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Abstract

The success of any machine learning technique depends on the correct setting of its
parameters and, when it comes to large-scale datasets, hand-tuning these parameters be-
comes impractical. However, very large-datasets can be pre-processed in order to distil
information that could help in appropriately setting various systems parameters. In turn,
this makes sophisticated machine learning methods easier to use to end-users. Thus, by
modelling the performance of machine learning algorithms as a function of the structure
inherent in very large datasets one could, in principle, detect “hotspots” in the param-
eters’ space and thus, auto-tune machine learning algorithms for better dataset-specific
performance. In this work we present a parameter setting mechanism for a rule-based
evolutionary machine learning system that is capable of finding the adequate parameter
value for a wide variety of synthetic classification problems with binary attributes and
with/without added noise. Moreover, in the final validation stage our automated mecha-
nism is able to reduce the computational time of preliminary experiments up to 71% for
a challenging real-world bioinformatics dataset.

1 Introduction

Many machine learning techniques are tied to a series of hyper-parameters and/or selection of
sub-components that need to be tuned. This challenge can broadly be defined as the algorithm
configuration problem. When handling large-scale datasets, finding the adequate set of hyper-
parameter values becomes a very expensive experimental process. Therefore, automatic hyper-
parameter setting approaches are necessary in order to avoid a time-consuming preliminary
experimentation stage, reduce the number of hyper-parameters that need to be set, and make
these techniques more accessible to end-users. The creation of automated methods for the
hyper-parameter tuning of machine learning algorithms but also of metaheuristic optimisation
algorithms has been a very active area of research in recent years [1, 2, 3, 4].

This paper focuses on the specific context of evolutionary machine learning (EML). EML
algorithms have shown to be very competitive methods for machine learning [5, 6] and have been
applied to a very broad variety of real-world problems [7, 8, 9, 10, 11, 12, 13]. Hyper-parameter
setting is a widespread problem in this field, since these systems use a genetic algorithm (GA)
and fitness functions that often involve many hyper-parameters. Besides the generic approaches
for hyper-parameter tuning mentioned above, there is a variety of methods that are specific
to evolutionary computation [14]. Several techniques have been used such as reinforcement
learning [15], or self-adaptive approaches [16, 17, 18, 19, 20, 21], among others. Moreover, even
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though theory exists about EML systems [22, 23, 24] that explains how these systems should
be parameterised, only recently these theoretical works have started to be applied to fully tune
these algorithms using a few synthetic problems as test scenarios [25, 26].

This paper proposes a heuristic procedure for the application of theoretical models of EML
to automatically estimate the structure of classification problems with binary attributes and,
from such estimates, set hyper-parameters accordingly. This work focuses on a specific EML
algorithm called BioHEL [27]. This system has shown competent performance in very complex
real-world domains [28, 29, 7, 8, 9, 10]. One of the main characteristics of this system is
its fitness function, which tries to balance the accuracy, complexity and coverage of the rules
in the solution. The key element of this fitness function is the coverage breakpoint hyper-
parameter, which determines how many instances in the dataset a rule should cover to be
considered good enough. Previous studies have shown that learning can be facilitated when this
hyper-parameter is set correctly, in contrast to an incorrect setting which can push the system
towards overgeneralisation [30]. Moreover, this hyper-parameter is highly problem dependant
and finding its adequate value requires an extensive preliminary experimentation.

However, often the data holds the key of how to parameterise the system correctly. For
example, as it was shown by [30] it is possible to set the adequate coverage breakpoint for clas-
sification problems with binary attributes (for the sake of compactness we will refer to these as
binary problems in the rest of the paper) in BioHEL if the structure of the problem is known.
But is it possible to define a generalisation about the structure of binary problems? A useful
framework to model binary problems is the use of k-Disjunctive Normal Form (k-DNF) formu-
las, which are binary formulas that have r disjunctive terms and each one of these terms has k
relevant variables of attributes expressed from the d possible ones. Many boolean benchmarks
can be expressed as k-DNF formulas, and even complex real-world problems. Moreover, based
on this structure (k and r) it is possible to create models that explain the behaviour of the
BioHEL system [31]. Nevertheless, determining these values (k and r) is not straightforward
and calculating their exact value would involve applying data mining over the problem which
is an extra computational cost that we wish to avoid.

In this work we introduce an automated heuristic approach to determine the structure of an
unknown binary problem (k and r) at runtime. This heuristic combines observations from the
data and from a sample of randomly initialised rules evaluated against this data, to retro-feed
theoretical models of the behaviour of the system [30, 31] and classify the problems into groups
called kr-groups with a particular k and r associated.

In this particular work we show how this methodology can help adapt the coverage break-
point hyper-parameter of BioHEL. Our experiments show how this mechanism can characterise
challenging binary problems with and without noise. Moreover, we show how this mechanism
can help adapt hyper-parameters of the system to solve a real-world protein structure prediction
problem and reduce the total experimental time up to 71%, hence saving a lot of computational
time and human effort.

2 Related Work

The automatic configuration and tuning is a very challenging process in evolutionary algorithms
(EAs), where it has been studied in great length. In this section we first describe, from a general
EA perspective, the different approaches to hyper-parameter control (and some examples of
each). Afterwards, we focus on specific examples of hyper-parameter control in EML systems,
which is the particular context of BioHEL. In terms of nomenclature we use a variety of terms
(tuning, adjustment, control, configuration) because any one of these individual terms does not
capture all the relevant literature in this area.

There are different types of hyper-parameter control algorithms. [14] presented a classifi-



cation for hyper-parameter control where the different techniques can be classified depending
on what is changing (representation, mutation or crossover rates, selection mechanisms, etc.),
or depending on how the change is made (deterministic, adaptive or self-adaptive). The deter-
ministic techniques are the ones that adjust hyper-parameter without any feedback from the
algorithm being controlled. The adaptive techniques are the ones that use some sort of feed-
back from the search process (i.e. during the optimisation/learning process). The self-adaptive
techniques are the ones which evolve the hyper-parameters along with the rest of features of
the problem. Using this classification our approach can be classified as a deterministic one, the
methods described below applying the 1/5 rule for mutation rate adjustment [32, 33] would be
adaptive, and [34] would be an example of the self-adaptive approach.

In the area of EAs, the earliest automatic hyper-parameter setting approaches were pre-
sented by [32] and [33], in which the mutation rate was adapted according to the 1/5th rule. If
the rate of successful mutation was over 1/5 the mutation rate was increased and if it was below
this value it was decreased. Other early approaches involve the adaptation of crossover rate
depending on how good were the resulting offsprings [35]. Regarding operator selection within
evolutionary algorithms, [34] presented a very simple self-adaptive crossover-selection method.
One extra bit in the classifier encoding represented the crossover that should be applied. Other
approaches [36, 37] use rules to modify the hyper-parameters of local search operators (crossover
and mutation).

Self-adaptive approaches have also been used in memetic algorithms to adapt the local
search operators depending on the stage on which the search process is [18, 19, 20, 21].

Reinforcement learning (RL) has also been used to adapt hyper-parameters in EAs to iden-
tify the appropriate step size for the 1/5th rule when adapting the mutation rate [38]. Fur-
thermore, other more complex approaches [39] use RL to adapt the hyper-parameters of the
GA considering not only the quality of the solutions, but also the cost incurred by the selected
search operators.

