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A Multivariate Time Series Streaming Classifier for
Predicting Hard Drive Failures
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Abstract—Digital data storage systems such as hard drives
can suffer breakdowns that cause the loss of stored data. Due
to the cost of data and the damage that its loss entails, hard
drive failure prediction is vital. In this context, the objective of
this paper is to develop a method for detecting the beginning of
hard drive malfunction using streaming SMART data, allowing
the user to take actions before the breakdown occurs. This is
a challenging task for two main reasons. First, there are not
usually many examples of failed hard drives. Second, in these few
available examples, hard drives are only identified and labeled as
failed after complete breakdown occurs, but the exact moment
when they begin to malfunction is usually unknown. Both
these aspects significantly complicate the supervised learning
of hard drive failure prediction models. To cope with these
issues, the problem is addressed as a multidimensional time
series streaming classification problem based on sliding windows.
Moreover, as a solution to the highly imbalanced situation, the
learned classifier is optimized to maximize the minimum recall
of classes. Experimental results using the Backblaze benchmark
dataset show that the proposed method reliably anticipates hard
drive failures and obtains a higher balance between the recall
values of both classes, failed and correct disks, compared to other
state-of-the-art solutions.

I. INTRODUCTION

W ITH the digital transformation of information and the
popularization of the cloud computing platforms, data

storage centers have become essential. Data centers are mainly
composed of hard drives, which are the devices used for data
storage. These hard drives can suffer breakdowns that cause
the loss of the stored data and, in many cases, a chain reaction
of the rest of the equipment failures which can result in the
downtime of the entire data center. According to a study
reported in [1], the average cost of a data center downtime can
be up to $740,357 including the costs derived from the data
loss or corruption, productivity loss, equipment damage and
recovery, and legal and reputation repercussions. Therefore,
predicting upcoming failures in hard drives is crucial: it allows
users to take actions before a failure occurs, such as moving
their data to other storage systems. With this in mind, the
objective of this paper is to develop an effective method to
detect malfunctions in hard drives so that the user can take
preventive measures.

Due to the importance of anticipating breakdowns in
hard drives, the Self-Monitoring and Reporting Technology
(SMART) system has been developed [2]. It is a system im-
plemented within hard drives which reports information about
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their functioning. The SMART system provides attributes such
as the number of uncorrectable software read errors, the count
of aborted operations and the temperature of the device. A
change in the values of these reported attributes could indicate
defects of the disk and/or problems in the mechanical sub-
system. Consequently, hard drive manufacturers use a simple
algorithm that raises an alarm whenever any of the SMART
attributes exceeds a predefined threshold. Unfortunately, this
method is not able to obtain high failure prediction rates
[3]. Therefore, in order to try to improve its results, several
methods and techniques have been implemented over the past
decade [4]–[7].

There are three major approaches that have been applied
for hard drive failure prediction: the first is to try to predict
the remaining useful life (RUL) of the drives as a forecasting
problem [8]–[11]. Specifically, current and past observations
are used to learn a regression model that predicts the expected
lifetime of the disk. However, both the shortage of failure disk
examples and the fact that the life expectancy depends directly
on the environment and conditions of the operation, make it
difficult to generalize and learn a unique model for different
disks.

The second approach is to predict the health status of the
drive as a multi-class classification problem [11]–[13]. To
this end, the multiple classes are defined as different health
degrees, which are established based on the remaining time
until failure. In particular, the highest degree indicates that
the disk is working properly, and for the remaining grades,
the lower the grade, the closer failure is, with the lowest
grade indicating imminent failure. It should be noted that this
strategy is equivalent to discretizing the previously described
approach and it therefore has the same difficulties. In addition,
since the failure occurrence is uncommon, the percentage of
correct and failed disks is very imbalanced and, by generating
more classes, this problem is exacerbated.

Finally, the third approach, and the most common one,
models the failure prediction problem as a binary classification
problem on the hard drive status (correct or failed) [14]–
[17]. In this case, the disk is classified as failed if signs of
deterioration, which indicate that it will fail in the near future,
are detected. This is the approach adopted in this paper.

