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Emerging Internet of Things (IoT) 
applications in various domains 
such as smart city, smart home, 

smart grid, e-health, smart transporta-
tion, and computer vision critically 
require trustworthy networking solu-
tions that are resilient against distur-
bances and disruptions, including high 
mobility, high density, disasters, infra-
structure failures, cyberattacks, etc. The 
networking framework should be capa-
ble of providing more secure, reliable 
and efficient communications in vari-
ous network environments, especially 
for the performance-sensitive and mis-
sion-critical applications such as remote 
surgery and autonomous driving.

Two main challenges exist in enforc-
ing trustworthy IoT. The first challenge 
comes from the spatial diversity of the 
entities involved in communications, such 
as the high mobility of the devices, and 
the limitations of propagation media and 
other resources. The second challenge is 
due to the varying temporal features of 
the environment. These challenges can be 
solved by using computational intelli-
gence (CI) technologies such as fuzzy 
logic and evolutionary computation. 
On the other hand, Big Data-based 
approaches, including deep neural net-
works, could facilitate data-driven predic-
tion and performance improvement by 

capturing time-dependent properties of 
network elements such as user traffic and 
behaviors. While CI technologies can 
achieve a flexible and self-evolving sys-
tem design, Big Data can facilitate the use 
of deep neural networks through which 
learning the best strategy from complex 
data becomes possible.

This special issue focuses on the tech-
nical challenges and the synergistic effect 
of Big Data and CI for trustworthy IoT. 
We were successful in attracting 47 sub-
missions. All of the submitted papers 
were reviewed by at least three compe-
tent independent referees and also by 
one editor. Following a rigorous peer 
review process, 7 papers have been 
accepted for publications, and four of 
them have been selected for the Part I of 
this special issue.

In the first paper entitled “QoE-driv-
en Content-Centric Caching With 
Deep Reinforcement Learning in Edge-
Enabled IoT”, X. He et al. introduce a 
deep reinforcement learning (DRL) 
model for improving Quality-of-Expe-
rience (QoE) in edge-enabled IoT. 
Reinforcement learning is used to learn 
the best policy, and a novel DRL algo-
rithm is proposed to seek out a balance 

between Q-value accuracy and acceler-
ated stability. Extensive simulation results 
are provided to show the performance 
of the proposed algorithm.

In the paradigm of AI-based net-
working, H. Yao et al. propose a hybrid 
machine learning architecture for packet 
routing in their paper entitled “AI 
Router & Network Mind: A Hybrid 
Machine Learning Paradigm for Packet 
Routing”, where a distributed intelli-
gent approach based on AI routers is 
combined with a centralized platform. 
The authors present simulation results to 
demonstrate the feasibility and perfor-
mance of the proposed architecture.

Understanding user behaviors be -
comes a key enabler in many applications 
such as sedentary-related healthcare, 
human-computer interaction (HCI) and 
affective computing. The third paper, 
“BeSense: Leveraging WiFi Channel 
Data and Computational Intelligence for 
Behavior Analysis” by Y. Gu et al., pro-
poses BeSense, a CI-based device-free 
and real-time system to analyze common 
human behaviors (e.g., surfing, working 
and gaming) using WiFi signals. BeSense 
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is prototyped on low-cost and ubiquitous 
WiFi devices and evaluated in extensive 
real-world experiments. Experimental 
results verify the effectiveness of BeSense 
in recognizing user behaviors.

The last paper, “ADMM Empow-
ered Distributed Computational Intelli-
gence for Internet of Energy” by W. 
Zhong et al., proposes an approach that 
employs Alternating Direction Method 
of Multipliers (ADMM) as the theoreti-

cal framework for the design of distrib-
uted computational intelligence in 
Internet of Energy (IoE). The authors 
discuss the challenges of ADMM imple-
mentation in IoE and propose a joint 
computing and networking resources 
management architecture to meet the 
challenges. Numerical results show that 
this architecture could reduce the com-
puting and communication costs of 
ADMM implementation.
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