There are several examples of self-adaptive mechanisms in the EML context. The Zeroth
Level Classifier System (ZCS) [40] was extended with self-adaptive mutation in [41], to give
an independent mutation rate to each classifier. Afterwards, this work was extended by self-
adapting all the hyper-parameters in ZCS (mutation, learning rate, tax rate and discount
factor) at the same time [42]. While in stationary environments the results are as good as
the ones obtained with fixed hyper-parameters, in the more dynamical ones the self-adaptation
improves the performance of the system. Self-adaptive mechanisms for both the mutation
and the learning rate in XCS [43] were investigated in [44]. The self-adaptive mutation rate
solved some generalisation problems when XCS was applied to long rule chain environments.
Nevertheless, the performance was still sub-optimal in this case. Also, the system showed worse
performance when trying to adapt the learning rate. Finally, Self-adaptive mutation has also
been applied to the XCSF [45] using hyper-ellipsoidal condition structures [46], in which each
part of the knowledge representation had its own self-adapted mutation rate.

More generally, the automated tuning of machine learning algorithms and pipelines is a very
active field of research nowadays, broadly called AutoML. In broad terms we can consider that
these methods apply a wrapper approach. They run the underlying algorithm/analysis pipeline
on samples of the data (e.g. using cross-validation) to estimate the predictive performance of
a given configuration, which is very different from our approach, in which we never run the
full BioHEL algorithm during the hyper-parameter tuning process. A variety of strategies exist
to search for the optimal configurations. For instance, TPOT [1] uses genetic programming
to evolve trees that represent complete machine learning pipelines, including data cleaning,
feature selection/construction and the selection and tuning of machine learning algorithms.
ML-Plan [2] defines the algorithm tuning process as a planning task, and uses hierarchical
planning networks [47] to identify the optimal plan, i.e. algorithm selection and tuning. A



different search strategy is employed by Auto-sklearn [4], which uses Bayesian optimisation
for the AutoML task. As a final example we would like to mention irace [3] which, while
intended to tune optimisation algorithms, uses an equivalent wrapper principle to the AutoML
approaches. It uses an extension of the racing algorithm [48] to perform the tuning process.
In the classic racing algorithm for machine learning model selection, a set of candidate models
is evaluated sample by sample. In each step the methods that perform significantly worse are
discarded. The process continues until a certain evaluation budget is reached or the set of
remaining models is small enough.

Finally, another existing approach for algorithm selection (rather than tuning) is based
on complexity measures defined to capture dataset difficulty in a supervised machine learning
context [49]. These measures have been used to study the domains of competence of the XCS
algorithm [50], as well as to recommend machine learning algorithms based on a meta-learning
approach [51].

3 The BioHEL System

BioHEL [27] is an EML algorithm designed to handle large-scale datasets [52, 53, 54, 28, 29, 7,
8, 10]. BioHEL learns a set of rules following the Iterative Rule Learning paradigm first used
in EML in the SIA system [55]. This learning paradigm generates ordered rule sets in which
the rules in the solution are learnt sequentially, using a generational GA to learn individual
rule. Hence, each individual of the GA population is a rule. Once a rule (the best individual
in the final GA population) is learnt, it is added to the rule set and the training set is filtered
by removing all the examples covered by this rule. The iterative process generally stops when
the whole training set is covered. However, the stopping criteria changes when using a default
rule as detailed in Section 3.1. In the rest of the section we only describe the aspects about
BioHEL that are relevant to this work. For a full description of the algorithm, please see [27].

3.1 Representation

BioHEL uses the Attribute List Knowledge Representation (ALKR) [56], a sparse representa-
tion designed to handle high-dimensional problems. In this encoding, each rule represents only
its relevant attributes, reducing considerably the cost of the match operations (as all the irrel-
evant attributes for that rule are not present). The relevant attributes can vary across rules,
and are discovered during the learning process. ALKR uses hyper-rectangles [57] to represent
continuous attributes and the GABIL representation [58] for nominal attributes.

Since in this paper we focus on problems with discrete (binary) attributes, it is necessary
to explain the GABIL representation in greater detail. In this representation the attributes are
expressed by binary strings of fixed length. The length corresponds to the number of possible
values the attribute can have. For example, in a problem with three attributes (F1, F2 and F3)
if the attribute F1 may take the values (A, B, C), F2 the values (O, P), and F3 the values (W,
Z, X, Y) a possible condition string for each one of the attributes would look like:

F1 F2 F3

100 01 1101

Each attribute is read as a disjunctive clause between all the values that have their bit on.
For example, this condition can be interpreted as F1 is A and F2 is P and F3 is {W or Z or
Y}.

To initialise a rule in ALKR first a subset of the problem’s attributes is randomly chosen to
be included in the rule. The size of the subset is controlled by the ExpAtts hyper-parameter.



Afterwards, an instance from the training set is sampled, and the bits corresponding to the
instance’s values in the GABIL predicate are set to 1. The rest of bits in the predicate are also
set to 1 with probability p.

This representation uses an explicit default rule mechanism [59], which consists of a rule
that covers all the examples left in the training set and assigns them to a user predefined class.
Since the default class is not used in the evolved rules, this mechanism generates more compact
rule sets. As a result of using a default rule, the stopping criteria of the iterative rule learning
process is changed. In BioHEL, the rule learning process stops whenever it is not possible to
generate a rule that has accuracy higher than the default rule.

3.2 Fitness Function

The BioHEL’s fitness function is based on the Minimum Description Length principle [60]. This
fitness function is designed to promote accurate, general and compact rules by integrating three
metrics into the fitness formula: accuracy, coverage and complexity. This fitness function has
two terms as shown in Equation (1).

F (a) = TL(a) ·W + EL(a). (1)

TL(a) (theory length) corresponds to the complexity of rule a, EL(a) (exceptions length)
corresponds to the accuracy and coverage of rule a and W is a weight that adjusts the rela-
tion between the previous terms. This hyper-parameter W is adjusted automatically using a
heuristic defined by [59].

The definition of TL(a) depends on the employed knowledge representation. For the GABIL
representation it is defined as follows:

TL(a) =

∑NA
i=1

ni/vi

NAa

where NA is the number of attributes in the problem, NAa is the number of attributes explicitly
represented by rule a, ni is the number of values set to 0 and vi is the number of possible values
in the GABIL string for the i-th attribute represented in rule a. A simple interpretation of
TL(a) is that is computing the percentage of bits of the GABIL’s encoding of a rule set to
0, with the added caveat that we use the ALKR sparse rule encoding in which only a faction
of the attributes is represented, and only the represented attributes contribute to the formula.
In this formula lower is better, so any non-represented attribute contributes 0 to the formula.
Hence TL(a) promotes rules in which (a) few attributes are represented and (b) few values
within each attribute are set to 0.

Furthermore, EL(a) is defined as:

EL(a) = 2− ACC(a)− COV (a)

ACC(a) =
correctlyClassified(a)

matched(a)

COV (a) =


0 if RC(a) < CB(c(a))/3

MidCov(a) if RC(a) < CB(c(a))

HighCov(a) if RC(a) ≥ CB(c(a))

(2)

MidCov(a) = CR · RC(a)

CB(c(a))



HighCov(a) = CR +
(1− CR) · (RC(a)− CB(c(a)))

1−RC(a)

RC(a) =
correctlyClassified(a)

|Tc(a)|

CB(c(a)) = CB · |T |
|Tc|

.

In these formulas, ACC(a) corresponds to the accuracy of the rule and COV (a) is the term
that needs to promote general rules which is the key of BioHEL’s fitness function. As shown in
Equation (2), the value of COV (a) depends on RC(a) (recall; the ratio between the number of
examples correctly classified by the rule over the total number of examples in the training set
belonging to the same class as a) and CB(c(a)) (the percentage of examples of its class that
any rule should cover to be considered a “good rule”). CB corresponds to the hyper-parameter
known as coverage breakpoint. This hyper-parameter is first set globally and afterwards it is
adjusted for every class in the problem based on the class distribution. This is a very problem
dependent hyper-parameter which affects the performance of the system, as it was shown by
[30] and the main target of the automated hyper-parameter setting of this paper.

