
Is Evolutionary Computation Evolving Fast
Enough?

Graham Kendall, School of Computer Science, University of Nottingham, UK and University of Nottingham
Malaysia Campus, MALAYSIA

Abstract— Evolutionary Computation (EC) has been an active
research area for over 60 years, yet its commercial/home uptake
has not been as prolific as we might have expected. By way
of comparison, technologies such as 3D printing, which was
introduced about 35 years ago, has seen much wider uptake, to
the extent that it is now available to home users and is routinely
used in manufacturing. Other technologies, such as immersive
reality and artificial intelligence have also seen commercial
uptake and acceptance by the general public. In this paper
we provide a brief history of EC, recognizing the significant
contributions that have been made by its pioneers. We focus on
two methodologies (Genetic Programming and Hyper-heuristics),
which have been proposed as being suitable for automated
software development, and question why they are not used more
widely by those outside of the academic community. We suggest
that different research strands need to be brought together into
one framework before wider uptake is possible. We hope that
this position paper will serve as a catalyst for automated software
development that is used on a daily basis by both companies and
home users.

I. INTRODUCTION

EVOLUTIONARY Computation (EC) has been part of
the research agenda for at least 60 years. In a typical

EC algorithm, a population of potential solutions is created
and they compete for survival. The weakest (less fit) members
of the population are killed off, and the remaining members
are retained and copies made, which are mutated. This new
population is then evaluated with the expectation that the
population’s average fitness improves over time, along with
the best performing individual solution.

It is debatable whether EC has had the impact in the
commercial sector that other technologies have had, which
have seen much more visible adoption. 3D printing is changing
the way that manufacturing is done and is also moving into
the home, to the extent that almost anybody can carry out
3D printing. Immersive reality is on the verge of changing
society, in ways that are not totally clear yet. What is apparent
is that applications such as Pokemon Go have sparked interest
into the challenges and opportunities that immersive reality
brings [1], [2], [3], [4], [5]. Ubiquitous computing is becoming
more prevalent, enabling users to access computing resources
in ways that were unimaginable even just a few years ago.
Artificial Intelligence (AI) is becoming part of our daily lives,
whether that is competing against the best human players in
board games [6] or helping make self driving cars a reality
[7], [8], [9]. EC has not had the same penetration as other

Digital Object Identifier: 10.1109/???.????.???????
Date of publication: dd month year

technologies. A specific example we draw upon in this paper
is large scale software development which is, arguably, where
EC is most needed.

In this paper, we will look back at what EC promised and
will suggest some challenges that, if addressed, might further
advance EC and enable its wider adoption.

Writing a scientific paper that utilizes an evolutionary
approach based on a real world problem is not the same
as using an evolutionary approach to address a real world
problem. This may seem a pedantic statement but a paper
considering a problem that is drawn from the real world
is not the same as addressing the actual problem faced by
industry. Looking at a sample of EC papers, which are labeled
as “real world applications” (see Related Work, Section II),
often shows that the problem being tackled is a problem that
would be recognized as a real world problem. However, the
algorithm is often tested on benchmark datasets and/or uses
a simplified model of the problem. It is our view that if a
problem is presented as a real world problem, there should be
an underlying model that addresses a real problem faced by
the user community, rather than a simplified model that is an
abstraction of the problem that users actually face.

We do recognize the importance that benchmark datasets
play in the investigation, and development of, algorithmic
approaches. Indeed, many important breakthroughs have been
reported by investigating these real world abstractions. We also
note that studying these simplified problems enables easier
analysis of the results. We are also aware that this type of
research (using a simplified problem) is why games are often
used, as they have fixed rules, the rules are unambiguous and
there is a winner and a loser. It is no coincidence that Chess
has been called the drosophila of artificial intelligence [10].
We are also conscious that abstracting a problem so that the
focus is on the methodology is good scientific research and
that fully modeling a specific problem may not be of benefit
to the wider academic community.

So, we are not critical of using abstractions of the real world
but it is not conducive to promoting EC to the commercial
sector, who require solutions to problems which go beyond
these benchmarks, and which address the needs of their
specific business.

The fact that the EC research community does not tend
to tackle real, real world problems is partly (largely?) due
to the industrial/university communities not working together.

Corresponding Author: Graham Kendall (Email: Gra-
ham.Kendall@nottingham.ac.uk)

This is not a criticism of the companies, or the universities.
Universities and companies often have different objectives
(e.g. carrying out research vs. making a profit) and they work
on different time scales (e.g. long term research projects vs
developing new products to maintain a competitive edge).
Another contributory factor may be that other methodologies
may be better accepted by the commercial sector as they are
easier to understand, implement and support. In this respect,
the use of methodologies such as EC can be seen to be
similar to a reluctance to utilize Artificial Neural Networks.
The decisions they reach are not easy to understand so that
the commercial sector is often unwilling to adopt them,
preferring methodologies where the decisions can be more
easily explained.

This paper is structured as follows. In the next section we
consider related work, focusing on those papers that have
reported using EC on real world problems. In Section III
we ask if the potential of EC has been achieved? We note
the significant achievements of the EC pioneers and ask why
their seminal work has not translated into more uptake outside
of the scientific community. Section IV looks at Genetic
Programming (GP), bearing in mind it was probably this EC
methodology that had (has?) the most promise to be used in
the commercial sector. In Section V we consider a more recent
methodology (Hyper-heuristics) which also has the potential
to be used by industry. In Section VI we look specifically at
Large Scale Software Development, highlighting some of its
high profile failures and asking if/how EC can help in this area.
In Section VII we present some suggested research directions,
before concluding in Section VIII.

II. RELATED WORK

The topic of deploying evolutionary algorithms in the real
world has been studied before [11]. Within the context of this
paper, [11] provides a number of inhibitors to using EC based
algorithms in the real world. These include:

• The features of real world problems
• The lack of faith in the underlying model that represents

the problem meaning that companies have little confi-
dence in the solutions that are produced

• The fact that EC algorithms are not integrated within
an overarching framework to assist with areas such as
parameter settings

• The lack of the required skills of the developers
• Resistance to change
It is difficult to track down examples in the scientific

literature where EC has been deployed in a company and
is used as a matter of course in their routine activities. Of
course, there will be examples that the scientific community
is not aware of due to in-house research activity, commercial
sensitivities or the time pressures within a company to write
and present the contribution to the scientific community, but
we do not believe that the use of EC has had large adoption
within commercial companies. There are many examples (e.g.
[12], [13], [14]) where real data has been used and the results
are encouraging, but the algorithm has not been used by a
company to support its on-going business activities. It is often

the case that a company provides data, which is utilized to
study the problem, it is then reported in the scientific literature
but the algorithmic methodology is not used by the company.

A Genetic Algorithm (GA) [15] was reported in [16],
presenting a two-phase algorithm for the “bid-line generation
problem” (the problem of scheduling airline crew) for Delta
Air Lines. As with many staff scheduling problems, there are
many industry and legal factors to take into account [17], [18]
so any systems that are developed for a given company are
often bespoke. The first phase of their algorithm generates as
many high-quality lines as possible. The second phase, where
the GA is run, completes the assignments. The schedules
that are produced were shown to be of comparable quality
to those that were generated using a semi-automatic process
that the airline had previously used. It is interesting to note
that the four authors listed their affiliations as Delta Technol-
ogy or Delta Airlines, indicating that the paper was written
without a university collaborator. This, we feel, is important
as it demonstrates that the industrial sector is deploying EC
algorithms. However, many companies will not report these
successes in the scientific literature for a number of reasons
including lack of time, no pressure to publish and commercial
confidentiality. These factors are likely to misrepresent the real
scale of industrial take up of EC methodologies in industry,
and the lack of reporting in the scientific literature could slow
down progress.

