compute V in a single step by solving:

C>XY′U
′U′>CXY′V = VΛ2,

which results from (2) considering that U = U′V and
V>V = I.

In this way, we can obtain important computational savings
(as we will analyze in the experimental section). Algorithm 2
summarizes this algorithm. This approach let us formulate `2,1
based methods such as `2,1-OPLS and `2,1-PCA, where Ω = I
and the new output matrix is Y′ = Y (`2,1-OPLS) or Y′ = X

(`2,1-PCA); or `2,1-CCA for Ω = C−1
YY and Y′ = C

− 1
2

YYY.

B. Differences with State of the Art Approaches

In principle, previously proposed L21SDA [17] and SRRR
[16] algorithms attempt to solve the same problems as the
algorithms `2,1-CCA and `2,1-OPLS presented in this paper.

1Although other criteria could be considered, we stop the method when
Tr{G(k) −G(k−1)} ≤ δ, where the superscripts denote the iteration index
and δ is a small constant, or when a maximum number of iterations have
been completed.
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1.- Input: X, Y, Ω, γ.
2.- Optimization algorithm:

2.1.- Initialize G(0) = I and Y′ = Ω
1
2 Y.

2.2.- For k = 1, 2, . . .

2.2.1.- U′(k) =

{
(CXX + γG(k−1))−1CXY′ if n < N

G(k−1)−1

X(X>G(k−1)−1

X + γI)−1Y′> if n > N.

2.2.2.- G(k)
ii =

1

2‖u′i(k)‖2
, for i = 1, . . . , n.

2.2.3.- If the convergence criterion is met, go to 2.3.
2.3.- Solve eigenvalue problem C>XY′U

′U′>CXY′V = VΛ2.
2.4.- U = U′Ω

1
2 V.

3.- Output: U, V.

Algorithm 2: Pseudocode of MVA methods with `2,1 penalty.

However, due to the procedure followed by their resolution,
these state of the art algorithms suffer from the following
important inconveniences:
• First, they present the aforementioned drawbacks of all

Procrustes based MVA methods.
• Second, they do not exploit the rotational invariance

property resulting in considerably larger computational
burden in comparison with our proposal. Whereas our
proposed solution completely decouples both iterative
procedures and gets to reduce them to just one iterative
process, where V can be computed at the end, L21SDA
method has to obtain the value of V inside the iterative
procedure. The case of SRRR algorithm is even worse,
since it does not merge the two iterative processes,
causing a much more expensive solution. The following
section will analyze these issues over some real problems.

IV. EXPERIMENTS

This section analyzes the advantages of the proposed `2,1-
MVA framework from different points of view. To this pur-
pose, we have split it into three subsections so that each one
focuses on a different advantage of our proposal. The first sub-
section shows the advantages of including `2,1 regularization
to provide MVA methods with variable selection capabilities.
Then, we will analyze the ability of the MVA approaches and,
in particular, the `2,1-MVA methods for dealing with data that
have high multicollinearity among the input variables. This is
a difficult situation for MVA methods, since linear dependency
among the input variables can cause large fluctuations in the
solution. Finally, we will show the importance of avoiding the
Procrustes solution by comparing our proposals with state of
the art L21SDA and SRRR.

A. Variable Selection by means of `2,1 Regularization

In this section we are going to deal with a hyperspectral
image segmentation and classification problem. This data
set comes from a set of hyperspectral sensors mounted on
satellite or airborne platform which acquire the reflected
energy by the Earth with high spatial detail and in several
wavelengths. In particular, we have selected the standard

Airborne Visible/Infrared Imaging Spectrometer image taken
over Northwest Indianas Indian Pine in June 1992 [28]. This
dataset consists of 220 spectral bands, with 20 noisy bands
covering the region of water absorption. Discriminating among
the major crop classes in the area can be very difficult
(in particular, given the moderate spatial resolution of 20
m), making the scene a challenging benchmark to validate
classification accuracy of hyperspectral imaging algorithms.
Besides, the large number of narrow spectral bands induce a
high collinearity among variables, making MVA approaches a
powerful tool for this application.

The selected hyperspectral image has 145× 145 pixels and
contains 17 quite unbalanced classes (ranging from 20 to
10,776 pixels). Among the available 21,025 labeled pixels,
70% were used for training the feature extractors and clas-
sifiers, and the remaining 30% were taken apart for testing
purposes. The discriminative power of all extracted features
was tested using a linear SVM classifier.