Moreover, CR (coverage ratio) corresponds to the percentage of “reward” awarded to a rule
with a higher coverage than the coverage breakpoint. Figure 1 shows the value of the coverage
term COV (a), depending on the coverage of the rule.
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Figure 1: Coverage term COV (a) according to rule coverage. The minimum coverage corre-
sponds to one third of the coverage breakpoint

4 k-DNF Functions

k-Disjunctive Normal Form (k-DNF) functions [61] are a broad family of boolean functions
which can be a useful tool to characterise the structure of binary problems. These functions



have been shown to be very useful to benchmark machine learning algorithms [62, 30, 63].
Given a space of d attributes or variables a k-DNF function is a boolean formula that

presents the following form:

T1 ∨ T2 ∨ · · · ∨ Tr
where r is the number of disjunctive terms and each term Tx represents the conjunction of
k boolean variables out of the d possible options (x1, x2, . . . , xd), where some of the variables
might have the not function (¬) applied to them. Equation (3) represents an example of a
k-DNF function for a space of 10 representable attributes (d), 2 terms (r) and 4 represented
attributes (k).

(x1 ∧ x5 ∧ ¬x7 ∧ x10) ∨ (x1 ∧ ¬x3 ∧ ¬x6 ∧ x7). (3)

To construct a machine learning problem from a k-DNF boolean formula we generate all the
possible 2d instances (binary strings of size d). Afterwards, if the formula holds for a particular
instance (one or more terms are true), class 1 (i.e. the positive class) is assigned to it. Otherwise
class 0 (the negative class, to be covered by the default rule) is assigned. Considering this, the
optimal rules that correspond to the solution of the previous problem in Equation (3)1 would
be:

1###1#0##1 : 1

1#0##01### : 1

Default Rule : 0

Since most EML systems learn a set of rules as the solution of a problem, k-DNF formulas
are really useful to evaluate them, as the systems are expected to learn one rule for each of the
r terms in the problem and correct rules should represent at least the k relevant attributes in
these terms. From this point onwards, every time we talk about “rules” we are referring to the
solution of the problem and when we talk about “terms” we refer to the problem itself.

Many well-known boolean benchmarks can be represented by a function in k-DNF [30]. For
instance, the rules in the 6-bit multiplexer have a k of 3 (two address bits and one data bit),
the rules in the 20-bit multiplexer have a k of 5, a k of 6 is present in the 37-bit multiplexer
and so on. The 18-bit hybrid Parity-Multiplexer problem [22] has a k of 9, as this problem
is composed by a 6-bit multiplexer where each of these “bits” is the result of a 3-bit parity
problem.

The difficulty of the k-DNF problems is closely related to the class imbalance. The class
imbalance of a k-DNF problem can be estimated by calculating the probability of finding a
negative example in the dataset given specific values for k and r.

P (neg) =
(
1− 2−k

)r
. (4)

Considering each term covers a percentage of 2−k of the training set, this formula states
that the probability of having a negative example is equal to the probability of the example not
being covered by any of the r terms in the problem. This formula holds under the assumption
that the k attributes of the r terms are randomly picked and hence there is no large amount of
overlap between rules.

Figure 2 shows the corresponding probability distribution for P (neg). Here we can see that,
depending on k and r, scenarios with very high class imbalance can be possible. When k is
low each term covers a large proportion of the training set, and hence, just with a few terms

1For simplicity we present the rules in ternary representation, where # means the attribute is irrelevant, and
0 or 1 represent the value the attribute should take to make the predicate hold. However, BioHEL uses GABIL
to represent binary and discrete attributes as shown in Section 3.1.



(r), most of the examples will be positive. In these situations we encounter a known source of
difficulty for EML systems: term overlap [31, 64]. On the other hand, a high k and low r create
problems with very few positive examples, as each term is very specific and overlap is unlikely.
These cases, essentially become scenarios of trying to find the needle in the haystack. Since the
class imbalance makes the problem more difficult, the red area represents the problems that
are easier to solve. For more information about the generation of artificial k-DNF problems
please refer to [30].
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Figure 2: Probability of having a negative example in a k-DNF function according to the
number of attributes k and the number of terms r

5 Automatic Hyper-Parameter Setting

Considering the importance of the coverage breakpoint hyper-parameter in the performance of
the BioHEL system, it seems necessary to adjust this hyper-parameter automatically for several
reasons:

• Runtime. Since BioHEL is a system mainly oriented to solve large scale datasets, find-
ing the correct setting for problem dependant hyper-parameters such as the coverage
breakpoint involves a time-consuming preliminary experimentation stage. The automatic
setup of this hyper-parameter can avoid preliminary experimentation and reduce the total
experimental time.

• Usability. In many cases, end-users avoid exhaustive experimentation and settle for
naive configurations that do not produce the best results. This improvement could make
the system easier to use to an end-user and could also find better solutions for problems
where the adequate coverage breakpoint has not been determined yet.



According to [30] it is possible to determine the coverage breakpoint if the characteristics
of the problem (k-DNF formula) are known. These characteristics are the number of attributes
expressed in the terms k and the total number of terms in the formula r. According to this
work if the number of attributes in the terms is k the adequate coverage breakpoint to solve the
problem is 2−k. To ensure learning, the coverage breakpoint should be equal or smaller than
this value. This translates the problem of finding the adequate coverage breakpoint to finding k.

But how it is possible to identify the structure of the problem by observing the data? To
do this it is necessary to develop models based on k and r that explain characteristics of the
data and behaviours of the system when working this data. For example, the model for the
number of negative examples in Equation (4) finds a correlation between k and r and the
proportion of negative examples in the problem. Moreover, the probability of obtaining good
individuals, modelled for BioHEL using the ALKR representation and the GABIL encoding
[31], also provides a relationship between a characteristic of the initial population and the
variables k and r. This means that by observing these characteristics we can have estimates of
the k and r of the problem.

However, these models only indicate a relationship between k and r. Many different values
for k and r can satisfy the equation and, independently, each model does not provide information
useful enough to identify these problem characteristics. However, by combining the results of
different models together it is possible to determine the values for k and r that are more likely
to match the characteristics of the problem.

In this paper we present a heuristic approach to determine the k and r of a given unknown
boolean problem at runtime. This approach works by classifying the problems based on ob-
servations made over the data and randomly sampled individuals. Using this information the
problems are classified into groups with a particular k and r associated, which we will call
kr-groups.

The classification is done using a voting system. The space of k and r is divided uniformly
in kr-groups which have an associated expected value and standard deviation boundaries for
each one of the characteristics we measure. When a problem presents a characteristic that
falls into the standard deviation boundaries of a particular kr-group the group gets awarded
points. At the end, the kr-group that obtained more votes is considered the winner. Figure 3
illustrates how the heuristic works.

Particularly for BioHEL, three characteristics were considered to classify the problems:

• The number of negative examples in the problem (defined in section 5.1.1).

• The number of good individuals in a random sample after evaluating them against the
given problem. These are individuals that do not make classification mistakes or that
have an accuracy higher than a certain threshold (defined in section 5.1.2).

• The number of attributes expressed in the good individuals (defined in section 5.1.3).

The following sections will explain in greater detail each one of the criteria used to clas-
sify the problems (section 5.1). Afterwards, we will show in more detail how the kr-space is
partitioned in kr-groups and what makes a problem belong to a specific group (section 5.2).
Finally, we explain the algorithm step-by-step (section 5.3).

