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Abstract—Assessment of job performance, personalized health
and psychometric measures are domains where data-driven
and ubiquitous computing exhibits the potential of a profound
impact in the near future. Existing techniques use data extracted
from questionnaires, sensors (wearable, computer, etc.), or other
traits, to assess well-being and cognitive attributes of individuals.
However, these techniques can neither predict individuals well-
being and psychological traits in a global manner nor consider
the challenges associated to processing the data available, that
is incomplete and noisy. In this paper, we create a benchmark
for predictive analysis of individuals from a perspective that
integrates: physical and physiological behavior, psychological
states and traits, and job performance. We design data mining
techniques as benchmark and uses real noisy and incomplete
data derived from wearable sensors to predict 19 constructs
based on 12 standardized well-validated tests. The study included
757 participants who were knowledge workers in organizations
across the USA with varied work roles. We developed a data
mining framework to extract the meaningful predictors for
each of the 19 variables under consideration. Our model is the
first benchmark that combines these various instrument-derived
variables in a single framework to understand people’s behavior
by leveraging real uncurated data from wearable, mobile, and
social media sources. We verify our approach experimentally
using the data obtained from our longitudinal study. The results
show that our framework is consistently reliable and capable of
predicting the variables under study better than the baselines
when prediction is restricted to the noisy/incomplete data.

Index Terms—Personality, well-being, job performance, psy-
chometric, machine learning

I. INTRODUCTION

Understanding health and well-being will be fundamental
for the workplace of the future. With the advent of wearable
devices that can track individual in situ patterns of activity and
affect, precise and objective measures of health and well-being
can be obtained. The collection of such precision data could
benefit individuals and also organizational efforts to develop
programs to promote well-being of employees, which can
provide economic advantages for organizations [1]—[3]]. Such
detailed and continual collection of data can yield valuable
insights into health and wellness behavior, e.g. on employee
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stress, on how sleep patterns impact work performance, and
physical activity [4]-[7]. Further, such data has utility and
reusability for future studies [§]].

In recent years there has been an expanding body of
literature that assesses well-being and its effect on productivity.
On the one hand, personalized well-being assessment [[1]], [9],
[1011_-] is receiving more attention due to the availability of
sensor data. On the other hand, it is known that well-being, in
conjunction with personality, cognitive, and personality traits,
can affect job performance [|11[]-[/18[], which in turn can affect
organizations more broadly. Sensor data could play a major
role in the latter, as it could be applied to current efforts of
automating the evaluation of jobs, skills, and wages [19]-[21]].

Despite advances that have been achieved in the design of
computational methods both to collect and analyze wearable
data to assess well-being, e.g., [1], [9], [10], [22f, [23],
substantial challenges still remain. These studies have relied
on data gathered under specific conditions using assumptions
such as: small samples, certain populations (homogeneous
demographics and work roles), or controlled environments
(within particular scenarios and locations). Furthermore, when
associated with prediction of social constructs, such as pro-
ductivity or performance, modeling well-being becomes more
complex and difficult to achieve even when long-term longi-
tudinal psychometric data is used [24]]. One reason is because
it depends on situational, contextual, and personal information
([25]], [26]) that is not always readily available due to privacy
and other constraints, [[11]-[18]]. Overcoming these issues and
maximizing the utility of multi-sensor data to assess well-
being and workplace performance will require generalizable
strategies built for diverse populations, continual data collec-
tion in a wide range of work settings, with larger samples of
heterogeneous individuals, from various geographic locations
and job environments, and from multimodal sources that pro-
vide a more thorough view of physical and behavioral patterns
in an unobtrusive manner. Predicting well-being and workplace
performance and taking advantage of this multimodal sensor
data requires models that are robust to the messiness of real-
world data due to missing or noisy entries [27], [28].

Our Tesserae Project [29] is the first to create a sensing
system that fuses a comprehensive suite of broad modalities for
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automated modeling of individual physical and psychological
differences as well as job performance. Figure [I] shows a
diagram of the personal, social, contextual, and specialized
sensors we used to gather data in an unobtrusive manner
for this project. These sensors collect information that is
representative of an individual’s behaviors, physical attributes,
and mental states, in addition to the context and interactions
related to job and daily activities, which include offline and
online interactions, phone and computer usage, and social
media use. In order to obtain rich data for Tesserae, we
consider a diverse cohort of 757 individuals, all knowledge
workers across the USA from various organizations and with
varied work roles, in both home and work environments.

Research Questions. In this paper, we consider three core
issues in order to create a truly global predictive model of well-
being and psychological traits: 1) How do we integrate data
from different sensors and modalities? 2) How do we develop
machine learning methods that can deal with the challenges
of multi-modality, varying levels of missingness and noise,
and inter-individual and inter-sensor variance? 3) Leveraging
these data and models, can we discover and predict traits about
individual job performance, well-being, and personality?

Data Challenge. The first challenge these research questions
pose is the nature of the data. Real-world sensor and wearable
data is messy due to factors such as: missingness, varying com-
pliance rates from the participants in the study, data originating
from multimodal interaction, different individual baselines and
(ir)regularities, temporal variations, and generalizability issues
due to the fact that, while models are build on a subset of
the data, the evaluation and application of the predictions
may be done on a truly blinded testing set that may not be
representative of the training data. While sensor data have been
used to predict and assess human behaviour and well-being
[30]-[33]], these predictions are done on highly curated and
homogeneous data. Thus, such models may be over-optimistic
about what can be achieved in real scenarios.

Modeling Challenge. We address these data issues while
also bringing to the fore challenges for machine learning
algorithms with the task of predicting a variety of job per-
formance, psychological and well-being outcomes. Specifi-
cally, we model 19 constructs that can be categorized into
three groups: physical/physiological, psychological, and job
performance constructs [34[|-[45]. The 927 predictors were
obtained from sensors assigned to each participant: a wearable
(Garmin VivoSmart 3), a phone agent (an app for iPhone and
Android), 4 beacons (office, home, and two portable), and
social media data (Facebook). These predictors are filtered out
with dimensionality reduction and feature selection techniques
to extract subsets of meaningful predictors for each of the
19 variables under consideration.

As described before (and further detailed in Section [I1I)),
sensor data have been used to create models of human be-
haviour, including: daily activities, mobility, [30]-[32[], well-
being [33]], and academic performance [22]. However, to our
knowledge there is no study that combines various data sources
in a single comprehensive analysis, while addressing several
data messiness and algorithmic challenges to achieve the goal
of creating a single framework to predict people’s behavior,

physical and psychological well-being, and job performance.