To analyze the advantages of the `2,1 penalty as variable
selection tool, we are going to analyze the performance of our
proposed regularized MVA framework when different regular-
izations are used: ridge norm or `2 penalty, lasso regularization
or `1 norm, and the `2,1 penalty. For this first study, only OPLS
methods have been considered. Fig. 4 shows the reconstructed
image or the classification map for these three regularized
versions of OPLS, including its overall accuracy (OA) over
the test data and the percentage of selected bands (% band).
In this case, regularization parameters, as well as the number
of selected variables of the `2,1-OPLS method, were adjusted
using five-fold cross-validation in the training set. In particular,
we have explored a rectangular grid taking values from the
sets {10−6, 5 · 10−6, 10−5, 5 · 10−5, . . . , 50, 100, 500, 1000}
and {1, 10, 100, 1000} for γ and the SVM regularization
parameter, respectively. We have checked that these intervals
are sufficiently large to ensure that the limits were not selected
as a result of the CV. After this validation process, all
methods show similar accuracy, with `2 and `1 OPLS versions
achieving an accuracy of 73% using almost all bands (their
percentage of selected bands is around 99%). The performance
of the `2,1-OPLS method, is only slightly better with an
accuracy of 73.5%, although it uses only 80% of the spectral
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bands.
In order to go deeper into the structured sparsity obtained

by `2,1-OPLS, and its variable selection capabilities, Fig. 5
depicts, for the three regularized OPLS versions, the impor-
tance of each variable (calculated as ‖ui‖2) over their first
three eigenvectors (k = 1, 2, 3). The total importance of
each variable, given as its averaged importance over all the
eigenvectors, is included at the last row of the plot for each
algorithm and denoted as “TOT”. In this case, to better analyze
the sparsity properties of the different regularization terms,
the regularization parameter (γ) has been fixed in such a way
the both `1 and `2,1 norms provide similar number of zeros
over all the projection vectors. Furthermore, for comparison
purposes, all components with a relevance value lower than
10−4 have been drop to zero. As expected, `1-OPLS is able
to nullify some of the eigenvector components and, in a few
cases, this provides a variable selection (a 6% of the bands
have zero in all their associated components); however, `2,1-
OPLS presents this sparsity in a structured way (all columns
are zero), causing 35% of the input bands are not used by their
associated eigenvectors. Regarding `2-OPLS, it is important to
remark that it also seems to provide sparsity over its solutions,
but this is mainly due to the 10−4 threshold applied over the
relevant values; even so, it only removes 1% of the input
bands. Furthermore, `2 and `1 OPLS versions are selecting
some positions of the noisy water bands (marked with three
shadow rectangles) in the figure, whereas `2,1-OPLS is able
to remove all of them.

Finally, to analyze the influence of the regularization term
over the number of selected bands, Fig. 6 displays the total
importance of each variable (averaged over all eigenvectors)
for `2,1-OPLS when the parameter γ is varied from 0 to 0.5.
When γ = 0 (lack of regularization), the method is recovering
standard OPLS solution, which is quite similar to `2 versions
in terms of sparsity. However, as larger gamma values are
considered less bands are used. In particular, values of γ close
to 0.25 are enough to remove all water absorption bands.

B. Dealing with Multicollinearity of the Input Variables
The aim of this subsection is to illustrate the advantages

of combining the variable selection and feature extraction
processes when there exist multicollinearity among the input
variables. This is a difficult situation for MVA methods since
highly correlated variables can cause large fluctuations in the
solution in response to small changes in the model or data.

For this purpose, we compare the proposed methods against
the state-of-the-art Robust Feature Selection (RFS) algorithm
[14], which is an efficient and an outlier-robust implementation
of the least squares problem with an `2,1 penalization term.
We start this study with a toy regression problem and, next, we
carry out a similar evaluation over two classification problems
with high dimensionality and multicollinearity among their
variables. The main characteristics of these problems are
summarized in Table II.

Regression Toy Problem with High Multicollinearity
This toy problem consists of a simple artificial regression

problem with three types of input variables: relevant, redun-

TABLE II: Main properties of the datasets: number of training
(Ntrain) and test (Ntest) samples, number of input (n) and
output (m) variables, and number of training images per
person (p).