5.1 Classification Criteria

This section explains each one of the criteria used within BioHEL to classify the problems:
a) the number of negative examples in the problem, b) the number of good individuals in a
random sample after evaluating them against the given problem and c) the number of attributes
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expressed in the good individuals. The first two characteristics used are completely theory-
driven, which means they use theoretical models to determine the kind of problem we are
handling. The last characteristic, even though it does not come from a model, reinforces the
two previous criteria in finding the correct kr-group. Since the good individuals are already
calculated for the second criterion, using the number of attributes expressed in these individuals
does not involve an extra computational cost.

5.1.1 Number of negative examples in the problem

Depending on the number of terms r and number of attributes expressed in each term k, the
k-DNF problem will present a different percentage of negative examples.

For a randomly generated binary problem defined as the disjunction of r terms, where each
term is the conjunction of k randomly picked attributes, the probability of having a negative
example in the training set P (neg)kr is equal to Equation (4) shown in Section 4.

By counting the number of negative examples in the training set, it is possible to use this
formula inversely to determine possible combinations of k and r that are feasible for the given
problem. For example a problem with k = 2 and r = 1 has 75% of negative examples. But also
a problem with k = 6 and r = 18 has on average the same percentage of negative examples. If
we observe a particular problem with 75% of negative examples both of these kr-groups would
receive scores according to this criterion.

5.1.2 Number of good individuals in a randomly initialised sample

A good individual or a representative, as it was defined by [22], is a rule that specifies (has
represented) correctly at least all the attributes in one of the terms of the optimal solution to the
problem. For example, if one of the terms of a problem with d = 5 and k = 2 is x1 = 0∧x4 = 1
(0**1*) possible representatives would be 0##11, 0##1# and 01110, where # means that the
attribute can take any value. Therefore, this rule does not make mistakes, but it can be more
specific than the optimal rule where only k attributes are specified. The probabilities of finding
a representative were first proposed by [22] for the ternary representation {0, 1,#}. However,



these models were not entirely suitable for BioHEL, as this system uses a different encoding.
Later on, suitable models for the binary domain using the ALKR+GABIL representation were
proposed by [31] .

Assuming the usage of the default rule and covering mechanisms, the probability of finding a
representative for a binary problem depends on k and r, as shown in Equation (5). This function
states that the probability of having a good classifier P (rep) is equal to the probability of having
at least one of the terms in the k-DNF problem represented, and to have a term represented
the rule should express the k relevant attributes. These models are able to hold with a certain
amount of rule overlap if the rule coverage is uniform. For more details about this model please
see full description presented by [31].

P (rep) = 1−

(
1−

(
2−k (ld(1− p))k

1− (1− 2−k)r

))r

. (5)

In this formula p corresponds to the probability of setting to 1 the values in a GABIL
attribute (see Section 3), and ld is the probability that an attribute appears in the ALKR at-
tribute list. This value at the same time depends on the user-defined hyper-parameter ExpAtts
(expected number of attributes) as follows:

ld =

{
1 d <= ExpAtts
ExpAtts

d
d > ExpAtts

.

Figure 4 shows an example of the landscape of this model using different values of p. By
counting how many representatives are found in a randomly initialised sample of individuals
it is possible to use the formula inversely to determine feasible pairs of k and r for the given
problem.

The individuals for the sample are not generated one by one, but by chunks of N individuals
(for all experiments in this paper N=500). After evaluating N rules, it might be possible that
we do not find any representatives. This could happen due to several reasons. Either the
sample is too small and/or the probability of a representative for a particular point is too
small as well. To solve these problems the system increases iteratively the total sample size
(generates N additional samples) until R representatives (hyper-parameter set by the user) are
found. This guarantees that the number of representatives found is not zero while checking
the lowest number of individuals as possible. A high value of R will involve checking a bigger
sample size, while a small value would have the opposite effect.

Moreover, we try to generate R representatives using the largest value of p possible, be-
cause that would create more general rules, as shown in Figure 4. However, more general
random rules are more likely to make mistakes. Therefore, when the problem has a larger k,
smaller values of p are needed to generate rules that do not make mistakes. The procedure
that the system follows to adjust p, while finding the representatives, is shown in Algorithm
5.1. Within this algorithm, genSample initialises N rules following the procedure explained in
section 3.1. Moreover, getAccuracy computes the accuracy of a rule across the training set.
Finally, getMostFrequentK simply identifies the k value most frequently used within the set R
of representatives generated by the heuristic.

The system first tries to obtain representatives generating populations of size N created us-
ing the largest value of p: pmax. Then all these individuals are evaluated against the training
set. Afterwards, all the rules with accuracy higher or equal than minAcc are considered repre-
sentatives. When R or more representatives are found the system returns the representatives
found. If the system has already checked 6 samples and has not found any representatives, the
value of p is lowered globally across the system and the search continues. If the value of p has
reached its minimum value and the system has not found representatives yet, the search aborts.
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Figure 4: Probability of generating a representative with different values of p in a problem with
d = 20 and ExpAtts = 15.

The calculation of representatives from a given sample is interesting because it gives room
for our third criterion, which is the number of attributes observed in them. However, the
identification of the genuine representatives is far from trivial, and some post-processing is



Algorithm 5.1: SearchReps(N)

p← pmax

while p ≥ pmin

do



rep← ∅
while i < 6 ∨ rep 6= ∅

do



sample← genSample(N, p)
for c ∈ sample

do


if getAccuracy(c) ≥ minAcc

then

{
c← pruning(c)
rep← rep ∪ c

if |rep| ≥ R

then



k∗ = getMostFrequentK(rep)
for c ∈ rep

do

{
if |c.atts| 6= k∗

then rep = rep− c

return (rep)
i = i+ 1

p = p− pstep
return (null)

Algorithm 5.2: Pruning(Classifier c1)

prevacc← getAccuracy(c1)

for each att ∈ getAttributes(c1)

do


removeAttribute(att, c1)
if getAccuracy(c1) >= prevacc

then prevacc← getAccuracy(c1)
else restore(att, c1)

return (c1)

needed as it will be explained in the next section.

5.1.3 Number of attributes in the representatives

According to the definition of a representative the number of relevant attributes in a candidate
representative cannot be less than k, otherwise this rule would make mistakes. This gives us at
least an upper bound of the problem’s k. However, in order to use the characteristics of the rep-
resentatives we need to make sure that these “good rules” are actually genuine representatives
and that they have the minimum possible amount of attributes without making mistakes.

Two problems might arise with the good rules. First, it can happen that the good rules
have more attributes specified in the actual terms of the problem, which is misleading. Second,
when the problem consists in more than one rule, the system might find classifiers that do not
make any mistakes but they do not represent the terms of the problem. These classifiers instead



represent the union or intersection between two or more terms. They might have more or less
attributes expressed than k, and they are not really representatives of the problem. Therefore,
in order to find genuine representatives it is necessary to post-process the sample rules.

To tackle the first problem we need to eliminate the attributes that do not affect the accu-
racy. As shown in Algorithm 5.1 this is done right before adding the rule to the representative
set. To prune unnecessary attributes we perform an iterative search process as shown in Al-
gorithm 5.2. Each one of the attributes in the rule is eliminated, one by one. If the accuracy
decreases, the classifier is restored, if not the search continues over the resulting classifier. This
local search operator was already proposed by [65] as a post-processing operator to refine the
generality of the rules.

To tackle the second problem we need to eliminate the deceptive representatives. That
is, the classifiers that do not make mistakes but do not really correspond to the terms of the
problem we want to learn. Since these rules usually have a number of attributes either larger or
smaller than k (but not exactly k), we keep only the ones that correspond to the most frequent
number of attributes observed k∗ in the set of R representatives. In the end the rules left in
the set are considered genuine representatives and they are the input for the second criterion
(Section 5.1.2). Moreover, as we have already calculated the most frequent number of attributes
observed among the representatives, we can also use this information k∗ as a third metric to
award points to the kr-groups with k = k∗.