Although this third approach is the most common one, some
weaknesses can also be found among the existing methods. For
instance, in [3], [15], [17], [18], the lead-time to failure is set
in advance and it is considered that all the drives show signs
of malfunction with the exact same anticipation. Finding an
appropriate lead-time that is suitable for all the hard drives is
problematic because life expectancy depends directly on the
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conditions and the environment in which the disk operates
and these are not usually the same. Consequently, a method is
designed that tries to identify the first signs of malfunction in
each disk in an automatic way, without pre-setting a unique
lead time for all disks.

Another shortcoming is that some methods do not take into
account the temporal correlation between the measurements
taken by the SMART system [3], [17], [19]. They classify
each observation (timestamp) individually as malfunctioning
or correct, without considering the temporal nature of the
data at hand. In order to solve this, there are methods that
group the observations using sliding windows. Then, they
apply strategies such as majority voting to decide whether a
data-window is showing signs of deterioration [14]–[16], [20].
However, the classification of each observation is still carried
out individually, without considering the adjacent observations
and the temporal relationship that can exist between them.

In the proposed method, the measurements of the SMART
system are treated as multivariate time series (MTS). In
this way, it is taken advantage of the temporal information
contained in the signal. Additionally, in a real context, the
full MTS is not available from the beginning. That is, the
complete operating data from when the hard drive is put into
operation until it breaks down is not known beforehand. On the
contrary, at each instant of time, new observations (MTS time
steps) arrive that gradually gather the MTS. This means that,
in a real context, data is a MTS stream and specific methods
to cope with this type of data will be required. Therefore,
preprocessing the training MTS data is proposed, in which
the complete operation of the hard drives is already collected,
using sliding windows. Each window captures a subsequence
of the MTS, so it still has a temporal nature and can be
considered as a MTS. The objective is to learn a binary
classifier that identifies whether a window of observations
shows signs of malfunction (class 1) or not (class 0). In this
way, the problem is reduced to a MTS classification problem
which takes into account the temporal correlation and the
streaming nature of the observations.

Learning a classifier in this context is complicated for two
main reasons. Firstly, the number of windows with signs of
malfunction are limited because the failure occurrence is un-
common. This accounts for very imbalanced class frequencies,
which makes the learning process hard. Secondly, even if the
failed disks are labeled as such, the signs of future failure
do not appear throughout the lifetime of the disks. Thus,
failed disks can be composed of correct windows (usually
at the beginning of the operation) and malfunction windows
(usually sometime before the failure). The exact window in
which the disk begins to show signs of malfunction is usually
not known and is difficult to identify: a windows labeling
process is necessary in order to train a supervised window-
based classifier.

With this in mind, a framework that deals with each of these
challenges is developed:

• Identification of windows with signs of upcoming failure.
A double-round learning methodology is proposed. A first
classifier is built using only the windows which can be
labeled reliably (i.e., the last window in the case of failed

disks and the first window in the case of correct disks).
This classifier is used to label all the windows of all the
training streams, which are then used to build a second
and final classifier.

• Imbalance. Using the minimum recall of the classes as
the function to maximize when learning a classifier is
proposed, rather than the accuracy that is typically used.
Thanks to this, classifiers are obtained which, in spite of
the imbalance, tend to equilibrate the recall value of both
classes (malfunction and correct).

The proposed method is applied to the Backblaze1 datasets.
The results obtained show that the method is able to balance
the prediction of correct and failed drives, obtaining high true
positive rates with almost the same ratio of false positives as
the competing algorithms.

The rest of this paper is structured as follows. In Section
II, the proposed approach for solving the hard drive failure
prediction problem and the challenges found are detailed.
In Section III, the experimental framework is introduced,
followed by the obtained results and discussion in Section
IV. Finally, in Section V, the conclusions and future work are
presented.

II. PROPOSED METHOD

The problem of anticipating hard disk failures is addressed
as shown in the scheme presented in Figure 1. The observa-
tions from the hard drives are treated as MTS streams and
they are analyzed using sliding windows. The objective is
to predict when the disk works correctly or malfunctions in
a particular window. However, the uncertainty regarding the
location of the malfunctioning windows and the imbalance
between the classes complicate the learning of this classifier.
This section presents the proposed framework for predicting
hard drive failures and dealing with these two issues. Finally,
an explanation is given as to how the resulting classifier
is deployed in a streaming manner to identify when new
unlabeled hard drives begin to malfunction.