Sundararajan et al. [19] considered the cross selling of loans
in the banking sector, specifically the GEMB bank in Poland.
They used a GA, within an overall framework which draws on
different methodologies, which focussed on a predictive model
for response, risk and profit. The GA that was developed was
a standard GA with a few enhancements that included elitism
and splitting the data into training and validation sets and using
solutions from one set to inject into the other set if it finds
that it performs well. Similar to [16], this paper also had no
authors with a university affiliation.

A GA was also utilized in [20]. The two authors were from
Intel, with no university affiliation listed. They presented a
model for the Product Line Design and Scheduling Problem.
The outer layer of their model was a GA. This handled the
resource constraints, scheduling, and financial optimization.
An inner layer utilized mathematical programming to optimize
product composition. Their new approach replaced a spread-
sheet solution which could take days, or even weeks, to carry
out what-if analysis.

The gerrymandering problem (the process of manipulating
electoral boundaries to gain a political advantage) was ad-
dressed in [21]. This was a joint paper between university
colleagues and a representative from a government department
(Philadelphia Water Department’s Office of Watersheds). This
paper was written as the result of a competition call. The
authors won one of the competition categories which gave
them the opportunity to present to the city council. The
authors classify their algorithm as a form of Evolutionary
Programming, rather than as a GA as they did not use a
recombination operator.

A recent paper [22], a collaboration between two uni-
versities and Ernst & Young, considered the transportation

and scheduling issues for the 2014 Special Olympics USA
Games. The problem considered 3,300 athletes with intellec-
tual disabilities, 1,000 coaches and over 70,000 spectators. The
athletes competed in 16 sports, across 10 locations, spread
over a 30-mile radius. The authors developed a GA to address
the problem as exact methodologies were too computationally
expensive. The resulting schedules were used during the
games.

Another routing problem was addressed in [23], in a paper
that did not include a company representative as an author.
The paper presents a case study based on a humanitarian
scenario, a local branch of the Meals on Wheels Association of
America, which provides food to individuals who are in need.
The approach adopted interfaces a spreadsheet with a GA and
is being used by the Metro Meals on Wheels Treasure Valley.
It is noted that the tool could be used anywhere that has access
to Google Maps or MapQuest.

Ogris et al. [24] studied a primary school timetabling prob-
lem [25] from Slovenia. The paper was co-authored by univer-
sity researchers and industrial collaborators. Their evolutionary
algorithm (there was no crossover operator) comprised three
objective functions, which were changed probabilistically. The
system was used in three Slovenian primary schools but could
easily be adapted to other schools and universities.

Simulated annealing [26] and Tabu search [27] are not
classified as evolutionary methodologies, rather they are meta-
heuristics [28]. However, they have been used in industrial
applications so we thought it was worth briefly mentioning
them here. We also note that the leading EC journal (IEEE
Transactions on Evolutionary Computation) has previously
reported work that includes these methodologies [29], [30],
albeit hybridized with an evolutionary algorithm. Simulated
annealing and tabu search has been reported as being deployed
in industry, including Oil Field Drilling [31], Sports [32], [33],
[34], [35], Vehicle Routing [36], Underground Mine Layouts
[37] and Personnel Scheduling [38].

The papers that we discuss above might suggest that there
has been a lot of commercial applications of EC but consider-
ing that the field has been active for over 60 years, the number
of reported applications of EC methodologies is somewhat
small. No doubt, there are other papers that we have not
included and there will be successes that are not reported in
the scientific literature but we still argue that adoption of EC
by the commercial sector is not as prevalent as some other
technologies.

This might be about to change with recent interest in Deep
Learning and the success of projects such as AlphaGo [6],
which was able to win against the best Go player in the
world, a feat that most people predicted would take another
ten years. However, this is just one methodological example
and, whilst Deep Learning Neural Networks have a bright
future, it still does not answer the question as to why more
EC methodologies have not had wider uptake.

III. HAS THE POTENTIAL BEEN REALIZED?

EC has been an active research area since the 1950’s [39],
[40]. Many eminent scientists have been recognized as being

pioneers in this field, demonstrating the strength in depth of
this area. Table I shows the IEEE Computational Intelligence
Society Pioneers, along with a small sample of their contri-
butions. It is beyond question that these pioneers, along with
the wider community, have made significant advances in EC.

When these pioneers were carrying out their early work,
it was in their minds that it would be adopted by the wider
community. For example, Box [41] says “Its basic philosophy
is that it is nearly always inefficient to run an industrial
process to produce product alone. A process should be run
so as to generate product plus information on how to improve
the product.” In 1996, Schwefel said “. . . the past decade has
witnessed an exponential increase in diverse applications, from
design synthesis, planning and control processes, to various
other adaptation and optimization tasks.”

It is, perhaps, surprising that we have not seen more exam-
ples reported in the scientific literature of EC being deployed
in commercial systems. Although the related work section
provides some examples, and no doubt some are missing, but
given that the field has been active for at least 60 years we
might expect to see more examples being reported?

In comparison, 3D printing [91], [92] has seen a signifi-
cantly faster uptake. The first patent was issued to Charles Hull
in 1986, which can be traced back to his original invention
from 1983. Since then the technology has seen rapid uptake, to
the point where it is now possible to buy a 3D printer for home
use. It is likely that we are only just seeing the start of the
additive manufacturing technology and it is likely that many
replacement parts, rather than being bought at a shop, or on-
line, can be downloaded and printed at home. By comparison,
the software development industry is not able to offer the home
user a way to develop, or evolve, software unless they are
already skilled programmers or willing to invest a significant
amount of time learning a programming language.

Technologies such as GP and Hyper-heuristics (both dis-
cussed below), despite delivering excellent research advances,
have not really made the transition from the research envi-
ronment to a position where the benefits can be experienced
by an average home user. In the next two sections, we focus
on these two methodologies, though similar analysis could be
made of the many other EC variants that have been researched
over the years.

IV. GENETIC PROGRAMMING

Many of the papers that were discussed in Section II utilized
GAs, yet GP is, arguably, the EC methodology that is most
associated with automated software development.

Introduced by Koza [93], [94], [95], GP seeks to evolve
computer programs and/or evolve functions. Does it matter
which it does; evolve programs or functions?

In [96] the authors say (Section 1.1) “In genetic program-
ming we evolve a population of computer programs.” In one of
the seminal GP papers [93], it states “Automatic programming
requires developing a computer program that can produce a
desired output for a given set of inputs”, which is more akin
to suggesting that GP evolves functions, rather than a program.
We can debate whether a function (a relationship between a

TABLE I
IEEE COMPUTATIONAL INTELLIGENCE SOCIETY EVOLUTIONARY COMPUTATION PIONEERS

Year Pioneer References
2016 Marco Dorigo [42], [43], [44]
2015 Thomas Bäck [45], [46], [47]
2014 George Burgin [48], [49]
2013 Xin Yao [50], [51], [52], [53]
2012 Russell C. Eberhart, James Kennedy, and J. David Schaffer [54], [55], [56], [57], [58], [59], [60]
2011 Larry J. Eshelman [55], [56], [57]
2010 David E. Goldberg and John Grefenstette [61], [62], [63]
2008 David B. Fogel [64], [65], [66], [67], [47], [68]
2005 Kenneth De Jong [69], [70], [71], [72]
2004 Richard Friedberg [73], [74]
2003 John H. Holland [75], [76], [61], [62]
2002 Ingo Rechenberg and Hans-Paul Schwefel [77], [78], [45], [79], [80]
2001 Michael Conrad [81], [82], [83]
2000 George Box [41], [84]
1999 Alex S. Fraser [40], [85], [86], [87]
1998 Lawrence J. Fogel [39], [88], [89], [48], [49], [90]

set of inputs and a permissible set of outputs) and a program
(a sequence of coded instructions to automate a task on a
computer) are the same thing but to the general public if GP
is sold as evolving computer programs they will assume that
this means that a complete program will be evolved, and not
just a function (a mathematical function or a function for a
given programming language), which is usually the case. We
hasten to add that no criticism is implied, or meant, of the GP
pioneers, or other researchers. The terminology has evolved
over time and the expressions used in the scientific literature
are the ones that are most applicable, or preferred, by the
authors of a given paper. We note, as in many areas of EC
— and even beyond, such as the heuristic community — that
there are no widely accepted terms and definitions in much of
the terminology that is used.