Ntrain/Ntest n m

Carcinomas 139 / 35 9182 11
Yale (p = 8) 120 / 45 1024 15

dant and noisy. In particular, this problem considers n = 4000
random variables where nrelev = 500 are the relevant ones,
which are generated following a Gaussian distribution with
zero mean and variance randomly selected from 0 to 4;
nredund =

n

2
= 2000 variables can be considered redundant,

since they are obtained as a linear combination of the relevant
ones; the model also includes nnoisy = 1500 noisy variables,
generated as independent Gaussian variables with zero mean
and unit variance. Therefore, defining the observation x =(
x>relev,x

>
redund,x

>
noisy

)
and the output vector y ∈ Rm×1,

m = 10 being the number of output variables, the regression
model is given by:

y =

(
Wrelev 0

0 0

)
x + ε,

where ε is a vector of Gaussian noise with mean 0 and variance
10−6, Wrelev ∈ Rm×nrelev is a fixed matrix with random
elements selected from an uniform distribution between −1
and +1, and 0 is a zero-matrix with the appropriate size. Thus,
the regression coefficient matrix is built such that y depends
only on the relevant input variables.

Following the above model, we build a set of N = 500
training samples and apply a 70/30 (%) partitioning to obtain
the training and test sets, respectively. Then, we normalize
both sets to zero mean and unitary standard deviation. This
process is repeated over 10 random executions, obtaining
independent datasets, to average the final results over these
runs.

Variable selection is carried out taking the best ns < n
variables after sorting them by relevance according to the
corresponding values of ‖u′i‖ or ‖ui‖ (with i = 1, . . . , n)
for RFS and the `2,1-MVA methods, respectively. Once the
ns variables have been obtained, an optimal Least Squares
(LS) regression model is adjusted by using as inputs either
the ns selected original variables (in the case of RFS) or the
nf features extracted from the ns variables selected by `2,1-
MVA algorithms. The iterative process of `2,1-MVA methods
is stopped when a maximum of 50 iterations are reached
or when the Frobenius norm of the difference between the
solutions obtained in two consecutive iterations is less than a
tolerance value δ = 10−6.

In Fig. 7, MSE obtained by the proposed `2,1-CCA and `2,1-
OPLS algorithms using all extracted features and the reference
algorithm RFS are shown according to the number of selected
variables for two values of the penalty parameter: (a) γ =
0.5 selected by cross-validation, and (b) γ = 100 selected
to illustrate the robustness of `2,1-OPLS with respect to the
selection of this parameter. As can be seen, multicollinearity
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Fig. 4: Natural and RGB composite (by using 50, 27 and 17 channels) hyperspectral images and its reconstructed images using
`2-OPLS, `1-OPLS and `2,1-OPLS algorithms.

Fig. 5: Analysis of the band selection capabilities for `2-OPLS, `1-OPLS and `2,1-OPLS algorithms. For each algorithm, each
row plots the relevance of the components of the first three eigenvectors and the last row includes the average relevance over
all eigenvectors (TOT). Water absorption bands, that should be discarded for the classification tasks, have been highlighted in
grey color.

Fig. 6: Analysis of the band selection capabilities for the `2,1-OPLS method according to penalization term value.

can cause serious problems of overfitting, in fact, this is the
case of the RFS method that, although it is a robust method in
the presence of outliers, suffers from serious overfitting caused
by redundant variables of the problem. On the contrary, MVA
methods can successfully deal with such problems. We can
see that they improve on RFS performance for ns < 500, and
remain stable after that point with no significant degradation.
It can be shown that for ns = 500 our methods successfully
identify the relevant variables in all cases. In addition to this,
`2,1-MVA extracted features remain mostly orthogonal, as a
consequence of the proposed optimization method.

Real World Classification Problems
This subsection analyzes the advantages of the proposed

`2,1-MVA methods, in comparison to RFS method, over two

real classification problems with high dimensionality and mul-
ticollinearities among their variables: Carcinomas and Yale.

To make a fair comparison between the methods under
study, the free parameter of these models (γ) is selected
through a 10 fold cross-validation. For this study, `2,1-MVA
methods use all the extracted features with the corresponding
selected variables. The extracted features (both from `2,1-
MVA methods and RFS) are then fed to a linear SVM whose
accuracy is used to evaluate the performance of each method.
We explored the same ranges of values for γ and SVM
regularization parameter C as we did in IV-A.