To achieve our complex goal, we combine four main ideas.
First, we consider various imputation approaches as well as
co-dependencies among the variables for both future selection
and to predict other constructs (question 1) that, unlike other
approaches that deal with missing data for longitudinal scenar-
ios [27], do not require complex likelihood-based techniques.
Second, we use a fusion technique to synthesize the multi-
modal sensor-derived features, i.e., predictor variables (ques-
tion 1). Third, we consider an ensemble learning technique
that incorporates various machine learning models to provide
a comprehensive view of the participants’ behaviors (question
2). Fourth, in addition to our data policy and machine learning
design we use higher order networks (HON) [46] to obtain
descriptions of each individual and how they relate to job
performance, well-being, and personality (question 3).

We evaluate our approach experimentally to verify if it is
possible to predict the variables that encapsulate our global
description of individuals. To ensure generality of our results
we perform 5-fold cross validations at all stages of the model
construction: feature selection, dimensionality reduction, tests,
blinded-validations, and reliability analysis.

In summary, our contributions are the following: 1) We pro-
vide a framework whereby noisy, heterogeneous, multimodal
data can be fused without the need for highly specialized and
unrealistic curation or trimming of the data; 2) We provide
a benchmark that leverages the data fused from the various
modalities to produce more integrated predictions of human
behavior than existing techniques; and 3) We implement our
benchmark and verified experimentally its capability to predict
job performance, well-being, and personality by testing both
how accurate and reliable our benchmark is when applied to
the data obtained from our longitudinal study. The results show
that our sensor-based framework and benchmark perform fa-
vorably with respect to theory-driven (survey based) baselines.
We verify the results using various reliability tests.

II. BACKGROUND

In order to acquire a comprehensive view of an individual
physical attributes, psychological features, personality, and job
performance, we used a set of psychometric surveys. We
administered this battery of surveys at the beginning of the
study, and periodically afterwards over the first 60 days of this
year-long study. The variables that we predict were extracted
from these surveys is listed in Table |I| and are the following
(grouped per variable type):

A. Job Performance

We considered five variables that assess job performance
from three perspectives: task performance, organizational cit-
izenship behavior, and counterproductive work behavior [26],
[47]-[50]. The surveys we use are based on studies about
behaviors that lead to achieving organizational goals as in
[ST-[53].



1) Task Performance: We measure task performance using
two variables: In-Role Behavior (IRB) [34] and Individual
Task Proficiency (ITP) [35]. The former measures an individ-
ual’s perception of her job performance based on completion
of tasks associated to the position of the individual in the
organization. The latter measures the individual’s perception
of how frequently she completed the core tasks of her job
in the last month, how frequently these were completed well,
and how frequently she verified these were completed well.
Both IRB and ITP are instruments validated with significant
samples [34], [35].

2) Organization Citizenship Behavior: Organizational citi-
zenship behavior was assessed using the Organizational Citi-
zenship Behavior Checklist (OCB-C; [36]). OCBs are optional
actions that are not rewarded by a worker’s organization. OCB-
C is also a validated instrument as described in [36].

3) Counterproductive Work Behavior: (CWBs) are actions
that purposefully harm either the organization or individuals
within the organization [54]]. To measure CWB we use the
Interpersonal and Organizational Deviance (IOD) scale [37].
The instrument is broken into two major categories of items:
(1) Interpersonal Deviance and (2) Organizational Deviance.
The 10D is a 19 item survey, 7 for Interpersonal Deviance
and 12 for Organizational Deviance. Each item has a seven-
point frequency score: 1 - never, 7 daily. In our predictions
we consider each major category as a separate variable. IOD
was validated as described in [37]].

B. Psychological Constructs

We focus on four psychological constructs: cognitive ability,
personality, affect, and anxiety.

1) Cognitive Ability: We consider the Shipley Institute
of Living Scales 2 (Abstraction and Vocabulary sub-tests)
[38]. We use this test to measure the fluid and crystallized
intelligence respectively [55], [56]. See [57] for a study on
the relation of cognitive ability and job performance. Shipley
2 has high reliability and internal consistency [38].

2) Personality: Personality was measured in the initial
ground truth battery via the Big Five Inventory-2 (BFI-2; [39]).
The Big Five Personality Traits and their main characteristics
are: Extraversion, Agreeableness, Conscientiousness, Neuroti-
cism, and Open-Mindedness. Each of the Big Five Personality
Traits have varying levels of association to job performance
[14], {150, 171, [[18], [58[]-[60]. BFI-2 was validated with four
datasets [39].

3) Affect: We use the Positive and Negative Affect
Schedule-Expanded Form (PANAS-X; [40]). Affect variation
is a key indicator of a person’s mental health and is critical
for job performance and other job behaviors [61]-[64]. [65]]
showed that PANAS-X is a reliable instrument.

4) Anxiety: We use the State-Trait Anxiety Inventory
(STAI; [41]). Anxiety is another key indicator of a person’s
mental health. STAI was validated by [41].

C. Health and Physical Variables

1) Alcohol Consumption: We use the Alcohol Use Disor-
ders Identification Test (AUDIT), which was developed by

TABLE I: List of Dependent Variables

Type Subtype Variable
IRB [34]
3] Task
2 »® ITP [35]
2 £ _Org. Cit. Behavior OCB [36]
]
5 Deviance [37] Interpersonal
Organizational
Cognitive [38] Vocabule'lry
Abstraction
_ Extraversion
8 Agreeableness
E) Personality [39] Conscientiousness
% Neuroticism
E Openness
Affect [40] Positive
Negative
Trait Anxiety [41] Anxiety
Consumption Alcohol [42]
% P Tobacco [43]]
B -
s Activity Physical [44]

Sleep [45]]

the World Health Organization (WHO; [42]]). The effects of
alcohol consumption on job performance and other areas of
people’s lives are well documented [[66]|-[71]. AUDIT validity
has been widely studied for instance in [[72]-[74].

2) Physical Activity: We use the International Physical
Activity Questionnaire (IPAQ; [44]]). Physical activity affects
not only physical health but also mental wellness and job
performance [[75]-[78]]. The test-retest reliability for the IPAQ
questionnaires is reported in [44].

3) Sleep: We use the Pittsburgh Sleep Quality Index (PSQI;
[45]). It is critical to incorporate sleep because poor sleep
directly impacts job performance [79], cognitive ability, and
mental health [80], [81]]. PSQI has both good internal reliabil-
ity and good test-retest reliability [45]].