A. Double-Round Learning Methodology
As stated previously, the objective is to learn a window-

based classifier which will predict whether a window of the
MTS, which represents the current status of a hard drive, is
showing signs of malfunction or not. To this end, a training
database of windows with known class labels is needed.
However, what is normally available is a training set of hard
drives which are labeled as correct (they do not fail throughout
the time of analysis) or failed (they break down some time
during the analysis), and not the window-based labels. In
the disks with no recorded failure (correct disks), it can be
assumed that all the windows are correct. Nevertheless, in a
failed disk, it can be confidently considered that when it is
initially put into operation it works correctly for a while. Then,
at a certain moment, it begins to show signs of malfunction
until it suffers a breakdown and stops working. Consequently,
it can be assumed that the first window (when the disk is

1https://www.backblaze.com/b2/hard-drive-test-data.html
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Fig. 1. Graphical description of the failure prediction problem.

put into operation) is a correct window (class 0) and that
the last window, just before the breakdown, shows signs of
malfunction and it is a malfunction window (class 1) (see the
problems highlighted in Figure 1). Since the moment when the
signs of malfunction begin to appear is unknown, the label of
the rest of the windows is unknown. However, in order to
learn a classifier which is able to detect windows with signs
of malfunction, it is mandatory to have examples of these kind
of windows. Therefore, for failed disks, a labeling process is
necessary to identify those windows.

A double-round learning methodology is proposed to solve
this problem. It is thus named because the training process is
done in two stages (See Figure 2), which are explained below:

1.1 Generate a training dataset with one window from
each hard drive: In this first step, the purpose is to
generate a dataset in which the correct and malfunc-
tion windows are clear cases of correct operation and
malfunction. It is assumed that this occurs when the
correct windows are selected from the beginning of the
operation of the disk and when the malfunction windows
are selected from just before the failure occurs. Therefore,
for correct hard drives, the first window of observations
is selected and, in the case of failed hard drives, the
last window of observations is chosen. Consequently, the
generated training dataset comprises only one window of
each disk available and will be referred to as One-window
dataset.

1.2 Train the first classifier: The first classifier is trained
with the dataset created in the previous step, the One-
window dataset, (the details about the classifiers used are
explained in Section II-C).

2.1 Apply the classifier 1 to all the windows of the failed
disks and create a new training dataset: The classifier
trained in the previous step is applied to all the windows
of the failed disks of the training dataset. Contrary to
other proposals in the literature, which preset a common
lead time value for all disks, this is done to attempt to
automatically detect when the disks begin to malfunction
and label the windows of the failed disks. Specifically, the
purpose of this step is to identify representative windows
that show signs of malfunction and are not at the end of
the MTS.

For the failed disks in which the last window is not
correctly classified (is not classified as 1) by the classifier
trained in the previous step, all the windows classified as
malfunction are not considered for selection (see disk 3 of
Step 2.1 in Figure 2). Since, in these cases, the classifier
is not able to correctly classify the last window before the
breakdown, which it is previously assumed has clear signs
of malfunction, selecting the other windows classified as
malfunction is avoided just in case the classifier is also
failing. However, although the first classifier does not
correctly classify these last windows, they are added as
malfunction windows so as not to lose the information
they contain (see disk 3 of Step 2.1 in Figure 2).

In contrast, for the failed drives in which the last win-
dow is classified as 1, all consecutive windows that have
been classified as malfunctioning starting backwards from
the last window are selected as malfunction windows for
the new training set (see disks 1 and 2 of Step 2.1 in
Figure 2). Moreover, considering that the failed drives
should also operate correctly at the beginning, for these
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Fig. 2. Diagram representing the steps of the proposed double-round learning
methodology.

disks, all the windows consecutively classified as correct
windows located before the first window classified as
malfunctioning are also selected for the new dataset (see
disks 1 and 2 of Step 2.1 in Figure 2). In this case, the
correct class (0) is assigned to them. In order to discard
possible windows in which the classifier may be failing,
windows that are between the first malfunction window
and the last correct window inclusive are discarded (see
the second window in disk 2 of Step 2.1 in Figure 2).

Correct hard drives do not need to undergo any
window-labeling process because all the windows are
considered correct windows. To include different exam-
ples of correct windows (not only from the beginning
of the disks operation) from the correct hard drives,
other correct windows are also added to the new dataset.
However, by taking all the sliding windows from the
correct disks, the original imbalance rate between failed

and correct disks excessively increases. Therefore, to
maintain the original imbalance rate, correct hard drives
are randomly sampled and then all their windows are
added to the new dataset.
This new dataset will be called Labeled-window dataset.