5.2 Classifying the Problems

As we explained before, to use the model it is necessary to calculate the standard deviation
boundaries for each one of the possible combinations of k and r. For this, we sample uniformly
the kr − space and we calculate the expected value, the lower bound and the upper bound for
each point. To sample the space we calculate these values for k = {1..d} and r = {1..100}
using a step size of 5 for the rules.

Moreover, to calculate the lower and upper bounds for each point we need to analyse further
the probabilistic models used. For the probability of a representative we can consider that the
probability of having a specific number of representatives in a sample of N classifiers follows a
binomial distribution with probability P (rep). This assumption comes from the fact that the
generated rules have the same probability of becoming representatives and they are independent
from each other. Therefore, the probability of having x representatives can be written as follows:

P (#rep = x) =

(
N

x

)
(1− P (rep))N−x(P (rep))x.

In this case we know that for each point the mean percentage of representatives is P (rep)
and the variance is var = (P (rep)) ∗ (1 − P (rep)). So for a problem to belong to a specific
kr− group, we check if the empirical percentage of representatives observed P ′(rep) is between
the boundaries as follows:

P (rep)kr − var ≤ P ′(rep) ≤ P (rep)kr + var.

In the case of the class imbalance we actually do not know the probability distribution, but
we know the mean value given k and r. We cannot assume that it is a binomial distribution
because the examples in a training set are not independent observations (usually they are not
repeated). In this case fixed intervals are used to determine if a problem belongs to a certain
group. To do this we calculate the empirical value P ′(neg) ± 0.1 to classify the problems as
follows:

P (neg)kr − 0.1 ≤ P ′(neg) ≤ P (neg)kr + 0.1.



5.3 Hyper-Parameter Setting Procedure Step-by-step

To recapitulate and explain better how the concepts and methods presented are merged together
to produce our approach, this section will explain step-by-step the algorithm used within Bio-
HEL to determine the k and r of a problem and its corresponding coverage breakpoint. The
algorithm consists in the following steps also shown graphically in Figure 5.

Calculate the coverage
breakpoint based on the k

with the highest score

Determining constant values: d and ld

Searching representatives:
 
 Add N randomly generated

individuals to the sample

Prune representatives
(if any)

6*N ind
evaluated?

R rep
in sample?

Adjust p value and 
empty sample

calculate k* and erase
misleading representatives

kr-groups score

k1 k2 k3 k4 k5

r1

r5

r10

r15

r20

r25

r30 A+B

A+B

A+B

A+B+C

A+C

A+C

AB

B

B

C

C

C

C

Yes

No Yes

No

Score A points to 
kr-groups with k=k*

Calculate P'(neg) and score
B points to the corresponding

kr-groups

Calculate P'(rep) and score C
points to the corresponding

kr-groups

Figure 5: Steps to find the adequate coverage breakpoint with and example of the final score
grid.

1. Determining the number of attributes in the problem d and the value ld.

2. Searching R representatives in a randomly initialised sample. Finding representatives
involves the following sub-steps:

(a) Representative generation Searching iteratively in population of N classifiers
until a total of R representatives is found, by evaluating them across the whole
training set.



(b) Representative pruning. When a good rule is found, the system removes all the
attributes that can be eliminated without degrading the accuracy.

(c) Adjustment of initialisation hyper-parameters. If the system has checked
already 6 populations of size N and have not yet found any representatives, the
system re-adjusts the value p (See Section 5.1.2).

3. Calculating the most frequent number of attributes activated in the candidate represen-
tatives and erasing the misleading ones, keeping only the ones that have a k equal to the
most frequent value observed k∗.

4. Determining the number of examples in the training set belonging to the default class
(P ′(neg)).

5. Calculating the observed value P ′(rep) as the number of representatives observed divided
by the total number of rules observed (total sample size).

6. Calculating the score of a kr-group (Scorekr) with equation (6) where k == k∗, Negkr and
Repkr are boolean variables that take the value of 1 if the empirical observation matches
the criteria of the kr-group and A, B and C are weights associated to each of the three
criteria of the heuristic.

Scorekr = A · (k == k∗) +B ·Negkr + C ·Repkr (6)

Negkr = P (neg)kr − 0.1 ≤ P ′(neg) ≤ P (neg)kr + 0.1

Repkr = P (rep)kr − var ≤ P ′(rep) ≤ P (rep)kr + var.

7. To finalise, calculating which is the smallest group (smallest k and r) that obtained the
highest coincidences between the 3 metrics (highest score). This k is transformed in the
coverage breakpoint as CB = 2−k.

6 Experimental Design and Results

In this section we present the experimental framework used to test our approach and the
corresponding results. First we analyse the hyper-parameter setting approach over a wide
variety of synthetic k-DNF problems, with and without noise, created using the generator we
provide in http://ico2s.org/datasets/kdnf.html. Then we present an additional test of
our approach over a binary protein structure prediction problem already used by [52] which
constitutes an interesting challenge for our approach due to the high levels of noise found
in the problem. The code and all the datasets used for these experiments can be found in
http://ico2s.org/data/instances/cov-break-heu/.

6.1 Analysis of the Hyper-Parameter Setting Approach Over Binary
Problems

In this section we analyse the performance of our approach over a wide variety of k-DNF
problems, in terms of probability of success (finding the adequate hyper-parameter value). At
the end, we also comment briefly on the additional effort incurred by the heuristic in terms of
additional evaluation operations.

The k-DNF problems used in this section have the following characteristics: d = 20, k =
{2 − 9}, and r = {5, 10, 20, 40}. Moreover, we introduced output noise of 0%, 1%, 5% and
10% over the problems to determine how robust was the classification process towards noise.



Table 1: Hyper-parameters for the heuristic used to characterise and find the coverage break-
point for k-DNF problems.

Hyper-parameter Value

Number of representatives needed - R 10
Evaluated pops to change p 6
Most frequent k in representatives - Score A 2
Imbalance function - Score B 2
Prep function - Score C 1
Sample size - N 500

We generated 5 different problems of each k-DNF scenario, and each problem was run with 5
different seeds. Also, all these runs were performed using fixed default class 0. Since in the
k-DNF problems all the generated terms map to class 1, this setting prevents the system form
learning the inverse problem, over which calculating the success would not be straightforward.

The learning process was not performed during this stage of experiments, but only the
hyper-parameter setting stage. In these experiments, we want to quantify how many times the
heuristic finds the optimal k for the problem (or at least a larger one) which would ensure the
learning.

We also experiment changing the hyper-parameter minAcc (the minimum accuracy de-
manded in a rule to become a representative) to determine how this hyper-parameter affects
the search, and show how it can help tackling problems with noise more efficiently. In these
experiments we tested hyper-parameter values minAcc = {1.0, 0.95, 0.9}. To determine signifi-
cant differences among using different minAcc values we used a Friedman test with its post-hoc
Holm test, as shown by [66].

The rest of the hyper-parameters in our approach are shown in Table 1 for clarity and repli-
cation purposes. However, according to our preliminary experiments, the hyper-parameters
shown in this table can be considered constants and they can remain fixed. Only the minimum
accuracy minAcc and the number of representatives R have an important impact on the re-
sults, because they are directly related to the problem noise and the additional search effort,
respectively. Analysing R in depth would require a very long and complex experimentation.
For simplicity in this paper we have set the hyper-parameter to a value (10) that in preliminary
work showed to be suitable for all tested scenarios, although a smaller R would also work in
some of the easier datasets. Moreover, it should be noted that the reason why the P (rep) func-
tion has a score lower than the two other metrics is because, in preliminary experimentation,
this metric was not as reliable as the other ones.