Fig. 8 displays the overall accuracy (OA) as a function of
the number of selected variables (ns) for `2,1-OPLS, `2,1-
CCA and RFS. These results corroborate the conclusions
derived from the toy problem, that is, multicollinearity among



9

ns

0 1000 2000 3000 4000

||
 Y

 -
 W

U
T
X

 |
| F

25

30

35

40

L21CCA

L21OPLS

RFS

(a) γ = 0.5

ns

0 1000 2000 3000 4000

||
 Y

 -
 W

U
T
X

 |
| F

25

30

35

40

L21CCA

L21OPLS

RFS

(b) γ = 100

Fig. 7: Comparative curves in terms of MSE according to the number of selected variables (ns) for (a) γ = 0.5 and (b)
γ = 100.

variables causes RFS to suffer from overfitting problems,
which is more evident in the Carcinomas dataset; on the
contrary, `2,1-MVA approaches overcome this drawback. It
is also interesting to see that `2,1-OPLS clearly outperforms
the other methods. According to the `2,1-OPLS and `2,1-CCA
curves, one might conclude that all relevant information of the
Carcinomas dataset lies within 2% of the variables, which is
where these algorithms reach their maximum performance.

C. Comparison with L21SDA and SRRR

Whereas the previous subsection compared our approaches
with a pure variable selection method, in this subsection, we
carry out a comparison against the state of the art approaches
based on the Procrustes solution. Remember that SRRR [16]
can be seen as an OPLS with `2,1 penalty, whereas L21SDA
[17] is a CCA version including the same penalty term. To the
best of our knowledge, no PCA method with `2,1 penalty has
appeared in the literature to date, but its derivation following
a Procrustes formulation is straightforward, and is considered
here for the sake of completeness.

Here, the experimental procedure is the same as in the
previous subsection, but the curves shown below are made
based on the number of features extracted instead of the
number of selected variables. Fig. 9 shows the OA obtained
according to the number of extracted features. When a low
number of features is extracted (n′f < nf ), `2,1-CCA and
`2,1-OPLS clearly outperform L21SDA and SRRR methods.
This advantage is due to the ability of the proposed framework
to extract a set of mostly uncorrelated features, making easier
the training of the subsequent classifier and straightforward
the selection of an optimum reduced subset of features.

To analyze in detail this issue, Figs. 10 and 11 show the
correlation matrices of he projected data and the discrimination
capabilities of these methods for Carcinomas dataset. As ex-
pected, the proposed `2,1-MVA approaches, unlike Procrustes-
based schemes, are able to obtain an almost complete uncorre-
lation among the projected data (note that non-diagonal terms
are almost null in our proposed methods). This fact directly
provides an improvement of the discrimination capability of
new projected features, as Fig. 11 reveals. In this plot, we can

check that `2,1-CCA algorithm is able to project the data into
a two dimensional space without overlapping among classes,
making easier the subsequent classification task (in this case,
the OA is close to 60%); whereas, L21SDA projects most of
the classes over the same region and, therefore, the classifier
accuracy is reduced by half (OA is around 30%).

Note that, when all the extracted features are used, the
results are the same, since the final classifier (SVM) uses all
the projected information, which is just a reconstruction from
the original space.

Finally, a comparative study of the computational burden
is also shown in Fig. 12. As expected, proposed methods
are computationally more efficient, as a direct consequence
of exploiting the rotational invariance of the `2,1 norm, as
explained in Subsection III-A.

V. CONCLUSIONS

Solutions of regularized MVA approaches are based on an
iterative approach consisting of two coupled steps. Whereas
the first step eases the inclusion of regularization terms, the
second results in a constrained minimization problem which
has been typically solved as an orthogonal Procrustes problem.
Despite the extended use of this scheme, it fails in obtaining
a new subspace of uncorrelated features, this being a desired
property of MVA solutions. In this paper we have analyzed
the drawbacks of these schemes, recurring to an alternative
to the Procrustes solution for the second step, that forces
uncorrelation among the extracted features, and thus overcome
the drawbacks of previous schemes.

In order to show the practical advantages of our regularized
MVA solution, this paper particularizes the proposed method
to derive MVA methods implementing `2,1 regularization.
These proposed `2,1-MVA methods provide an efficient se-
lection of the relevant variables of the problem exploiting
the rotational invariance of the `2,1 norm. At the same time,
they can deal with the multicollinearity problems using feature
extraction and providing mostly uncorrelated features.

Finally, experimental results over high dimensional prob-
lems show that the methods included in this MVA framework
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Fig. 8: Comparative curves in terms of overall accuracy as a function of the number of selected variables (ns).
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Fig. 9: Comparative curves in terms of OA according to the number of extracted features (nf ) for `2,1-CCA, `2,1-OPLS and
reference methods L21SDA and SRRR.

Fig. 10: Comparison among the feature correlation matrices
of our proposed methods and those proposed in the literature,
which use Procrustes approach for the Carcinomas dataset.

are not only computationally more efficient than previous state
of the art solutions, but also can improve their performance.
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