However, to the general public saying “evolve computer
programs” may indicate that GP is much more general than
the state of the art would suggest. There have been advances in
moving towards more general environments. The 2016 Human
Competitive Awards, the so called “Humies”1, winner [97]
says “Automated transplantation would open many exciting
avenues for software development: suppose we could auto-
transplant code from one system into another, entirely unre-
lated, system. This paper introduces a theory, an algorithm,
and a tool that achieves this.” This is certainly a significant
contribution to automated program development but there is
still a lot of work to do, as acknowledged by the authors,
“While we do not claim automated transplantation is now a
solved problem, our results are encouraging.”

Since 2004, the GP community has been able to compete
in the Humies. This annual competition invites entries that
report human-competitive results by any form of genetic or
evolutionary computation. The entries must satisfy one of the
following eight criteria (taken from1):

1) The result was patented as an invention in the past, is an
improvement over a patented invention, or would qualify
today as a patentable new invention.

1http://www.human-competitive.org/awards, last accessed 04 Feb 2018

2) The result is equal to or better than a result that was
accepted as a new scientific result at the time when it
was published in a peer-reviewed scientific journal.

3) The result is equal to or better than a result that was
placed into a database or archive of results maintained by
an internationally recognized panel of scientific experts.

4) The result is publishable in its own right as a new
scientific result independent of the fact that the result
was mechanically created.

5) The result is equal to or better than the most recent
human-created solution to a long-standing problem for
which there has been a succession of increasingly better
human-created solutions.

6) The result is equal to or better than a result that was
considered an achievement in its field at the time it was
first discovered.

7) The result solves a problem of indisputable difficulty in
its field.

8) The result holds its own or wins a regulated competition
involving human contestants (in the form of either live
human players or human-written computer programs).

The Humies have certainly demonstrated the versatility of
GP (see Table II), along with other EC approaches. However,
looking at the papers, which support the entries, shows that
GP still requires tailoring for the problem at hand. It might
also be argued that some of the problems are not challenging,
with respect to the domains that they address and the fact that
they do not suggest that they have a more generic applicability.

There are GP frameworks available, but they still require
the knowledge and experience of the researcher to utilize that
framework and then tailor it for the problem under considera-
tion. Unquestionably, GP has succeeded, and continues to do
so and the scientific literature has a significant body of peer
reviewed work on this topic. However, it has yet to get to the
position where it can be used by a non–expert user, sitting at
home, who wants to evolve software for a problem they have.

TABLE II
HUMIES GOLD MEDAL WINNERS (IN SOME YEARS THE GOLD MEDAL WAS SHARED, INDICATED BY “=”)

Year Entry References
2017 “Explaining quantum correlations through evolution of causal models” [98]
2016 “Automated Software Transplantation” [97]
2015 “Evolutionary Approach to Approximate Digital Circuits Design” [99]
2014 “Genetic Algorithms for Evolving Computer Chess Programs” [100]
2013= “Evolutionary Design of FreeCell Solvers” [101]
2013= “Search for a grand tour of the Jupiter Galilean moons” [102]
2012 “Go without KO on Hexagonal Grids” and “Yvalath: Evolutionary Game Design” [103]
2011 “GA-FreeCell: Evolving Solvers for the Game of FreeCell” [104]
2010 “Evolutionary design of the energy function for protein structure prediction” and “GP challenge: evolving

the energy function for protein structure prediction” and “Automated design of energy functions for protein
structure prediction by means of genetic programming and improved structure similarity assessment”

[105], [106], [107]

2009 “Automatically finding patches using genetic programming” and “A Genetic Programming Approach to
Automated Software Repair”

[108], [109]

2008 “Genetic Programming for Finite Algebras” [110]
2007 “Evolutionary Design of Single-Mode Microstructured Polymer Optical Fibres using an Artificial

Embryogeny Representation”
[111]

2006 “Catalogue of Variable Frequency and Single-Resistance-Controlled Oscillators Employing A Single
Differential Difference Complementary Current Conveyor” and “Novel Canonic Current Mode DDCC
Based SRCO Synthesized Using a Genetic Algorithm” and “Evolving Sinusoidal Oscillators Using
Genetic Algorithms”

[112], [113], [114]

2005= “Two-dimensional photonic crystals designed by evolutionary algorithms” [115]
2005= “Learning from Learning Algorithms: Applications to attosecond dynamics of high-harmonic generation”

and “Shaped-pulse optimization of coherent soft-x-rays”
[116], [117]

2004= “An Evolved Antenna for Deployment on NASA’s Space Technology 5 Mission” [118]
2004= “Automatic Quantum Computer Programming: A Genetic Programming Approach” [119]

V. HYPER-HEURISTICS

A hyper-heuristic has the aim of raising the level of
generality of search/optimization algorithms, recognizing that
no one search algorithm exists that is superior across all
search/optimization problems [120]. Instead of searching the
solution space directly, the most relevant heuristic to apply at
any decision point is identified, which is applied to the solution
space. It is hoped that a hyper-heuristic search algorithm can
be applied to a wide range of problems, simply by changing
the heuristics and utilizing the same heuristic search algorithm.
Following these so called “Heuristic Selection Algorithms”,
later research investigated whether the heuristics themselves
could be evolved [121], [122] thus saving the need to imple-
ment heuristics when new problems are tackled.

The first mention of the term “hyper-heuristic” in the
scientific literature was in [123] (the term was also used in
[124], but in a different context), although even earlier work
could also be regarded as being a hyper-heuristic (e.g. [125],
[126]), although the term was not used. A survey of hyper-
heuristics is available in [127].

A 2000 research proposal (the author of this paper was
one of the authors) said: “We will try to demonstrate how
quick- and cheap-to-implement knowledge-poor heuristics can
be used within a hyper-heuristic framework to provide a
methodology suited to fast and cheap development of indus-
trial and commercial systems. This will lead to a prototype
hyper-heuristic ‘toolbox’ for the user community.”

The authors of the proposal recognized that to provide a
methodology suited to fast and cheap development of indus-
trial and commercial systems was a challenging goal, and it
was recognized that it would not be completed in the lifetime

Fig. 1. Hyper-Heuristic Framework.

of the research award but, nonetheless, it was a long term
vision for hyper-heuristics.

A generic hyper-heuristic framework is shown in Fig. 1. The
initial research in hyper-heuristics focused on methodologies
where several low-level heuristics were provided (no. 4 in
the figure) and a high-level selector (no. 1) chooses which
of the low level heuristics to apply at any given decision
point. This was the so called “Heuristics to Choose Heuristics.”
Note should be taken of the domain barrier (no. 3). The high-
level selector has no knowledge of the domain. Rather, it only
knows how many heuristics there are and receives non-domain
feedback, such as change in evaluation function, computation
time etc. This enables the high level selector to operate on
different domains, by replacing the low level heuristics by
those that are able to address the new problem at hand.