6.1.1 Results

Table 2 presents the results for the different k-DNF configurations and different values of
minAcc in terms of percentage of success (finding the k of the problem or at least a larger one).
Results for k = 2 and r = 40 are omitted because in these setting all instances belong to class
1. The cells emphasised represent the configurations where the success rate is less than 100%.
For minAcc < 1 , the cells marked with red show the cases where the success rate is lower
than the base case (minAcc = 1.0), and the cells marked with green show the cases where the
success rate increased. In this table we can observe that using minAcc = 1 the heuristic is
able to find the appropriate coverage breakpoint for most of the configurations with no noise.
Moreover, it is noticeable that the output noise affects the performance of the heuristic.

On the other hand, we can observe that the heuristic fails in the cases where there is very
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Figure 6: Final score grids of the heuristic using minAcc = 1 in a problem with d = 20, k = 5
and r = 20 for the 4 levels of noise.

high rule overlapping. These problems are very difficult to solve by the system because of the
class imbalance [30], so it is not surprising that they are difficult for the heuristic as well. Such
large overlapping makes the heuristic think that the k is smaller than the real one. In the case
of a synthetic problem like the k-DNF, where we know the correct answer, this is incorrect.
However, what the system is trying to do is not completely wrong, because it is trying to
solve the problem with less complex rules compromising the accuracy slightly, which in real-life
domains can be advantageous. To understand better these domains further research focusing
specifically on the rule overlapping scenario is required.

Figure 6 shows an example of the final score grid of the heuristic using minAcc = 1 for
a problem with k = 5 and r = 20 with the 4 levels of noise. In each of the four plots (for
a different level of noise) the vertical stripe corresponds to the 2 points that are awarded
to the most frequent number of attributes observed in the representatives. The curved stripes
correspond to the scores awarded by the other two criteria of the heuristic. In this figure we can
see that while the problem increases the representatives present a higher number of attributes.
When this happens this area does not intersect the two other areas, thus the heuristic fails to
find the appropriate k value. This is because the constraint of minAcc = 1.0 is too strict in
these cases where the problem has noise. In the cases with noise we should take in consideration
that good rules will have a good accuracy, but not equal to 1. Relaxing this hyper-parameter,
as we can see in Table 2, helps finding adequate representatives for problems with noise. We
can observe here that the success rate increases in most cases, except when the problem has
no noise. As we expected to observe, when the problem has 5% noise, the best results are
obtained using minAcc = 0.95, and the same occurs when the problem has 10% noise and we
use minAcc = 0.9.

Moreover, Table 3 contains the statistical analysis to determine which value of minAcc
is best for the different sets of problems, distinguishing them by the amount of noise. In this
table we can observe that the best method changes as expected, and for the problems with high



Table 3: Results of the Friedman test performed to determine the best minAcc value depend-
ing on the noise. Control shows which was the algorithm that obtained the best ranking.
Dominance shows the configurations that are significantly worst than the control configuration
according to the Holm post-hoc test with confidence threshold 0.05.

Control
d Noise p-value 1.0 0.95 0.9 Dominance

20 0% 0.00050 ? 0.9
20 1% 0.00100 ? 1.0
20 5% 1.895e-07 ? 1.0, 0.9
20 10% 1.119e-11 ? 1.0, 0.95

amount of noise (5% and 10%) the respective best method (minAcc = 0.95, minAcc = 0.90)
performs better than the rest of the configurations.

Based on these results we can state that for problems with noise we should use a mini-
mum accuracy equal to the percentage of noise observed in the problem. Even though this
introduces a new hyper-parameter minAcc, the percentage of permitted noise is a much more
intuitive hyper-parameter to set up than the coverage breakpoint, since it is an structural
hyper-parameter of the problem, instead of being a hyper-parameter of the system.

One interesting aspect to notice in Table 2 is that for problems with larger k, the heuristic
seems to fail when the problem has either too many or too few terms. When the problem has
too many terms, it is possible to find representatives but these representatives are likely to have
a large k and this value might not intersect with the other two areas, as it was exemplified in
Figure 6. Moreover, if the problem has few terms finding a representative becomes very difficult
and it is possible that the system does not find any representatives during the search process.
In this case the mechanism will only rely on the imbalance metric to make a decision.

Our hypothesis is that these difficulties can be tackled by changing the selection policy
of the k when there is not a single cell where the three metrics have intersected. Moreover,
adjusting the minimum accuracy along the search process or a more granular step size in the
adaptation of p could help obtain better results by finding representatives when this task is
very difficult. More experimentation is needed to validate these hypotheses.

Based on these results, we can conclude that our hyper-parameter setting mechanism is able
to find the appropriate k value for a wide variety of binary problems, including problems with
noise. We explore next the computational overhead of our approach.

6.1.2 Computational effort of the heuristic

As we already explained in previous sections, our hyper-parameter control method involves an
additional computational effort before the learning process. This extra effort of the heuris-
tic includes the evaluation of the randomly initialised individuals used to find the adequate
representatives plus the number of evaluations needed to prune the representatives.

Figure 7 shows the additional effort incurred by our approach for problems with no noise
using a minAcc = 1.0. The effort is shown in terms of the number of rule evaluations (matching
the rule against the complete training set and computing its accuracy). Execution time is not
shown as it is proportional to the number of evaluations. In this figure, we can observe that
while the k increases it becomes more expensive to run the hyper-parameter setting approach
and more iterations are needed to find representatives.

Moreover, it is also noticeable a spiking behaviour in the additional effort. This behaviour
is clarified by Figure 7b, which shows the frequency in which each value of p is selected. As it
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Figure 7: Number of rule evaluations and frequency of selection of a specific p value depending
on problem characteristics (k, r) in our k-DNF experiments.

was explained before, our approach also adapts the p value to increase the probability of finding
representatives when this task becomes very difficult. As we can see, the different stages in the
behaviour of the effort observed in Figure 7 correspond to the transition stages between different
values of p. When the system uses a smaller p the additional effort to find representatives
becomes smaller. A further evaluation of the computational effort of the heuristic is available
at [67].



6.2 Evaluation on a Real-world Problem

In order to test the performance of our method over real-world domains, we selected a binary
protein structure prediction problem already used in [52]. Specifically, the problem being
addressed is called contact number prediction. In this problem, for each amino-acid of a protein’s
sequence, the goal is to predict the number of other amino-acids that in the folded protein state
are located at a distance less than a threshold d. In this case the contact number is binarised
to (high/low) states to convert the problem into a binary classification dataset. The contact
number state of an amino-acid is predicted from information about itself and its immediate ±4
neighbours in the protein sequence. The information about each amino-acid (which roughly
captures the hydrophobicity physico-chemical property of the amino-acid) is represented by
a binary variable generated with the method presented in [52]. Hence, each instance in the
dataset is represented by 9 binary attributes. This dataset has a total of 257,560 instances.

It is worth mentioning that this problem has a very high noise ratio, and there are no
possible rules that have 100% accuracy. Therefore, in order to test the heuristic we have to
relax the minimum accuracy required for the classifiers to be representatives to 0.7. This is
the maximum value for minAcc for which our heuristic could actually identify representatives.
The rest of the heuristic is applied to this dataset exactly as in the k-DNF datasets.