4) Tobacco Use: We used a modified version of the Global
Adult Tobacco Survey GATS from the World Health Organi-
zation (WHO, [43]]). Tobacco use is associated with stress,
negative emotionality, lower agreeableness, [71]], [82[]-[86],
and work performance [87]. We use a modified version of
GATS with three items: whether the participant is a current
smoker, if they use tobacco daily, and the quantity used in the
past week. We predict the last item only. GATS was reviewed
and approved by the GATS Questionnaire Review Committee
of the WHO.

III. RELATED WORK

We divide the related work into sections associated with
each of the categories of dependent variables.

Psychological Variables. The work of [94] that estimates
cognitive ability based on other features such as personality
traits. [93|] showed that social media engagement was pre-
dictive of performance on some cognitive attributes such as
working memory, attentional control, and others. [92] used



TABLE 1II: Literature per Variable Group and Predictor Types

Variable Group Sensor/Social | Attributes & Traits
Job Performance (2] [23) 188] | (12-{18]. [891-{01] |
Cognitive Ability [92]], [93]

Personality 11231, 195]-[98]]

Affect [100]-[103]

Anxiety [[101]], [10O5], [106]

Alcohol [109], [110]

Tobacco [112]

Physical Activity [114], [115]

Sleep [117]-[120]

MRI to predict fluid intelligence using MRI data. According
to [91] personality (introversion) and abstraction are the cause
for intellectual curiosity and intellectual curiosity, in addition
to other traits, is the cause for vocabulary (crystallized in-
telligence). Personality is estimated by [95]-[97] using the
individual’s interactions with computers. However, it is more
common to use other individuals traits to predict personality,
for instance accountability [99]. Affect is estimated in the work
of [98], [100]—[[102]. [103]] predicted positive and negative
affect using wearables, in addition to perception of health
and satisfaction with health and life. [|[104] showed that there
is a relation between possitive affect and conscientiousness.
Anxiety is predicted by [[101]], [105]. Techniques that predict
stress and anxiety based on ECG monitoring have also been
proposed [[106]. [91] also found that crystallized intelligence
is the main cause for mental health at later stages in life.

Physical Variables and well-being assessments are related
to habits of participants. For instance, alcohol consumption
is predicted by [109]], [110]]. using EEG signals and trans-
dermal devices. Alcohol consumption is related to self-control
and working memory capacity [111]]. Physical activity (IPAQ)
is predicted by [114] using mobile sensing. Other alternatives
include more specialized devices such as accelerometers [[115]].
[116] show that physical activity patterns earlier in life can
predict some activity patterns later in life. Sleep quality is
estimated using wearables by [[117]], [118]]. There are also more
invasive techniques such as the one in [[119]. More specialized
work to estimate sleep for patients with schizophrenia also
exists (see a comparative analysis in [[120]). To our knowledge,
tobacco consumption has been monitored using air sensors as
in [112] but not wearable sensors. Also, [113]] can predict the
smoker group membership (never, established, former, non-
daily, and daily) using family history, depression, consumption
of other substances, and demographics. In general, all the
physical well-being assessment techniques were developed in
isolation.

Job Performance itself is usually measured through either
subjective rating scales [52f, [[121] or objective performance
outcomes, such as sales amounts, production numbers, etc.
[52]. Using wearable sensor data to estimate job performance
has been explored by [22] who demonstrate that wearables can
be used to detect when a person is focused on her work via
physiological features. Another approach for estimation of job
performance is based on other personality and individual traits

[14], [16]-[18] with varying degrees of success. This includes
e use of conscientiousness [15]], [18]], [89]], extraversion
16]], and others. [91]] also found a link between personality,

(94] cognitive ability, and other traits on job performance. However,

[91], [99] when it comes to estimation of job performance it is more

[103], [104] common to rely on various types of questionnaires including

[41], [107], [I108]] self-reports, and supervisory and peer evaluations [14], [52],
[11 1ﬁ121]. Job performance varies depending on demographic
[113] information (e.g., age, gender) [90] and individual traits (per-
(116] sonality, emotional intelligence) [[12]], [13]]. It has been widely
[120] reported that anxiety is affected by context, e.g., [41], [107],

[108]]. Cognitive ability, personality, affect, and anxiety are
all not only related to each other but can both affect and be
affected by job performance, and physical and health variables.

Mobile and wearable sensor data are powerful sources of
information about human behaviour which could help us iden-
tify patterns of daily activities and human mobility [30]-[32],
but also wellness [33]], and job and academic performance
[22]. Machine learning models can achieve high accuracy on
very specific tasks on very small samples, e.g. estimate work
load category using wearable on a cohort of 20 academic
participants [22]. Individual perceptions of job performance
are, however, hard to predict using wearable data even in small
samples and specific work locations and environments [23]],
as opposed to various work locations which is our problem
at hand. Thus, it is important to create models that provide
us with the information to augment human capabilities by
providing individuals with both self-monitoring and assisting
technology and with the tools to better understand team work.
Our paper provides a model for a global outlook of an indi-
vidual well-being from physiological, psychological, and work
related performance points of view. To our knowledge ours is
the first model that jointly predicts health, job-performance,
and psychometric information and wellness of individuals.

Finally, the present work is a comprehensive and personal-
ized analysis of health, psychometric information, and job per-
formance instruments from the longitudinal Tesserae Project
[29]. An initial analysis based solely on job performance was
presented in [[88]]. This work reported a model to differentiate
low from high performance but did not provide an estimation
of the actual job performance instrument value. Also, [88]]
reported predictions of daily instruments administered period-
ically to participants. On the contrary, our analysis is done on
the single initial battery of 12 standardized tests used to derive
the ground truth variables, not only of job performance, but
of all other instruments as well.

IV. DATA COLLECTION AND DESCRIPTION

From Fall 2017 to Summer 2018 we recruited 757 individ-
uals working in knowledge fields in the US as part of a large-
scale longitudinal research study. We collected data from these
participants for a period of one year starting from January
2018. Our Tesserae project was conducted in accordance with
the Institutional Review Board and similar authorities of all
the institutions involved. Thus, we ensure the protection of
the rights and welfare of human research subjects. No Personal
Identifiable Information (PII) was shared.



TABLE III: Participants per Cohort Used for Modeling

Cohort | # Participants
1 217
2 138
3 21
4 147
5 31

It is important to highlight the challenge of doing predic-
tions on this dataset because of its heterogeneity. A subset
of participants was selected for external validation and was
not considered during creation of our model. The remaining
554 participants came from various organizations in the USA
and can be grouped in five cohorts, as shown in Table A
group of 217 participants work for a multinational consultancy
company, a group of 138 participants work for a multinational
technology company, a group of 21 participants work for a
local software company, a group of 147 participants work
for various smaller companies, and a group of 31 participants
work for a local university.