Having to develop and replace a set of low level heuristics
led to the obvious research question; can we evolve the low

level heuristics so that we do not have to implement them when
we want to change domains? A further question is, should a
solution from one of the low level heuristics being accepted as
the incumbent solution, and what form should that acceptance
criteria take (e.g. always accept, improving only, sometimes
accept worse solutions etc.) and can this acceptance criteria
be evolved?

These latter questions are of more interest to the focus
of this paper, as the approaches tend to be more EC based,
and these research directions have been investigated in recent
papers (e.g. [128], [129], [130]).

Hyper-heuristics have been an active research area for at
least 20 years, and arguably back to the 1960’s, yet there is
still no off-the-shelf hyper-heuristic product that enables the
commercial sector to benefit from this technology, let alone
home users being able to access this methodology in the same
way that they can now access 3D printing and immersive
reality.

VI. LARGE SCALE SOFTWARE DEVELOPMENT

As noted in Section IV, GP has had many successes and
hyper-heuristic research (Section V) has made significant
progress in the last 20 years. Both technologies still have some
way to go before being able to be offered to the business/home
user in an easy to use form.

The scientific community recognizes that GP evolves func-
tions, and saying that it evolves programs, could be viewed in
a different way by the non-GP community, which means that
their expectations are not met when they start using GP as a
tool to integrate with their own systems.

Hyper-heuristic research has tended to focus on the main
elements of the framework (see Fig. 1). There has been some
work in trying to unify the various elements, but nothing is
readily available at the moment that can be used off-the-shelf.

There are tools available, such as TSPLIB2, MATLAB3 and
CPLEX4 but these are either expensive, more suited to expert
users and not necessarily EC related.

We know that large scale software development is difficult.
Rosenberg [131] tells the story of Mitch Kapor who developed
Lotus 1-2-3 and the popular personal information manager,
Agenda. Kapor decided to develop a more up to date, ex-
tensible, fully functioning and featured personal information
manager. What started as a grand vision became a tale of
managing a large software development team with all the
issues and problems that this brings. The resultant product,
Chandler, is freely available but it never had the impact that
was hoped for. The book [131] provides a stark reference to
the difficulties of large scale software development, even by
people who have developed highly successful products before.

Brooks [132], in his famous work – The Mythical Man–
Month – noted that software development is difficult and when
large software development projects do run into problems,

2https://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/,
last accessed 04 Feb 2018

3https://www.mathworks.com/, last accessed 04 Feb 2018
4https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-

optimizer, last accessed 04 Feb 2018

adding additional manpower cannot save it. Indeed, it will
make it even later.

There are many examples of software development projects
failing. A small sample (there are numerous) are highlighted
here:

1) “The U.S. Air Force has decided to scrap a major
ERP (enterprise resource planning) software project after
spending US$1 billion, concluding that finishing it would
cost far too much more money for too little gain.”5

2) “In 2003, Levi Strauss, was a global corporation, with
operations in more than 110 countries but with an IT
system that was an antiquated, ’Balkanised’ mix of in-
compatible country-specific systems. So its bosses de-
cided to migrate to a single SAP system and hired a
team of fancy consultants (from Deloitte) to lead the
effort. ‘The risks seemed small,’ wrote the researchers.
‘The proposed budget was less than $5m.’ But very
quickly things fell apart. One major customer, Walmart,
required that the system interface with its supply chain
management system, creating additional work. During the
switchover to the new system, Levi Strauss was unable
to fulfil orders and had to close its three US distribution
centres for a week. In 2008, the company took a $192.5m
charge against earnings to compensate for the botched
project and fired its chief information officer.”6

3) “We examined 1,471 projects, comparing their budgets
and estimated performance benefits with the actual costs
and results. They ran the gamut from enterprise resource
planning to management information and customer rela-
tionship management systems. Most, like the Levi Strauss
project, incurred high expenses - the average cost was
$167 million, the largest $33 billion – and many were
expected to take several years. Our sample drew heavily
on public agencies (92%) and U.S.-based projects (83%),
but we found little difference between them and projects
at the government agencies, private companies, and Euro-
pean organizations that made up the rest of our sample.”7

There appears to be a need for more support for large scale
software development projects. There are enough personnel
working as software developers (see Table III8) that any
automation should be welcomed by the industry. Perhaps not
by those whose jobs are at risk, but certainly by those who
employ the developers. Of course, this is no different to many
other industries, where jobs have been replaced by automation,
but it does seem ironic that those responsible for automating
so many jobs are now at risk themselves.

Even if we were able to get technologies such as GP and
hyper-heuristics to the stage where they could be used by
experienced software developers, it is not clear how these
technologies could be packaged to make them readily available
to business/home users, who are not experienced developers.

5https://www.cio.com/article/2390341/, last accessed 04 Feb 2018
6https://www.theguardian.com/technology/2013/apr/21/fred-brooks-

complex-software-projects, last accessed 04 Feb 2018
7https://hbr.org/2011/09/why-your-it-project-may-be-riskier-than-you-think,

last accessed 04 Feb 2018
8https://www.infoq.com/news/2014/01/IDC-software-developers, last ac-

cessed 04 Feb 2018

TABLE III
SIZE OF SOFTWARE DEVELOPER COMMUNITY, FROM IDC STUDY

Role Estimated # for 2014

ICT-skilled Workers
Professional software developers 11,005,000
ICT Operations and management skilled workers 18,008,900
Total 29,013,900

Software Developers
Professional software developers 11,005,000
Hobbyist software developers 7,534,500
Total 18,539,500

It is unrealistic, at least in the foreseeable future, to expect
an evolutionary process to evolve a complete software product
and perhaps this will never be an aim, or an expectation.
Perhaps a more immediate aim would be to enable software
developers to specify the requirements and interface as part
of the software development life cycle and let an evolutionary
process deliver required functionality, with some guarantees
that it is fit for the purpose.

Indeed, this is similar to evolutionary art [133], which has a
long and proven history [134]. In this paradigm the human is
often part of the fitness evaluation and they judge the quality
of the art that the evolutionary process produces. It could be
envisaged that humans judge the quality of an evolved program
by being part of the fitness evaluation. In this way, the human
developer would not simply be a coder but would be tasked
with guiding the evolutionary process via their feedback as to
the effectiveness of each member of the population and would
be helping to decide which programs are worthy of surviving
to the next generation.

This could be seen as being part of an agile approach to
software development. That is, software developers start de-
veloping the software system by providing some functionality
and gradually adding to it. If they come across some part
of the system that is particularly difficult to develop they
could call upon an EC based approach to evolve the required
functionality, perhaps while they work on other parts of the
system. Once the required functionality has been evolved, it is
simply plugged into the system without the software developer
having to do anything else. This functionality could even
continue to evolve, should that be required, even when the
system is deployed in a live environment.

It is likely that we would also have to draw on “Search-
based Software Engineering” (i.e. the utilization of search
methodologies such as GAs, simulated annealing and tabu
search to address software engineering problems) [135], [136],
[137]. If we are able to develop a user friendly framework
that incorporates EC, search based software engineering; along
with guarantees of what is delivered this would be a powerful
product which would benefit the wider world, outside of the
scientific community.