In this section we are going to analyse the results obtained with our approach by comparing
them with an exhaustive experimentation to determine the adequate coverage breakpoint. In
the exhaustive search we used coverage breakpoint values ranging from 2−2 to 2−9 (as this is
the maximum possible since the problem has 9 attributes), and different values of p (0.75, 0.5
and 0.25). Since we are dealing with a real problem without a known structure, we don’t know
ahead of time what is the appropriate k for the dataset. Hence, the verification is going to
be experimental by running the whole BioHEL algorithm, and determine the success of the
heuristic based on the obtained test accuracy. The hyper-parameters for the BioHEL system
are the ones uses in [27] except only for three hyper-parameters shown in Table 4. The “Initial
MDL TL ratio” is used in the heuristic proposed in [59] to automatically tune the W hyper-
parameter of BioHEL’s fitness formula (equation 1). This hyper-parameter defines the expected
contribution that the TL part of the fitness formula should have in good rules. The “number
of windows in ILAS” is used within the Incremental Learning with Alternative Strata (ILAS)
scheme employed by BioHEL to speed up its fitness evaluations. In ILAS the training set is
divided into a certain number of strata, called windows. Each GA iteration uses a different
window for its fitness computations using a round-robin policy.

For the analysis of the results, we will first apply a Wilcoxon pairwise test [68] to determine
if there are significant differences between using different coverage breakpoints in this problem
and which is the most adequate hyper-parameter value to solve it. Having found the adequate
coverage breakpoint, we will then compare it with the results obtained by our approach. The
results are going to be analysed in terms of accuracy, execution time and convergence time of
both methodologies.

Regarding the dataset, this problem was separated in 10 training and test sets for ten-fold
cross-validation. Each one of these problem instances was run with 5 different seeds, so the
results are the average of 50 runs.

Table 5 shows the results in terms of accuracy, average time per run and the total time
of the experiments when applying different coverage breakpoints of the type cov = 2−k where
k = {2..9}. In this table, we can see that the coverage breakpoint that obtains the best results
in terms of accuracy is 2−9. Also, for this problem there are no differences between using
different values of p in terms of accuracy or execution time. Moreover, in Table 6 we can see
that the coverage breakpoint 2−9 is not significantly different than applying other values such
as 2−7 or 2−8. However, the maximum average accuracy is obtained with the smaller coverage
breakpoint.



Table 4: Hyper-parameters for the BioHEL system and the heuristic to determine the problem
structure.

BioHEL hyper-parameter Value

GA Iterations 50
Initial MDL TL ratio 0.025
Number of windows in ILAS 20

Heuristic hyper-parameters Value

Sample size - N 1000
Number of representatives needed - R 20

Table 5: Results over the binary PSP problem using fixed coverage breakpoints (where cov(k) =
2−k) and different p values.

cov (k) Test Accuracy (%) Average time (s) Total time (s)

p
=

0.
75

2 70.15±0.96 244.67±120.89 12233.71
3 70.27±0.84 427.00±207.95 21350.19
4 71.46±0.56 378.64±207.36 18932.08
5 71.79±0.47 386.40±147.90 19319.86
6 72.12±0.45 640.26±238.88 32013.22
7 72.32±0.52 874.15±322.80 43707.67
8 72.40±0.47 1469.14±496.96 73457.19
9 72.45±0.47 2526.63±723.67 126331.39

Total time (≈96.48 h) 347345.31

p
=

0.
5

2 70.15±0.96 247.72±101.81 12385.91
3 70.27±0.84 342.26±180.62 17112.77
4 71.47±0.56 390.89±208.98 19544.62
5 71.79±0.47 398.20±180.34 19909.83
6 72.12±0.45 639.17±240.29 31958.73
7 72.31±0.53 896.59±287.78 44829.29
8 72.40±0.48 1601.17±445.91 80058.71
9 72.45±0.47 2244.94±650.95 112246.99

Total time (≈93.90 h) 338046.85

p
=

0.
25

2 70.46±0.84 239.53±91.12 11976.29
3 70.27±0.84 362.16±191.81 18107.84
4 71.46±0.56 332.23±183.90 16611.51
5 71.80±0.48 409.98±167.93 20498.96
6 72.12±0.45 622.01±230.56 31100.48
7 72.31±0.53 846.66±272.08 42333.25
8 72.40±0.48 1636.27±482.24 81813.37
9 72.45±0.47 2338.56±586.86 116927.77

Total time (≈94.26 h) 339369.47



Table 6: P-values of the Wilcoxon pairwise test to determine significant differences between the
usage of different coverage breakpoints of the type 2−k in the binary PSP problem. The cells
in bold indicate the cases where there are significant differences.

P-values of the wilcoxon pairwise test

k 2 3 4 5 6 7 8
3 0.52092 - - - - - -
4 2.9e-07 1.2e-08 - - - - -
5 1.5e-11 2.9e-11 0.01510 - - - -
6 4.9e-15 4.9e-15 2.5e-06 0.00265 - - -
7 < 2e-16 < 2e-16 1.0e-08 0.00016 0.21071 - -
8 < 2e-16 < 2e-16 6.1e-10 6.1e-06 0.05857 0.57281 -
9 < 2e-16 < 2e-16 7.5e-11 2.8e-06 0.01079 0.21071 0.57281

Table 7: Performance of the heuristic over the binary PSP problem.

Min k p Test acc Ave. Exec Time Total time
Acc

0.7 8.98±0.14 0.28±0.08 72.45±0.47 2913.93±1356.41 145696.66
0.6 5.62±1.12 0.73±0.06 71.94±0.74 902.29±382.38 45114.63

Total time (≈80.94 h) 291393.32

In Table 7 we can observe the results obtained with our approach. Using a minimum
accuracy of 0.7 the system determined that the k of the problem is equal 9 in the majority of
the cases and applying the corresponding coverage breakpoint we obtain an accuracy equal to
our best results in preliminary experimentation. We also tested a more relaxed minAcc value
without obtaining good results. Based on this results we can conclude that the heuristic, when
using the appropriate noise ratio, is able to categorise this real problem correctly and determine
the appropriate coverage breakpoint automatically.

Regarding the computational time, the total amount of CPU time invested in performing
the preliminary experiments with the different coverage breakpoints and different values of
p is equal to ≈285 hours. On the other hand, the amount of time invested in running the
experiments automatically setting the coverage breakpoint, using different minAcc values and
including the whole learning process was ≈81 hours. This constitutes 28% of the time invested
in the preliminary experiments, which means a reduction of 71% in the total experimental time.

Moreover, our method also adapts the value p, the probability of setting the bits to 1 in
the GABIL representation. Figure 8 reports the average accuracy of the best rule along the 50
iterations of the GA with different p values. So far the use of adapting this hyper-parameter
was just to find representatives during the hyper-parameter control stage, but as this figure
shows, using p = 0.25 makes the system find good classifiers quicker (although all three values
of p eventually manage to learn the correct rules). This is because in this particular problem
using a small value of p increases the odds of finding representatives. The spiking behaviour in
the figure is a normal phenomena due to the usage of ILAS windowing scheme [59], and it is
not related to the approach presented in this paper.

In this sense, we can say that the heuristic reduces the computational time needed to set up
the algorithm properly, which for large problems can constitute a considerable amount of CPU
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Figure 8: Average accuracy of the best classifier during the 50 iterations of the GA using
different values of p.

time. Moreover, it adapts other hyper-parameters of the system, such as the p value, which
helps finding good rules quicker within the genetic algorithm.

7 Discussion and further work

The initial objective of this paper was to design an automatic procedure to learn the structure
of the problem and set the coverage breakpoint hyper-parameter in the BioHEL learning system
for (a broad class of) binary classification domains. Our proposed approach does this by using
simple models that correlate the behaviour of the system and characteristics of the data to the
problem structure. Our thorough experiments show that our procedure is able to successfully
estimate the problem’s structure (k and r) in binary problems with noise (using many variants
of the k −KDF family of boolean functions) and in a real-world problem of protein structure
prediction.