Another source of heterogeneity, particularly at the job-
performance level, comes from the participants’ roles. 254 and
297 participants self-described holding a supervisory and non-
supervisory role, respectively, and 3 participants declined to
mention their role within their companies. The individuals’
participation was optional but those that opted in received
a monetary incentive to stay in the study and comply with
the data-collection protocols. This monetary compensation
varied according to the compliance levels and was allocated
throughout the year of study. The monetary compensation for
participants was also specific for one of the companies.

The data collection protocols could be classified into two
stages. An initial set of surveys used to collect the initial
battery of ground truth variables, and predictors. A daily
data-gathering that itself consisted in the collection of data
streams from various sensors and systems on the Web (daily
varying predictors). In the present work we are interested in
the analysis of the initial ground truth battery using both the
initial predictors as well as the daily sensor data streams.

A. Data Sources - Sensing Streams

In order to model individuals’ behaviors and physical
attributes, we selected several modalities that collect in an
unobtrusive way the physiological, psychological, behavioral,
and physical states of individuals; their offline and online
interactions; their phone, and social media activity and work-
place routines; and health and well-being both at work and at
home. Specifically, we used a wearable to capture an individual
physical, physiological, and health state. In order to capture the
context of an individual’s actions we use a phone agent (app)
and beacons that allow as to identify the individuals’ locations
(home/work) during the day and mobility patterns. Finally, in
order to capture higher level psychological information we
use social media posts that, together with the wearable and
phone agent data, could provide insights about a person’s
psychological states. All information is anonymized to protect
the participants privacy. We used the features extracted from

these modalities as predictors. In addition to features extracted
directly from the sensors, we also considered as predictors to
features derived, composed or transformed signals obtained
from the four sources.

Wearable: Garmin Vivosmart 3. The Garmin vivosmart 3
wristband [[122] is a popular smart wristband (a wearable
gadget) that is widely used as a fitness, activity, and wellness
monitoring device by people all over the world. The type
of information that this device collects include both phys-
ical/physiological (such as heartrate, step count, number of
floors climbed, calories burned, physical activity such as run-
ning, walking, etc. sleep quality - including duration of light,
deep, REM sleep, and total sleep periods) and psychological
(such as stress — which is based on physical signals, i.e. heart
rate) [122]]. The wearable needs to be paired via bluetooth
with Connect, a Garmin App that participants install in their
phones. It is also paired with an App we developed for our
study (see PhoneAgent below). Both apps collect data from the
wearable which is collected from our data-stream-collecting
servers and into databases that anonymize and encrypt the
data. We compute daily summaries from each of the signals
collected from the wearable.

App: PhoneAgent. As mentioned above we created an app
(the PhoneAgent) for both iOS and Android devices. The app
runs in the background and periodically collects data saving it
temporarily as JSON files that are transmitted to servers when
the phone is connected to WiFi. The data collected by the
PhoneAgent includes location, physical activity (walking, bi-
cycling, driving, etc.), location, phone usage (e.g., lock/unlock)
and ambient light levels. The PhoneAgent app also connects
to both the wearable and the beacons (described below) via
bluetooth. From the wearable, the app collects more fine-
grained and real-time data than the collected by Garmin’s
Connect app, which includes the following data: heart rate
(HR) time series, steps, floors climbed, calories burned, and
stress levels time-series. From the beacons, the app collects
information about the proximity of an individual (through a
key-chain beacon and backpack beacon) to either of the fixed
beacons (home, office). It also provides details of interactions,
such as the strength of the signal as described next.

Beacons: Gimbals. Beacons are low energy devices that
transmit and receive Bluetooth signals to and from other
devices [123]]. We use four Gimbal beacons per participant
in our study. Two beacons are static Gimbal beacons [123]]
that are placed, one at the participant’s home (bedroom) and
another one at her office. The other two beacons are small,
coin-size, mobile beacons that participants carry, one in their
key-chain or wallet, and one in their backpacks. Beacon signals
are detected by the phone through our PhoneAgent app which
uses a Gimbal API library to detect proximity to the beacons.
When a PhoneAgent enabled smartphone approaches a beacon,
the phone will detect a Bluetooth signal and will collect the
signal strength which is inversely proportional to the distance
between the phone and the beacon. Thanks to the personal
mobile beacons, this provides information about the location
of an individual to their home or work beacon or to other
participants. This allows us to derive features that describe
the mobility of the individuals as well as other daily routines.



TABLE IV: Low-level Sensor-Derived Featur

Source Sub-Modality #
Higher Order Network - Heart Rate 5*
Wearable Higher Order Network - Stress 5*
Heart Rate 28
Other Physical 26
Physical Activity 19
Context 8
Phone App User State 47
Phone Usage 56
Regularity 580
Work Activities 16
Beacon Other 7
Home Activities 5
Social Media 200*

* =post PCA

All these features are stored by the PhoneAgent into a server
and a copy of the interactions is also saved on Gimbal servers.
Social Media: During the recruiting process we requested
participants’ access to their accounts on Facebook and
LinkedIn, which was mandatory if they had accounts. As in
all of the other data sources, we respect the privacy of the
participants and not only anonymized their data but modified
the representation so as to avoid storing raw information
that may affect their privacy. For the present analysis we
considered 5,075 raw features computed from the Facebook
data of the participants. However, a dimensionality reduction
step was applied to select only the relevant features, as
detailed in Section These raw features corresponded
to a variety of categories — 1) psycholinguistic attributes
[124] (that captured their language usage across keywords
related to affect, cognitive attributes, perception, interpersonal
focus, temporal references, biological concerns, and social and
personal concerns.), 2) open vocabulary n-grams (the 5,000
most frequent uni-, bi-, and tri-grams used by the participants),
3) sentiment in posts, and 4) social capital (by measuring
the activity participants’ conduct and the engagement that
they receive on their social media posts, for example check-
ins to places, posting and sharing updates, uploading media,
changing relationship status, hanging out with friends, etc.).

B. Predictors

We use a total of 927 candidate features (filtered out later
with dimensionality reduction and feature selection techniques
— as detailed below) based on the sensor data from the
PhoneAgent, Garmin wearable, Gimbal beacons, and social
media. We use the wearable to extract additional information
originated from the two time-series per participant: the heart
rate, and stress measurements. We used these time series as
separate components to extract features that facilitate discrim-
inatory prediction based on signatures extracted using a higher
order network (HON) approach, one HON per time series. We
also used the heart rate to build an additional component for
the ensemble using a special representation for the patterns in
that time series. Table [[V] details the number of features used

per data source. For all features collected as time series we
compute the daily mean, median, mode, minimum, maximum.