VII. SUGGESTED RESEARCH DIRECTIONS

Despite the large number of references in this paper, a
more extensive survey of where EC has been used in the real
world would certainly of benefit, if nothing else to serve as a
baseline for future researchers. It would be useful to carry out
a survey/analysis considering which methodologies from the
scientific literature are utilized by the industrial community

and to understand the reasons why some methodologies are
adopted, whilst others are not. It would also be useful to survey
the existing scientific literature to establish when authors say
they are addressing a real world problem, is this really the
case or are they modelling a simplified version of a problem,
utilizing a benchmark dataset or addressing a problem that
would not be recognized by the industrial community?

Most of the examples given utilized GAs. This is a little
surprising as there are many other methodologies available
[138], although GAs were one of the earliest and most popular
EC methodologies. There might be some scope to look at
how industry could benefit from other methodologies, as well
as reporting non-GA examples that have been successfully
deployed in industry. A book, or a series of articles, aimed
at the commercial community might be useful so that there
could be more take up.

The scientific community may benefit from a more complete
survey where EC has been used in applications outside of
the research arena. This might provide insights into the most
useful methodologies, what domains are taking up the use
of EC and the benefits that have arisen from using EC in
a commercial environment.

Frameworks, that could be used out of the box, would be
a valuable addition to the tools available to the commercial
sector. It is recognized that some of these tools do exist but
it is a steep learning curve, and sometimes expensive, for
inexperienced users to start using them.

It would certainly be useful to investigate how various
methodologies, such as EC, hyper-heuristics and search based
software engineering could be integrated into a single frame-
work.

If there was an integrated framework that enabled EC to be
made easily available to the industrial/home user, it begs the
question which EC methodology would be most suitable to
use for a given problem provided to the framework? This is
certainly worthy of further research. That is, provided with
a problem should the framework use GA, GP; or one of
the many other EC methodologies that are available, or even
hybridizations of two, or more, of them?

VIII. CONCLUSION

The related work section of this paper has highlighted a
number of projects where EC has been used, and is being
used, in applications that have been deployed in the real world.
It is noticeable that there are relatively few papers which
report deployment of EC into a live industrial environment.
It is also noticeable that many of these papers are from R&D
departments within the companies involved.

We are certainly a long way from where an interested home
user can access EC in the same way that access to 3D printing
and immersive reality have become possible in the past few
years.

EC has made significant research progress in the past 60
years but an integrated framework is lacking where all of this
functionality can be easily accessed. The development of a
framework would be welcome but there is research activity
that needs to take place to support this framework so that the
underlying complexity remains largely hidden from the end
user.

ACKNOWLEDGEMENT

This paper is based on a plenary talk that the author gave at
the 2016 Congress on Evolutionary Computation, 24-29 July
2016, Vancouver. The author would like to acknowledge the
support of IEEE and the Computational Intelligence Society,
as without the opportunity to present the plenary talk it would
not have been possible to write this paper.

REFERENCES

[1] N. R. Murch, “Game on for Pokemon Go: Placement of Pokemon
characters may breach confidentiality,” BMJ – British Medical Journal,
vol. 354, 2016.

[2] T. Althoff, R. W. White, and E. Horvitz, “Influence of Pokemon Go on
physical activity: Study and implications,” Journal of Medical Internet
Research, vol. 18, no. 12, pp. 82–95, 2016.

[3] M. Tateno, N. Skokauskas, T. A. Kato, A. R. Teo, and A. P. S. Guerrero,
“New game software (Pokemon Go) may help youth with severe social
withdrawal, hikikomori,” Phychiatry Research, vol. 246, pp. 848–849,
2016.

[4] M. Serino, K. Cordrey, L. McLaughlin, and R. L. Milanaik, “Pokemon
Go and augmented virtual reality games: A cautionary commentary
for parents and pediatricians,” Current Opinion in Pediatrics, vol. 28,
no. 5, pp. 673–677, 2016.

[5] J. W. Ayers, E. C. Leas, M. Dredze, J.-P. Allem, J. G. Grabowski, and
L. Hill, “Pokemon GO - A new distraction for drivers and pedestrians,”
Jama Internal Medicine, vol. 176, no. 12, pp. 1865–1866, 2016.

[6] D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre, G. van
den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and
D. Hassabis, “Mastering the game of Go with deep neural networks
and tree search,” Nature, vol. 529, pp. 484–489, 2016.

[7] S. Bringsjord and A. Sen, “On creative self-driving cars: Hire the
computational logicians, fast,” Applied Artificial Intelligence, vol. 30,
no. 8, pp. 758–786, 2016.

[8] N. J. Goodall, “Can you program ethics into a self-driving car?” IEEE
Spectrum, vol. 53, no. 6, pp. 28–58, 2016.

[9] S. E. Shladover, “The truth about “self-driving” cars,” Scientific Amer-
ican, vol. 314, no. 6, pp. 53–57, JUN 2016.

[10] N. Ensmenger, “Is chess the drosophila of artificial intelligence? A
social history of an algorithm,” Social Studies of Science, vol. 42, no. 1,
pp. 5–30, 2012.

[11] V. Oduguwa, A. Tiwari, and R. Roy, “Evolutionary computing in
manufacturing industry: An overview of recent applications,” Applied
Soft Computing, vol. 5, no. 3, pp. 281–299, 2005.

[12] N. M. Mohmad Kahar and G. Kendall, “A great deluge algorithm
for a real-world examination timetabling problem,” Journal of the
Operational Research Society, vol. 66, no. 1, pp. 116–133, 2015.

[13] N. G. Beligiannis, C. Moschopoulos, and D. S. Likothanassis, “A
genetic algorithm approach to school timetabling,” Journal of the
Operational Research Society, vol. 60, no. 1, pp. 23–42, 2009.

[14] G. T. Dias, P. J. de Sousa, and F. J. Cunha, “Genetic algorithms
for the bus driver scheduling problem: A case study,” Journal of the
Operational Research Society, vol. 53, no. 3, pp. 324–335, 2002.

[15] K. Sastry, D. E. Goldberg, and G. Kendall, Introductory Tutorials in
Optimization and Decision Support Techniques. Springer US, 2014,
ch. Genetic Algorithms, pp. 93–117.

[16] I. Christou, A. Zakarian, J.-M. Liu, and H. Carter, “A two-phase
genetic algorithm for large-scale bidline-generation problems at Delta
Air Lines,” Interfaces, vol. 29, no. 5, pp. 51–65, 1999.

[17] J. Van den Bergh, J. Belin, P. De Bruecker, E. Demeulemeester, and
L. De Boeck, “Personnel scheduling: A literature review,” European
Journal of Operational Research, vol. 226, no. 3, pp. 367–385, 2013.

[18] A. Ernst, H. Jiang, M. Krishnamoorthy, and D. Sier, “Staff scheduling
and rostering: A review of applications, methods and models,” Euro-
pean Journal of Operational Research, vol. 153, no. 1, pp. 2–27, 2004.

[19] R. Sundararajan, T. Bhaskar, A. Sarkar, S. Dasaratha, D. Bal, J. K.
Marasanapalle, B. Zmudzka, and K. Bak, “Marketing optimization in
retail banking,” Interfaces, vol. 41, no. 5, pp. 485–505, 2011.

[20] E. Rash and K. Kempf, “Product line design and scheduling at intel,”
Interfaces, vol. 42, no. 5, pp. 425–436, 2012.

[21] R. Gopalan, S. O. Kimbrough, F. H. Murphy, and N. Quintus, “The
philadelphia districting contest: Designing territories for city council
based upon the 2010 census,” Interfaces, vol. 43, no. 5, pp. 477–489,
2013.