Using this method we are able to set up the coverage breakpoint hyper-parameter in Bio-
HEL, facilitating in this way the learning process, reducing the computational time of prelim-
inary experiments and making the system easier to use to an end-user. The final validation
stage using a challenging protein structure prediction problem showed that the heuristics works
for large real-world problems as well, managing to reduce the total experimental time by 71%.
Moreover, our approach also adapts other hyper-parameters like p, the probability of settings
bits to 1 in the GABIL representation, which can help finding good rules faster within the
GA. And while the objective of this heuristic is to automatically tune crucial hyper-parameters
of BioHEL, we are aware that we are introducing several new hyper-parameters. In our ex-



perimentation we show that most of these can remain at fixed values and still obtain good
performance. The only crucial hyper-parameter to set up is minAcc, that specifies that min-
imum accuracy that the sample of initial rules should have to become representatives. As we
argue in the paper, our view is that this hyper-parameter is much more intuitive to set up as
it relates to the uncertainty of the dataset rather than being specific to the machine learning
algorithm.

While the heuristic is designed with a specific system in mind, BioHEL, we believe that these
design principles can be adapted to other machine learning algorithms to develop equivalent
heuristics. First, the methodologies presented in this paper to find the structure of the problem
can be extended to other systems by using models developed particularly for these systems
based on the characteristics of the problem. Knowing in advance the characteristics of the
problem at the beginning of the learning process can be advantageous to guide the search
and also set hyper-parameters within the system. For instance, in the GAssist system [59]
an adapted heuristic could be used to set the minimal rule set size penalty and the minimal
number of rules for the rule deletion operator. For XCS, estimations of k could be used to
automatically set up some of its hyper-parameters (e.g. mutation rate, population size), using
the models proposed in [22]. Moreover, an adaptation of this heuristic could be used to seed
the initial population, as suggested in [64].

The approach we decided to take in this paper is quite different from the AutoML approaches
which broadly speaking (as explained in the related work section), apply a wrappers on top
of the machine learning algorithm. These approaches have shown to be effective across many
different domains but all they give you is the set of optimal hyper-parameters (or, in cases like
TPOT, also the features selected) to maximise predictive performance. Our approach, while
requiring a deep knowledge of the knowledge representation used within BioHEL, is able to
estimate knowledge about the structure of the problem being studied, and at the same time
as making the process of algorithm tuning easier for the users, is able to provide them with
insight about the data.

Moreover, there are several potential lines to extend this work. Firstly, we would like to
extend this approach to problems with χ-ary discrete2 and continuous attributes. In the case
of χ-ary attributes, the coverage would not only depend on k but would also depend in the
number of values activated in an attribute (number of 1s in the GABIL representation), while
for continuous domains coverage depends also on the size of the intervals, and would require
a substantial (and challenging) rewrite of all the probabilistic models. If we can apply this
heuristic to a more broad class of datasets then we can revisit our observations that most of
the heuristic’s parameters can remain fixed. Moreover, it would be interesting to investigate
policies of selecting the k for the cases in which there is no single cell where the three metrics
intersect. In these cases probably it is better to select a k based on the average of the cells that
obtained the highest score. In relation to the tuning of the minAcc hyper-parameter of our
heuristic, there are recent approaches to estimate the uncertainty of dataset labels [69], while it
would also be interesting to revisit the use of complexity measures for classification datasets [49]
to reliably estimate appropriate values for such hyper-parameter. As our experiments show,
our heuristic struggles in scenarios with high rule overlap because k is underestimated as we
are not able to identify good representatives. To this aim it would be interesting to explore
how we could use absumption mechanisms [70] and other types of local search operators [65]
to generate better representatives while keeping the computational effort of the heuristic under
control.

Finally, a more extensive analysis of the additional effort required by this heuristic should
be carried out, focusing on how the hyper-parameter R (target number of representatives to
be generated) and the space sampling can reduce or regulate the extra computational effort,

2Discrete domains where each attribute has more than two possible values.



and estimating what is the worse-case effort that the heuristic would require. In relation to
the adaptation of these approaches to other machine learning algorithms, we have pointed
above several potential scenarios where this adaptation could take place. In such case this
heuristic probably should be rewritten to become much more modular, and be able to separate
the method/representation-specific components from those that could be reused across ML
algorithms.
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[37] L. DaCosta, Álvaro Fialho, M. Schoenauer, and M. Sebag, “Adaptive operator selection with
dynamic multi-armed bandits,” in Proceedings of the 10th Annual Conference on Genetic and
Evolutionary Computation. Atlanta, GA, USA: ACM Press, 2008, pp. 913–920. [Online].
Available: http://portal.acm.org/citation.cfm?id=1389272

[38] S. Müller, N. N. Schraudolph, and P. D. Koumoutsakos, “Step size adaptation in evolution strate-
gies using reinforcement learning,” in Proceedings of the 2002 IEEE Congress on Evolutionary
Computation. IEEE Press, 2002, pp. 151–156.

[39] Y. Sakurai, K. Takada, T. Kawabe, and S. Tsuruta, “A method to control parameters of
evolutionary algorithms by using reinforcement learning,” in Proceedings of the Sixth International
Conference on Signal-Image Technology and Internet Based Systems. IEEE, Dec 2010, pp. 74–79.
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5714532

[40] S. W. Wilson, “ZCS: a zeroth level classifier system,” Evol. Comput., vol. 2, no. 1, pp. 1–18,
Mar. 1994. [Online]. Available: http://dx.doi.org/10.1162/evco.1994.2.1.1

[41] L. Bull and J. Hurst, Self-Adaptive Mutation in ZCS Controllers, ser. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2000, vol. 1803, ch. chapter 33, pp. 342–349. [Online].
Available: http://www.springerlink.com/index/10.1007/3-540-45561-2 33

[42] J. Hurst and L. Bull, A Self-Adaptive Classifier System, ser. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2001, vol. 1996, ch. chapter 6, pp. 70–79. [Online]. Available:
http://www.springerlink.com/index/10.1007/3-540-44640-0 6

[43] S. W. Wilson, “Classifier fitness based on accuracy,” Evol. Comput., vol. 3, no. 2, pp. 149–175,
Jun. 1995. [Online]. Available: http://dx.doi.org/10.1162/evco.1995.3.2.149

[44] J. Hurst and L. Bull, “A self-adaptive XCS,” in Advances in Learning Classifier Systems, ser.
Lecture Notes in Computer Science, P. Lanzi, W. Stolzmann, and S. Wilson, Eds. Springer
Berlin / Heidelberg, 2002, vol. 2321, pp. 333–360, 10.1007/3-540-48104-4 5. [Online]. Available:
http://dx.doi.org/10.1007/3-540-48104-4\ 5

[45] S. W. Wilson, “Classifiers that approximate functions,” Natural Comput., vol. 1, no. 2-3, pp.
211–234, 2002. [Online]. Available: http://portal.acm.org/citation.cfm?id=599708

[46] M. V. Butz, P. O. Stalph, and P. L. Lanzi, “Self-adaptive mutation in XCSF,” in
Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation.
Atlanta, GA, USA: ACM Press, 2008, pp. 1365–1372. [Online]. Available: http:
//portal.acm.org/citation.cfm?id=1389095.1389361

[47] M. Ghallab, D. Nau, and P. Traverso, Automated Planning: Theory and Practice. Elsevier, 2004.

[48] O. Maron and A. W. Moore, “The racing algorithm: Model selection for lazy learners,” Artificial
Intelligence Review, vol. 11, no. 1-5, pp. 193–225, 1997.

[49] T. K. Ho and M. Basu, “Complexity measures of supervised classification problems,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 3, pp. 289–300, Mar.
2002.



[50] E. Bernado-Mansilla and T. K. Ho, “Domain of competence of XCS classifier system in complexity
measurement space,” IEEE Transactions on Evolutionary Computation, vol. 9, no. 1, pp. 82–104,
Feb. 2005.
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