Examples of features collected from Garmin (through the
Connect API) include stress, sleep (duration for light, deep,
REM sleep) and bed time, daily step counts, daily floors
climbed, physical activity (duration of light, medium, heavy
activity), calories burned, stress level (in range 0-100).

Example of features collected by PhoneAgent include phone
usage (number of locks and unlocks, duration of locks and
unlocks, etc.) daily aggregations of physical activity such as
mobility features (places visited, distance traveled, duration
of sedentary state, driving, biking time, etc.) The PhoneAgent
also collects fine-grained data from the wearable such as: heart
rate, sleep, stress and steps. In each case of time series features
we partitioned them at a daily level (which we call epoch-0)
but also in epochs within the day: early morning (12am - 9am),
day (9am - 6pm) and evening (6pm - 12am). The objective of
this partition is to identify differences of behavior during the
day for the times that are associated with sleep, work, and
night activities.

Example of features collected through the beacons include
various measurements of closeness of the static and mobile
beacons. These features in their raw form do not provide direct
insights about the participants’ activities but in combination
with the type of beacon and the duration of the beacon
interactions we capture indoor daily information such as the
time spent at work (total duration a participant spends at work
from the first to the last sighting of the work-beacon), the time
spent at desk (percentage of the time a participant spends at
their desk), the number of breaks taken away from the desk
that exceed periods of 5, 15 and 30 minutes (captured by gaps
in work-beacon sightings).

In our study we experimented with various time resolutions
to derive the summary statistics as the distributions may have
non-linear relations that may not fully capture the individuals
behavior. We report predictions for individuals with at least
2 weeks of data. Finally, we construct higher order network
representations of people’s behaviors through the heart rate
and stress time series as we describe in Section [V]

The predictors are highly heterogeneous due to the multi-
modal nature of our dataset. This made it necessary to apply
ensemble-learning strategies. Furthermore, the heterogeneity
of noise in the features was not only due to the multi-modality
but also due to the compliance of the participants, the quality
of the data transfer, and the missing data.

C. Missing Data

In addition to the heterogeneity of the data sources, the
main challenge of doing prediction with our data set was due
to missing values. The data sources most affected by fearure
missingness, i.e., missing values of specific predictors, were
the wearable and the PhoneAgent. In particular, missingness
in the later was critical as the PhoneAgent was used to collect
data from the wearable and the beacons.

PhoneAgent. Missing data in this case was mostly due to
technical issues. In particular, keeping the phone agent running
is difficult across the variety of phone models and operating



system versions. Also, some adjustments were needed on the
PhoneAgent because both the Garmin platform and the bea-
cons were not recording data properly in some iOS versions.

Wearable. Missingness was due mostly to breakages (strap,
screen), lost chargers, lost wearable itself, problems with the
wearable itself (e.g., did not hold charge, did not charge at all,
data did not sync, unusual report of floors climbed, inability to
connect to the phone), and one participant reported an allergic
reaction to the nickel in the buckle.

Social Media. Tt presented two challenges: not all indi-
viduals had Facebook accounts, and level of engagement of
individuals in their online profiles was varied.

Beacons. Their main challenge was the wrongly placed
devices, e.g., home and office beacons were swapped and some
individuals worked from home. Thus, extracting meaningful
features related to location was challenging.

Finally, in addition to feature missingness, a major challenge
is full-modality missingness, i.e., participants with information
missing for the entire modality, as in the case of social media,
were no data was available for most participants. In such cases
we resorted to group imputation tactics as detailed next.

V. JOINT PREDICTION MODEL

We developed an ensemble learning method for joint pre-
diction of the physical, psychological, and job-performance
variables. As we detailed in Section [[V-A] the data sources
include: social media, Garmin wearable, phone agent, beacon
data. Additionally, we computed heart-rate variability and used
it as a separate stream and we constructed a HON based
on heart rate and wearable/sensor stress measures as detailed
below. Within each model, a set of candidate models are
trained per ground truth variable as outlined in our model’s
schema in Figure [I] The components of the ensemble are
supervised techniques (regression and classification) as de-
tailed next. In order to deal with the complexity of the data
as well as the missingness we consider four elements of our
model: a) the ensmeble components that identify both linear
and non-linear partitions and regressions, b) the pre- and
post-processing that ensure generality and avoid outliers, c)
the feature selection that eliminate redundant dimensions and
selects relevant features, d) a higher-order representation of
temporal data that extracts non-Markovian patterns (long-term
temporal dependencies), e) imputations, both at the feature and
modality level, f) a fusion strategy for the various modalities,
and g) an algorithm to coordinate all these strategies as a
model selection framework.

A. Design of Components

Our goal in designing the components was to automate
the discovery of various types of variable relations and data
separability for both linear and non-linear cases: linear, mul-
ticolinear, nonlinear relations. In each case we consider low
and high dimensional cases. Thus, we considered the following
regression methods as candidates for the components: linear
regression (low-dimensional cases), linear regression with Lo-
norm (multi-colinearities cases), linear regression with built-
in cross validation with Ly-norm (high dimensional multi-
colinear relations), lasso model with least angle regression
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Fig. 1. Model Diagram: We use a set of weak modality-based learners to
produce a strong prediction for each variable

(high-dimensional linear cases), Bayesian ridge regression
(high dimensional cases), support vector regressor (SVR) with
either linear, radial basis function, or polynomial kernel (for
linear and non-linear high-dimensional relations). Finally, de-
cision trees (CART), and random forest regression were used
for non-linear relations. The selection of the optimal technique
and corresponding features was done using cross-validation,
as detailed below, which allows to pick the best performer
per ground truth variable. The best performers were then used
for training and prediction. Likewise, we used classification
counter-parts for linear and non-linear separability and high
vs. low-dimensional problems. Specifically, we considered
classification approaches for prediction including: nearest-
neighbors, linear support vector machine, support vector ma-
chine with radial-basis function, decision trees, and random
forest. At a lower level, the feature extraction was done
through various intermediate steps: transformation, mapping,
dimensionality reduction, fusion of sub-datasets, and feature
selection. The operations performed to build the components
of the ensemble are detailed in the next sections.



B. Pre- and post-processing

1) Cross Validation: To guarantee generality of our models
we used 5-fold cross validation for both model design and
for final predictions. We considered both static and dynamic
partitioning of the data. In order to maintain a homogeneous
experimental setting we considered a fixed partitioning so
that the models created across the experiments in the various
experimental stages could be comparable. Thus, this static
partition was applied across all the variables. However, we
also considered dynamic partitioning when evaluating new
models, feature selection algorithms, and techniques before
the final comparison of performance which was done on the
statically partitioned sets. Data imputations were also done
using the static 5-fold partitioning by imputing data in a per-
fold approach. This was done to avoid overfitting due to data-
leakage at this level.