[22] A. Johnson, Y. Zhao, and X. Xu, “Transportation planning and schedul-
ing for the 2014 special olympics usa games,” Interfaces, vol. 46, no. 3,
pp. 218–230, 2016.

[23] A. S. Manikas, J. R. Kroes, and T. F. Gattiker, “Metro meals on wheels
treasure valley employs a low–cost routing tool to improve deliveries,”
Interfaces, vol. 46, no. 2, pp. 154–167, 2016.

[24] V. Ogris, T. Kristan, A. Škraba, M. Urh, and D. Kofjač, “iUrnik:
Timetabling for Primary Educational Institutions in Slovenia,” Inter-
faces, vol. 46, no. 3, pp. 231–244, 2016.

[25] N. Pillay, “A survey of school timetabling research,” Annals of Oper-
ations Research, vol. 218, no. 1, pp. 261–293, 2014.

[26] E. Aarts, J. Korst, and W. Michiels, Introductory Tutorials in Opti-
mization and Decision Support Techniques. Springer US, 2014, ch.
Simulated Annealing, pp. 265–285.

[27] M. Gendreau and J.-Y. Potvin, Introductory Tutorials in Optimization
and Decision Support Techniques. Boston, MA: Springer US, 2014,
ch. Tabu Search, pp. 243–263.

[28] E. Burke and G. Kendall, Eds., Introductory Tutorials in Optimization
and Decision Support Techniques. Springer US, 2014.

[29] R. Bai, E. K. Burke, G. Kendall, J. Li, and B. McCollum, “A
hybrid evolutionary approach to the nurse rostering problem,” IEEE
Transactions on Evolutionary Computation, vol. 14, no. 4, pp. 580–
590, 2010.

[30] S. Bandyopadhyay, S. Saha, U. Maulik, and K. Deb, “A simulated
annealing-based multiobjective optimization algorithm: AMOSA,”
IEEE Transactions on Evolutionary Computation, vol. 12, no. 3, pp.
269–283, 2008.

[31] K. Eagle, “Using simulated annealing to schedule oil field drilling rigs,”
Interfaces, vol. 26, no. 6, pp. 35–43, 1996.

[32] M. A. Trick, H. Yildiz, and T. Yunes, “Scheduling major league
baseball umpires and the traveling umpire problem,” Interfaces, vol. 42,
no. 3, pp. 232–244, 2012.

[33] A. Farmer, J. S. Smith, and L. T. Miller, “Scheduling umpire crews for
professional tennis tournaments,” Interfaces, vol. 37, no. 2, pp. 187–
196, 2007.

[34] J. R. Willis and J. B. Terrill, “Scheduling the australian state cricket
season using simulated annealing,” Journal of the Operational Research
Society, vol. 45, no. 3, pp. 276–280, 1994.

[35] M. Wright, “Timetabling county cricket fixtures using a form of tabu
search,” Journal of the Operational Research Society, vol. 45, no. 7,
pp. 758–770, 1994.

[36] M. J. Fry and J. W. Ohlmann, “Route design for delivery of voting
machines in hamilton county, Ohio,” Interfaces, vol. 39, no. 5, pp.
443–459, 2009.

[37] M. Brazil, P. Grossman, J. H. Rubinstein, and D. Thomas, “Improving
underground mine access layouts using software tools,” Interfaces,
vol. 44, no. 2, pp. 195–203, 2014.

[38] K. W. Campbell, R. B. Durfee, and G. S. Hines, “Fedex generates bid
lines using simulated annealing,” Interfaces, vol. 27, no. 2, pp. 1–16,
1997.

[39] L. J. Fogel, “The human computer in flight control,” I.R.E. Transactions
on Electronic Computers, vol. EC-6, no. 3, pp. 197–202, 1957.

[40] A. S. Fraser, “Simulation of genetic systems by automatic digital
computers. I. Introduction,” Australian Journal of Biological Sciences,
vol. 10, pp. 484–491, 1957.

[41] G. E. P. Box, “Evolutionary operation: A method for increasing
industrial productivity,” Journal of the Royal Statistical Society. Series
C (Applied Statistics), vol. 6, no. 2, pp. 81–101, 1957.

[42] M. Dorigo, M. Vittorio, and C. Alberto, “Ant system: Optimization by
a colony of cooperating agents,” IEEE Transactions on Systems, Man
and Cybernetics Part B : Cybernetics, vol. 26, no. 1, pp. 29–41, 1996.

[43] M. Dorigo, G. Di Caro, and L. Gambardella, “Ant algorithms for
discrete optimization,” Artificial Life, vol. 5, no. 2, pp. 137–172, 1999.

[44] E. Bonabeau, M. Dorigo, and G. Theraulaz, “Inspiration for optimiza-
tion from social insect behavior,” Nature, vol. 406, pp. 39–42, 2000.

[45] T. Bäck and H. Schwefel, “Evolutionary computation: An overview,”
in International Conference on Evolutionary Computation, 1996, pp.
20–29.

[46] T. Bäck, “An overview of parameter control methods by self-adaptation
in evolutionary algorithms,” Fundamenta informaticae, vol. 35, pp. 51–
66, 1998.

[47] T. Bäck, D. Fogel, and Z. Michalewicz, Handbook of Evolutionary
Computation. IOP Publishing and Oxford University Press, 1998.

[48] L. Fogel and G. Burgin, “Competitive goal-seeking through evolution-
ary programming,” in Final Report, Contract AF 19(628), Air Force
Cambridge Research Laboratories, 1969.

[49] G. Burgin and L. Fogel, “Air-to-air combat tactics synthesis and
analysis program based on an adaptive maneuvering logic,” Journal
of Cybernetics, vol. 2, no. 4, pp. 60–68, 1972.

[50] X. Yao, “A review of evolutionary artificial neural networks,” Interna-
tional Journal of Intelligent Systems, vol. 8, no. 4, pp. 539–567, 1993.

[51] X. Yao and Y. Liu, “A new evolutionary system for evolving artificial
neural networks,” IEEE Transactions on Neural Networks, vol. 8, no. 3,
pp. 694–713, 1997.

[52] X. Yao, “Evolving artificial neural networks,” Proceedings of the IEEE,
vol. 87, no. 9, pp. 1423–1447, 1999.

[53] X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made faster,”
IEEE Transactions on Evolutionary computation, vol. 3, no. 2, pp. 82–
102, 1999.

[54] J. D. Schaffer, “Multiple objective optimization with vector evaluated
genetic algorithms,” in Proceedings of the 1st International Conference
on Genetic Algorithms, 1985, pp. 93–100.

[55] J. Schaffer, R. Caruana, L. Eshelman, and R. Das, “A study of
control parameters affecting online performance of genetic algorithms
for function optimization,” in Proceedings of the third international
conference on Genetic algorithms, 1989, pp. 51–60.

[56] L. Eshelman, R. A. Caruana, and J. Schaffer, “Biases in the crossover
landscape,” in Proceedings of the third international conference on
Genetic algorithms, 1989, pp. 10–19.

[57] J. D. Schaffer and L. J. Eshelman, “On crossover as an evolutionarily
viable strategy,” in International Conference on Genetic Algorithms
(ICGA), 1991, pp. 61–68.

[58] J. D. Schaffer, D. Whitley, and L. J. Eshelman, “Combinations of
genetic algorithms and neural networks: A survey of the state of the
art,” in International Workshop on Combinations of Genetic Algorithms
and Neural Networks, 1992, pp. 1–37.

[59] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceed-
ings of the 1995 IEEE International Conference on Neural Networks,
1995.

[60] R. Eberhart, Y. Shi, and J. Kennedy, Swarm Intelligence. Morgan
Kaufmann, 2001.