2) Outliers: We perform an outlier analysis where out of
range errors for sensing streams were analyzed for extraction
issues (the most common case) resulting in integrity checks
and script validation from the raw sensing streams. Examples
include measurements such as sleep time on the order of 1k+
hours, negative commute times, and various other aspects.
Error sources included typos in the enrollment / ingestion
process, re-assigning of devices from dropped participants to
newly enrolled participants, and several race / edge conditions
with respect to the enrollment / ingestion process.

3) Data Range Transformation: We applied systematic
verification to ensure the predicted values are not outside of
the prescribed ground truth ranges. Code corrections have then
been applied to properly bound results as well as exploring the
root cause for such out of range results.

C. Feature Selection

A sequential exploration of various combinations of features
to identify a set of predictive features per construct was
conducted. The result was a curated subset of features. First,
we introduce the social media feature selection process. It
is worth noticing that raw social media data is not shared
nor processed for privacy purposes. We only used reformatted
features to remove personally identifiable information (PII).

The relevant social media data features were selected using
principal component analysis (PCA) to identify the top 200
(latent) features for predicting the ground-truth variables — the
rationale was to capture complex behaviors latent in the data,
and which are not directly observable in the raw signals. These
200 PCA components were derived from a total of 5,075 raw
features computed from the Facebook data of the participants.
These raw features corresponded to a variety of categories —
psycholinguistic, n-grams, sentiment posts, and social capital,
as detailed before.

The features from other sources were treated under the same
selection policy to define the set of models (components). This
involved five stages of selection, in addition to the feature
pre-selection and social media selection. First, features were
selected based on correlations per fold during cross-validation.
Second, features were selected by the individual candidate
models. Third, a selection was done on the overall final
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Fig. 2. Discretization, Satabilization, Regularization

training by the best model. Fourth, a subset of latent features
was mapped using PCA for specific feature sets. Lastly, we
ranked the models on predictive performance and chose the
best model as our final model for each daily construct.

D. Higher Order Networks (HON) of Temporal Data

Most real sequential data does not fulfill the Markov prop-
erty [46]. HON’s are powerful tools that allow us to overcome
this challenge by representing high order dependencies. Non-
Markovian patterns in date provide unique information about
the problem under study. For this reason we use a HON
algorithm to provide a multi-scale representation of sequen-
tial data on a per-feature basis (e.g. heart rate and sensor-
measured stress). When extracting features in sequential data,
conventional methods (e.g. Markov model) might lead to
information loss on the state transition with the assumption
that the next status only depends on the current status. To
address this limitation, we utilized a HON method to make a
sufficient representation by exploring higher order dependen-
cies in sequential data. Building the HON model consists in
the following steps.

First, we apply discretization to the time series. The
usefulness of this approach is illustrated in Figure [2] The
discretization step works as a pattern recognition technique
that identifies regularities in the time series that are grouped
to remove high frequency components. Since the network
representation of the time series (e.g. heart rate) is not directly
available, we first discretized the raw data to construct a
network as shown in Figure 2] We divided time into equal-
size (half hour) time slots. x; is the state in i-th time slot,
which denotes the mean value for the heart rate during the
corresponding time slot.

Given the discretized heart rate data, the output is the
conditional probabilities of each individual
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Fig. 3. HON - Heart rate case example

where n denotes the network order, I(z) indicates the number
of occurrences of x.

HON applies a low-pass filter to ternary relations among the
selected patterns derived from the discretization step in Fig.
2l Take, for instance, the heart rate time-series illustrated in
[l An algorithm that only identifies first order relations could
describe the probabilities of going from a heart rate of 80 bpm
to 100 vs 120. On the other hand, HONs can differentiate
patterns of heart rate transitions that go from 80 to 120 if
the previous heart rate was 80 bpm as different than if the
previous heart rate was 100 bpm. PCA was used to reduce
feature dimensions to a target n_component = 5 from 727
original features (transition probabilities).

Finally, we investigated different small orders (1-5) of
HONs. The number of transition probabilities exponentially
increases as the order of the network increases, which lead to
a sparsity problem. In particular, most transition probabilities
of each individual might be zero as the order increases. This
is because, as the number of elements in a possible transition
increase, the transition may not be associated to the participant.

E. Imputation

For the purpose of data imputation, two approaches were
used: (1) a theoretically-driven approach that attempted to fuse
data across multiple sensing streams using the knowledge of
subject-matter experts (ex. sleep can be fused between the
wearable, smartphone, etc.) and (2) a data-driven approach
that can vary across the various features (impute via the
mean, impute via zeros, etc.). For the joint prediction of the
physical, psychological, and job-performance variables, we
also performed sensor-wide imputation. For this purpose, we
considered the data from one stream and performed clustering
on it. This allowed us to impute missing data in one stream
from data in another based on the relationships between sensor
streams. Other techniques applied include mean and median
value imputation. We also performed data imputation using
individual rolling means, i.e., individual mean value up to the
specific moment. If there was no record at all, we filled in
values using the global mean.

The level of sparsity was critical for the phone agent data
at the raw data level. However, this was overcome by care-
fully selecting regularity-based features. Regularity features
capture rthythms and routines of the various behaviors of a
participant, namely the patterns within hourly phone usage,
physical activity and mobility across the participant’s time
series. Additionally, we had to deal with sparsity for heart

rate variability (HRV) when the size of the window used
to compute the HRV was not adequate. Some sparsity was
also due to data quality issues. Since HRV windows are
calculated using Beat-to-Beat-Interval(BBI), many windows
did not have a minimal number of BBI readings. This was
due to inconsistencies in the data updates. HON selection also
had sparsity constraints, as higher order networks provided no
further information than lower order ones. Finally, this version
of our software includes fusion of sensor data. Namely, we
combined the features from each stream/data source and then
we applied our regression models for prediction purposes.

F. Fusion

For the joint prediction of the physical, psychological,
and job-performance variables, we also used a feature fusion
method to combine the various modalities. The features from
each streams/data sources are combined and fed into our
regression and classification models. The idea is to obtain not
one but several moments from the distribution of features that
provide a summary of each of the modalities. For the case
of features that were numerical we use summary statistics:
mean, median, standard deviation, minimum, maximum of
the distributions. For the case of time series data we use
the features extracted from HON, and from other summary
statistics. For the phone-agent we considered regularity high-
level representations, as well as the imputed values that help
model building at the component-of-the-ensemble level. The
specific prediction models as well as the relevant features were
selected by the cross validation process. For the final ensemble
we consider a model selection approach as follows.

G. Model Selection

Using the elements described so far, we build the compo-
nents of the ensemble learning model by combining the HON
features (heart and stress), heart rate, social media, beacons,
phone agent, and wearable. We do so with the following steps:

1) Feature pre-selection. We use both the sequential explo-
ration of various combinations of features to identify a
set of predictive features per construct and the social
media anonymization of features described before.

2) Relevance-based feature selection. Each specific tech-
nique uses an a-priori relevance (measured by correla-
tion) on training set (either linear or non-linear correla-
tion).

3) Model selection. Automated machine learning methods
are applied to decide the best set of features along with
the best classifier/regressor per construct

4) Proxy ground truth. We considered the predicted values
for audit and OCB in order to perform prediction of
other values. We then use these predictions and loop
back to the previous step.

Additionally, dimensionality reduction trough principal
component analysis (PCA) was applied on HON construction
(both stress and heart rate measures from the wearable) and on
social media data. The candidate-components were described
in Section [E Thus, the main training, test is done as shown
in Algorithm [T]



Algorithm 1 Joint Model
Input: Multimodal Data D
Qutput: Predictions
1: Divide D in training and validation sets T', V'
2: Use T to apply feature selection (top 20 features per
modality with highest correlation to the 19 ground truth
variables) to select candidate features

3: for each ground truth variable do

4:  for each parameter-set do

5: for fold =1to 5 of T do

6: for each candidate-component do

7: Predict on current fold using candidate-

component trained on the remaining folds

8: end for

9: end for

10: SelectedComponent < candidate with highest score
across the folds

11: Add SelectedComponent to Ensemble

12: Add the fold-wise SelectedComponent predictions F’

13:  end for

14: end for

15: model + train the ensemble on T’
16: Set predictions P <— Predict(V ,model)
17: return F, P

VI. EXPERIMENTS

We evaluate our approach using four sets of experiments.
First, we investigate the performance of our model when
compared to a baseline constructed with estimators derived
from the ground truth values as detailed below. Second, we
verify the bivariate criterion validity of the estimates of one
subset of the ground truth variables using another subset.
For this we consider ground truth features that are known to
be predictors of job performance and compare the prediction
using their sensor derived counterparts. Third, we verify the
model reliability under 5-fold cross validation to ensure the
models selected are generalizable and perform consistenly.
Finally, an external team validated our results on a sub-cohort
of participants whose data was totally unknown to us during
model development.

A. Data

Our data comes from the initial formal battery of tests
applied to the participants of our longitudinal study in the
USA. We considered the 12 standardized tests administered
as initial ground-truth battery. These tests contain all the 19
dependent variables for prediction. The independent variables
come from various data sources assigned to each participant
including: a wearable (Garmin VivoSmart 3), a phone agent
(an app for iPhone and Android), 4 beacons (office, home, and
two portable), and social media data (Facebook and Linkedin).

B. Setup

1) Data Selection and Feature Set: We perform prepro-
cessing of all the streams previous to fusion of the features as
described in Section

2) Metrics: We use the Kendall’s 7 correlation coefficient
which is a non-parametric measure of correlation based on
rank statistics and, thus, assumes no specific structure of the
data. Specifically, to compute 7 scores we apply the General
Monotone Model (GeMM) [125] to avoid any parametric
assumptions about the variables under consideration.

C. Results

We applied our model to estimate the 19 variables describ-
ing the health, job performance, and psychometric and well-
ness attributes of the participants. The independent variables
used were obtained from the sensors as described before.

1) Validation vs. Theory-Driven Baseline: In our first set
of experiments we verify that the performance of our model
is comparable to theory-driven (survey-based) predictions. To
create a baseline theoretical model we use the distributions
of each variable and take the expected value of the training
folds to estimate the values for the test fold. Table [V] shows
the symmetric mean absolute percentage error (SMAPE) for
each of the variables and the two models. As we can see
there, using sensor-based estimates (our framework) leads to
estimations with smaller errors when compared with a baseline
that is based on surveys. This is important to highlight as our
predictions are entirely based on wearable sensor and social
media data and we do not use any survey or demographic data
that would otherwise facilitate identification of patterns based
on personal traits. Our method shows competitive performance
for job performance and psychological constructs. To verify
the quality of modeling these later set of constructs, we provide
evidence of the robustness of our predictions next.

TABLE V: Performance SMAPE (%) — our framework vs.

baseline
Variable Sensor-Based | Baseline
IRB 3.8 7.9
ITP 4.6 9.4
OCB 6.8 14.2
Interpersonal Deviance 18.7 32.9
Organizational Deviance 14.8 28.5
Abstraction 6.4 13.4
Vocabulary 4.2 8.8
Extraversion 8.3 17.5
Agreeableness 5.7 11.6
Conscientiousness 6.8 14.2
Neuroticism 12.6 26.0
Openness 6.4 13.2
Positive Affect 6.6 13.5
Negative Affect 11.4 22.2
Anxiety 10.1 19.9
Alcohol 30.6 70.4
Tobacco 92.2 195.6
Physical Activity 30.8 68.9
Sleep 13.4 273

2) Job Performance - Improvement Assessment Over
Farticipant-Oriented Baseline: In this experiment we evaluate



TABLE VI: Incremental Criterion Validity. Comparison of
job performance sensor based vs. theoretically-driven baseline
— expected performance: Kendall’s 7. Better performance is

bolded
Variable Theory-Based | Sensor-Based
IRB 0.277 0.298
ITP 0.287 0.297
OCB 0.170 0.219
Interpersonal Deviance 0.218 0.238
Organizational Deviance | 0.332 0.346

the interplay of psychological and job-performance variables.
The objective of this analysis is to identify the validity of the
predictions from a psychological and sociological theoretical
point of view. Thus, we compare the 7 score accounted
for by sensor-derived estimates, beyond what is accounted

for by known predictors of job performance: personality (

[14), (150, (17, (18], [35], [58]) and cognitive ability [S7],
[126]. This baseline is then compared with the estimation
of job performance using our framework which is a sensor
derived estimate. To asses the relevance of our estimations
we considered the 7-score of each job performance variable
when predicted with the baseline and when predicted with the
sensor-dervied estimates. Table [VI| shows the expected T-score
for both the theoretical baseline and our framework. As we can
see there, our sensor-based model performs, in expectation,
better for all the variables. However, in order to fully validate
this result we also performed a comparative analysis of the full
set of predictions under a k-fold cross validation regime. Then
we build the distribution of differences of estimations based on
our model minus the estimations based on theory. The mode
of the distributions of all the job performance variables lie in
the region A, > 0 where A, is the difference of 7 scores.
This means that the performance of our model is better than
the theory-based estimation for the bast majority of cases.