[61] D. E. Goldberg and J. H. Holland, “Genetic algorithms and machine
learning,” Machine Learning, vol. 3, no. 2-3, pp. 95–99, 1988.

[62] L. B. Booker, D. E. Goldberg, and J. H. Holland, “Classifier systems
and genetic algorithms,” Artificial Intelligence, vol. 40, no. 1-3, pp.
235–282, 1989.

[63] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning. Addison-Wesley Professional, 1989.

[64] D. B. Fogel, “An evolutionary approach to the traveling salesman
problem,” Biological Cybernetics, vol. 60, no. 2, pp. 139–144, 1988.

[65] D. B. Fogel, L. J. Fogel, and V. W. Porto, “Evolving neural networks,”
Biological Cybernetics, vol. 63, no. 6, pp. 487–493, 1990.

[66] D. B. Fogel, “An introduction to simulated evolutionary optimization,”
IEEE Transactions on Neural Networks, vol. 5, no. 1, pp. 3–14, 1994.

[67] D. B. Fogel, Ed., Evolutionary Computation: A Fossil Record. Wiley-
Blackwell, 1998.

[68] K. Chellapilla and D. B. Fogel, “Evolution, neural networks, games,
and intelligence,” Proceedings of the IEEE, vol. 87, no. 9, pp. 1471–
1496, 1999.

[69] K. A. De Jong, “An analysis of the behavior of a class of genetic
adaptive systems,” Ph.D. dissertation, University of Michigan Ann
Arbor, 1975.

[70] ——, “Genetic algorithms: A 10 year perspective,” in Proceedings of
an International Conference on Genetic Algorithms and their applica-
tions, 1985.

[71] ——, “Learning with genetic algorithms,” Machine Learning, vol. 3,
no. 3, pp. 121–138, 1988.

[72] ——, Evolutionary Computation: A Unified Approach. MIT Press,
2016.

[73] R. M. Friedberg, “A learning machine: Part I,” IBM Journal of Research
and Development, vol. 2, no. 1, pp. 2–13, 1958.

[74] R. M. Friedberg, B. Dunham, and J. H. North, “A learning machine:
Part II,” IBM Journal of Research and Development, vol. 3, no. 3, pp.
282–287, 1959.

[75] J. H. Holland, Adaptation in Natural and Artificial Systems. MIT
Press, 1975.

[76] ——, “Genetic algorithms and the optimal allocation of trials,” SIAM
Journal on Computing, vol. 2, no. 2, pp. 88–105, 1973.

[77] I. Rechenberg, “Cybernetic solution path of an experimental problem,”
in Royal Air Force Establishment, Farnborough, Hampshire, England
1122, 1965.

[78] H. P. Schwefel, Understanding evolution as a collective strategy for
groping in the dark. Berlin, Heidelberg: Springer Berlin Heidelberg,
1991, pp. 388–397.

[79] ——, “Evolutionary computation - History, status, and perspectives,” in
Artificial Neural Networks - ICANN 96, (LNCS 112), 1996, pp. 15–15.

[80] H. Beyer and H. Schwefel, “Evolution strategies - A comprehensive
introduction,” Natural Computing, vol. 1, no. 1, pp. 3–52, 2002.

[81] M. Conrad and H. H. Pattee, “Evolution experiments with an artificial
ecosystem,” Journal of Theoretical Biology, vol. 28, pp. 393–409, 1970.

[82] D. Fogel, R. W. Anderson, R. G. Reynolds, and W. Rizki, “Memorial
tribute to Dr. Michael Conrad,” IEEE Transactions on Evolutionary
Computation, vol. 5, no. 1, pp. 1–2, 2001.

[83] R. R. Kampfner and M. Conrad, “Computational modeling of evo-
lutionary learning processes in the brain,” Bulletin of Mathematical
Biology, vol. 45, no. 6, pp. 931–968, 1983.

[84] G. E. P. Box and N. Draper, Evolutionary Operation. A Method for
Increasing Industrial Productivity. New York: Wiley, 1969.

[85] A. S. Fraser, “Monte Carlo analyses of genetic models,” Nature, vol.
181, pp. 208–209, 1958.

[86] ——, “Simulation of genetic systems,” Journal of Theoretical Biology,
vol. 2, pp. 329–246, 1962.

[87] D. Fogel, “In memoriam Alex S. Fraser,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 5, pp. 429–430, 2002.

[88] L. J. Fogel, “A new concept: The kinalog system,” Journal of the
Human Factors Society, vol. 1, no. 2, pp. 30–37, 1959.

[89] ——, “Autonomous automata,” Industrial Research Magazine, vol. 4,
no. 2, pp. 14–19, 1962.

[90] V. Piuri, “In memoriam - Dr. Lawrence J. Fogel,” IEEE Computational
Intelligence Magazine, vol. 3, no. 1, pp. 68–69, 2008.

[91] J. Kietzmann, L. Pitt, and P. Berthon, “Disruptions, decisions, and
destinations: Enter the age of 3-D printing and additive manufacturing,”
Business Horizons, vol. 58, pp. 209–215, 2015.

[92] B. Berman, “3-D printing: The new industrial revolution,” Business
Horizons, vol. 55, pp. 155–162, 2012.

[93] J. R. Koza, “Hierarchical genetic algorithms operating on populations
of computer programs,” in IJCAI’89 Proceedings of the 11th Interna-
tional Joint Conference on Artificial intelligence - Volume 1, 1989, pp.
768–774.

[94] ——, Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, 1992.

[95] J. R. Koza and J. P. Rice, “Automatic programming of robots using
genetic programming,” in AAAI’92 Proceedings of the tenth national
conference on Artificial intelligence, 1992, pp. 768–774.

[96] R. Poli, W. B. Langdon, and N. F. McPhee, A Field Guide to Genetic
Programming. Published via http://lulu.com and freely available at
http://www.gp-field-guide.org.uk (with contributions from J. R. Koza),
2008.

[97] E. T. Barr, M. Harman, Y. Jia, A. Marginean, and J. Petke, “Automated
software transplantation,” in Proceedings of the 2015 International
Symposium on Software Testing and Analysis. ACM, 2015, pp. 257–
269.

[98] R. Harper, R. J. Chapman, C. Ferrie, C. Granade, R. Kueng,
D. Naoumenko, S. T. Flammia, and A. Peruzzo, “Explaining quantum
correlations through evolution of causal models,” Phys. Rev. A, vol. 95,
p. 042120, 2017.

[99] Z. Vasicek and L. Sekanina, “Evolutionary approach to approximate
digital circuits design,” IEEE Transactions on Evolutionary Computa-
tion, vol. 19, no. 3, pp. 432–444, 2015.

[100] O. E. David, H. J. van den Herik, M. Koppel, and N. S. Netanyahu,
“Genetic algorithms for evolving computer chess programs,” IEEE

Transactions on Evolutionary Computation, vol. 18, no. 5, pp. 779–
789, 2014.

[101] A. Elyasaf, A. Hauptman, and M. Sipper, “Evolutionary design of
FreeCell solvers,” IEEE Transactions on Computational Intelligence
and AI in Games, vol. 4, no. 4, pp. 270–281, 2012.

[102] D. Izzo, L. F. Simões, M. Märtens, G. C. de Croon, A. Heritier,
and C. H. Yam, “Search for a grand tour of the jupiter galilean
moons,” in Proceedings of the 15th Annual Conference on Genetic
and Evolutionary Computation. ACM, 2013, pp. 1301–1308.

[103] C. Browne, Evolutionary Game Design. London: Springer London,
2011, ch. Yavalath, pp. 75–85.