3) Discriminant Validity: We examined correlations be-
tween constructs and their predictions. The discriminant va-
lidity is shown in Table The objective was to verify
whether our model sufficiently discriminated the constructs
which is signaled by low inter-correlations among constructs
and the predictions of other constructs (main diagonal = -). As
shown in Table the model has good discriminant validity
with correlations in the range [—0.21,0.2].

4) Model Reliability: We verified the model reliability.
Figure {4 shows the distribution of 7 scores for each of the
variables estimated. We build this posterior by running a 5-
fold cross validation and thus, all the values obtained are
created from independently build models. As we can see in the
figure, and in agreement with previous results, the variables for
which our framework performs the best are physical variables,
followed by job performance and psychological constructs.
Overall, the framework we propose provides consistent results
across the various variables of interest, where the best per-
formances are achieved for physical constructs and wellness
being the variables. Tobacco use, and job performance are the
most challenging constructs to predict. This shows our frame-
work consistently jointly infers the health, job performance,
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Conscientiousness
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Agreeableness
Positive Affect

Negative Affect
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Fig. 4. Model Reliability: Kendall’s 7 confidence interval of the socio-psycho-
physiological variable predictions

and psychometric information and wellness of individuals.

5) External Validation — Totally Unknown Cohort: We
provided an external evaluation team with a pipeline and data
to corroborate our results on a sub-cohort of participants whose
data was totally unknown to us during model development.
This validation was administer by MITRE Corporation. This
independent evaluation lead to results consistent with what we
report in Figure ] The independent evaluation was performed
on variables other than job performance and can be seen in
Table MITRE’s evaluation showr scores in the same
range than the obtained in our experiments Fig. [] is that
variables such as agreeableness, neuroticism, openness, affect
(particularly negative affect), and tobacco consumption are the
hardest variables to predict. However, despite this challenge,
a couple of these variables (openness, possitive affect), have
a mean 7 performance greater than 0.14.

VII. DISCUSSION

In our experiments we verified the applicability of our
method for jointly modeling job performance, psychometric
variables, and well-being. The experiments suggest ours is
a stable model with non-trivial predictive performance that
is better than construct-based alternative baselines. The per-
formance of our technique is better for physical variables of
well-being such as alcohol consumption, sleep, and physical
activity. The performance is also competitive for psychological
and job performance variables. We verified the significance
of these sensor-based predictions when compared with a
participant-oriented baseline to predict job performance vari-
ables. All job variable predictions with the linear-mixed model
based on our estimates produce better T-scores than the linear-
mixed model created with the survey estimates. Thus our
framework has better bivariate criterion validity.



TABLE VII: External Validation

Variable Min Max Mean
Vocabulary 0.00 026 0.10
Abstraction 0.00 0.27 0.11
Extraversion 0.02 0.36 0.19
Agreeableness -0.09 022  0.07
Conscientiousness | 0.05 0.31 0.15
Neuroticism -0.19 0.18 0.00
Openness -0.11  0.305 0.14
Positive Affect -0.07 0.32 0.16
Negative Affect -0.16  0.18  0.01
Anxiety 0.00 0.31 0.14
Alcohol 022 049 0.37
Tobacco -0.13 0.00 -0.04
Physical Activity 020 052 037
Sleep 0.03 0.35 0.20

The discriminant validity analysis show that our framework
indeed sufficiently identifies the various constructs with small
absolute values for the correlations [-0.21,0.2]. The reliability
analysis shows that the model is reliable as a reflection
of the prediction performance. Roughly speaking, physical
variables are the most reliably sensed and estimated, followed
by psychological and job performance constructs. The most
challenging variables in terms of reliability are anxiety, to-
bacco consumption, interpersonal deviance, and agreeableness.
The lower limit for the performance ranges can be explained
from the difficulty of modeling social constructs in general
and human performance in particular [24]. These reliability
results were verified externally.

It is important to highlight that our work provides a realistic
assessment of the performance of prediction algorithms. This
was done by respecting the nature of the data. We did not
curate nor select data objects for optimal performance. Instead
we worked with the original full dataset which included
individuals with both full and partial set of features and modal-
ities. Finally, the first week or two add noise (low/irregular
compliance) yet our models performance is stable despite
the missingness. Our model provides a simpler alternative
for dealing with missingness without the use of complex
likelihood-based or similar techniques (e.g., [27], [28]) that
are otherwise necessary for predictive purposes.

VIII. CONCLUSIONS

Currently, assessing workplace performance, psychological,
and physical characteristics of individuals relies either on
existing full traditional questionnaires or on subjective evalu-
ations. Furthermore, predictive techniques work on a subset
of variables and work only on subsets of highly curated
data and focus on only a few variables without a global
overview of an individual. In this paper, we present the first
modeling framework and benchmark that leverages sensor
data from multimodal sources to jointly predict psychological,
physical and physiological, and job-performance constructs.
We use traditional social and psychological questionnaires to
create the ground truth variables that guide the estimation

of parameters of our model. We use objective mobile and
personal sensing data from social media, phones, wearable
and beacons as predictors and offer new insights into be-
havioral patterns that distinguish the various variables. We
present results from an year-long study of 757 information
workers collected over a period ranging from 15 days to
60 days. We created a global ensemble learning algorithm
that takes advantage of various data mining techniques and
feature extraction approaches to achieve this goal. Our re-
sults indicate that our modeling framework allows for a
prediction performance above baselines. Despite the wealth
of sources and features we use, predicting job performance
and psychological constructs is a harder task than predicting
physical wellness (alcohol consumption, sleep, etc.). Our work
shows a realistic assessment of machine learning applied to
this joint prediction task. This can also provide benefits for
mitigating bias [[127]. Our contribution is three-fold. First, we
have gathered and identified strategies for integrating highly
heterogeneous data without curation, and thus, maintaining the
data integrity. Second, we analyzed the different challenges in
it with a systematic feature mining approach. Third, we created
a benchmark for predictive tasks by leveraging the identified
challenges of the real noisy or incomplete multi-modal high-
dimensional data to create a comprehensive prediction and
assessment of wellness: physical, psychological, and work-
place well-being characteristics of individuals. Our work can
be used towards the creation of more objective measures of job
performance, and as a realistic and sound baseline for analysis,
respectively.
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