[104] A. Elyasaf, A. Hauptman, and M. Sipper, “GA-FreeCell: Evolving
solvers for the game of FreeCell,” in Proceedings of the 13th Annual
Conference on Genetic and Evolutionary Computation. ACM, 2011,
pp. 1931–1938.

[105] P. Widera, J. M. Garibaldi, and N. Krasnogor, “Evolutionary design
of the energy function for protein structure prediction,” in Proceedings
of the 2009 IEEE Congress on Evolutionary Computation, 2009, pp.
1305–1312.

[106] ——, “GP challenge: Evolving energy function for protein structure
prediction,” Genetic Programming and Evolvable Machines, vol. 11,
no. 1, pp. 61–88, 2010.

[107] P. Widera, “Automated design of energy functions for protein structure
prediction by means of genetic programming and improved structure
similarity assessment,” Ph.D. dissertation, School of Computer Science,
University of Nottingham, UK, 2010.

[108] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automatically
finding patches using genetic programming,” in Proceedings of the 31st
International Conference on Software Engineering, 2009, pp. 364–374.

[109] S. Forrest, T. Nguyen, W. Weimer, and C. Le Goues, “A genetic pro-
gramming approach to automated software repair,” in Proceedings of
the 11th Annual Conference on Genetic and Evolutionary Computation.
ACM, 2009, pp. 947–954.

[110] L. Spector, D. M. Clark, I. Lindsay, B. Barr, and J. Klein, “Genetic
programming for finite algebras,” in Proceedings of the 10th Genetic
and Evolutionary Computation Conference 2008. ACM Press, 2008,
pp. 1291–1298.

[111] S. Manos, M. C. J. Large, and L. Poladian, “Evolutionary design of
single-mode microstructured polymer optical fibres using an artificial
embryogeny representation,” in Proceedings of the 9th Genetic and
Evolutionary Computation Conference 2007. ACM Press, 2007, pp.
2549–2556.

[112] S. Kilinç, V. Jain, V. Aggarwal, and U. Cam, “Catalogue of variable
frequency and single-resistance-controlled oscillators employing a sin-
gle differential difference complementary current conveyor,” Frequenz,
vol. 60, no. 7-8, pp. 142–146, 2006.

[113] V. Aggarwal, “Novel canonic current mode DDCC based SRCO
synthesized using a genetic algorithm,” Analog Integrated Circuits and
Signal Processing, vol. 40, no. 1, pp. 83–85, 2004.

[114] ——, “Evolving sinusoidal oscillators using genetic algorithms,” in
Proceedings of 2003 NASA/DoD Conference on Evolvable Hardware,
2003, pp. 67–76.

[115] S. Preble, M. Lipson, and H. Lipson, “Two-dimensional photonic
crystals designed by evolutionary algorithms,” Applied Physics Letters,
vol. 86, no. 6, p. 061111, 2005.

[116] R. A. Bartels, M. M. Murnane, H. C. Kapteyn, I. Christov, and H. Ra-
bitz, “Learning from learning algorithms: Application to attosecond
dynamics of high-harmonic generation,” Phys. Rev. A, vol. 70, p.
043404, 2004.

[117] R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. C.
an M. M. Murnane, and H. C. Kapteyn, “Shaped-pulse optimization
of coherent emission of high-harmonic soft x-rays,” Nature, vol. 406,
pp. 164–166.

[118] J. D. Lohn, G. S. Hornby, and D. S. Linden, An Evolved Antenna for
Deployment on Nasa’s Space Technology 5 Mission. Boston, MA:
Springer US, 2005, pp. 301–315.

[119] L. Spector, Automatic Quantum Computer Programming: A Genetic
Programming Approach. Springer US, 2007.

[120] D. H. Wolpert and W. G. Macready, “No free lunch theorems for
optimization,” IEEE Transactions on Evolutionary Computation, vol. 1,
no. 1, pp. 67–82, 1997.

[121] E. K. Burke, M. Hyde, G. Kendall, and J. Woodward, “Automating
the packing heuristic design process with genetic programming,” Evo-
lutionary Computation, vol. 20, no. 1, pp. 63–89, 2012.

[122] E. K. Burke, M. Hyde, and G. Kendall, “Grammatical evolution of local
search heuristics,” IEEE Transactions on Evolutionary Computation,
vol. 16, no. 3, pp. 406–417, 2012.

[123] P. Cowling, G. Kendall, and E. Soubeiga, A Hyperheuristic Approach
to Scheduling a Sales Summit. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2001, pp. 176–190.

[124] J. Denzinger, M. Fuchs, and M. Fuchs, “High performance ATP
systems by combining several AI methods,” Technical Report, SEKI-
Report SR-96-09, University of Kaiserslautern, Tech. Rep., 1996.

[125] H. Fisher and G. Thompson, “Probabilistic learning combinations of
local job-shop scheduling rules,” in Industrial Scheduling, J. Muth and
G. Thompson, Eds. Prentice Hall, 1963, pp. 225–251.

[126] W. B. Crowston, F. Glover, G. Thompson, and J. D. Trawick, “Proba-
bilistic and parametric learning combinations of local job shop schedul-
ing rules,” ONR Research memorandum, GSIA, Carnegie Mellon
University, Pittsburgh 1(117), 1963.

[127] E. K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Özcan,
and R. Qu, “Hyper-heuristics: A survey of the state of the art,” Journal
of the Operational Research Society, vol. 64, no. 12, pp. 1695–1724,
2013.

[128] S. Asta, E. Özcan, and A. J. Parkes, “Champ: Creating heuristics
via many parameters for online bin packing,” Expert Systems with
Applications, vol. 63, pp. 208–221, 2016.

[129] N. R. Sabar, M. A. G. Kendall, and R. Qu, “A dynamic multiarmed
bandit-gene expression programming hyper-heuristic for combinatorial
optimization problems,” IEEE Transactions on Cybernetics, vol. 45,
no. 2, pp. 217–228, 2015.

[130] ——, “Automatic design of hyper-heuristic framework with gene
expression programming for combinatorial optimization problems,”
IEEE Transactions on Evolutionary Computation, vol. 19, no. 3, pp.
309–325, 2015.

[131] S. Rosenberg, Dreaming in Code: Two Dozen Programmers, Three
Years, 4,732 Bugs, and One Quest for Transcendent Software. Three
Rivers Press (CA), 2008.

[132] F. P. Brooks Jr., The Mythical Man-Month. Addison-Wesley, 1975.
[133] C. G. Johnson, “Fitness in evolutionary art and music: A taxonomy

and future prospects,” International Journal of Arts and Technology,
vol. 9, no. 1, pp. 4–25, 2016.

[134] S. Todd and W. Latham, Eds., Evolutionary Art and Computers.
Academic Press Inc, 1992.

[135] M. Harman and B. F. Jones, “Search-based software engineering,”
Information and Software Technology, vol. 43, no. 14, pp. 833–839,
2001.

[136] K. Z. Zamli, B. Y. Alkazemi, and G. Kendall, “A tabu search hyper-
heuristic strategy for t-way test suite generation,” Applied Soft Com-
puting, vol. 44, pp. 57–74, 2016.

[137] F. Sarro, F. Ferrucci, M. Harman, A. Manna, and J. Ren, “Adaptive
multi-objective evolutionary algorithms for overtime planning in soft-
ware projects,” IEEE Transactions on Software Engineering, In Press.

[138] K. Sörensen, “Metaheuristics – the metaphor exposed,” International
Transactions in Operational Research, vol. 22, no. 1, pp. 3–18, 2015.