2.2 Train the second classifier with the Labeled-window
dataset: The second classifier is trained with the dataset
generated in the previous step, the Labeled-window
dataset. This dataset, besides the correct and malfunction
windows which are assumed to be correctly labeled,
has windows that are identified as malfunction windows
which are not at the end of the MTS and the windows
identified as correct windows which are at the beginning
of the failed hard drives. Thanks to this, the new classifier
should be able to detect the beginning of the malfunction.
Consequently, it will be the classifier used to classify
windows in streaming mode.

B. Minimum Recall Based Function to Deal with the Imbal-
anced Scenario

One of the main difficulties when predicting disk failures
is that the correct disks are, by far, the largest portion of all
the available disks, while the failed disks are the minority. As
seen in the previous section, this problem is even more evident
when using sliding windows. As a result, the most common
classifiers, those based on maximizing the classification accu-
racy, either tend to over-fit the minority class or completely
ignore it [21], [22].

True label

Correct Failed

Correct TC FC

Failed FF TF

Predicted
label

Accuracy =
TC + TF

TC + FC + TF + FF

RecallC =
TC

TC + FF

RecallF =
TF

TF + FC

Fig. 3. Accuracy and recall measures for the failure prediction problem.

While many alternatives have been given in the literature
to alleviate the imbalance problem, such as oversampling,
undersampling or cost-sensitive classification [23]–[25], this
work follows a completely new avenue. To deal with this
situation, when training a classifier, it is proposed to maximize
the minimum recall of the classes rather than the accuracy
that is typically used (Figure 3 shows the definition of the
accuracy and the recall) as suggested in [26]. Owing to this,
equal importance is given to both classes, failed and correct
disks, and classifier are obtained that tend to equilibrate the
recall value of both classes. As a result, even if the accuracy
decreases, more failed disks are predicted without resulting
in the prediction of excessive false positives.

C. Deep Neural Network Classifier for MTS Genetically Op-
timized for Maximizing the Minimum Recall

It should be noted that learning most of the traditional
classifiers to maximize the minimum recall of the classes
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is not trivial (if possible), since it can distort the nature of
the classifiers themselves. Neural networks, in contrast, are
classifiers that explicitly define a loss function, allowing it
to be easily changed. With this in mind, in the following
sections, the solution developed to learn a neural network
classifier that maximizes the minimum recall is presented.

1) Network Architecture Optimization: The network archi-
tecture has a significant influence on the performance of the
final classifier, and there are many alternatives and options that
could be considered. For example, some factors that affect the
obtained results are the depth of the architecture, the type of
layers that compose the architecture or the parameters related
to each specific type of layer. Consequently, designing them
to fit a specific problem is not an easy task [27].

In [28], a Genetic Algorithm (GA) is proposed for au-
tomatically designing the network architecture. Specifically,
each individual of the GA is a network architecture that is
generated by a sequence of blocks of different types of layers.
Moreover, each block is composed of one or more layers of
the same type and each type of layer has its own parameters.
On that account, each individual is defined by establishing
(in this order) the number of blocks of the architecture, the
type and the number of layers of each block and, finally, the
value of the parameters for each layer in the blocks. All the
blocks have two parameters, the input size and the output size.
The first represents the dimensions of the input data and the
second, the dimension of the output data after going through
the layers of the block. If the architecture has more than one
block, the output size of a block will have to be equal to the
input size of the next one. Within the blocks, the layers that
compose them must fulfill this same chain condition with their
input and output sizes.

1 Type: CNN

• Nº of layers.
• Input size.
• Output size.
• Kernel size.

2 Type: LSTM

• Nº of layers.
• Input size.
• Output size.
• k.

3 Type: Pooling

• Input size.
• Output size.
• Pooling
type.

n Type: LSTM

• Nº of layers.
• Input size.
• Output size.
• k.

…

Fig. 4. Example of an individual of the GA used for optimizing the network
architecture of the classifier. The individual is defined by a sequence of
blocks of different types of layers (LSTM, CNN, pooling) and the necessary
parameters for defining each one.

This approximation is taken as a baseline, but, in this
case, the observations of hard drives are considered as MTS.
Therefore, for building the network architecture, it is necessary
to use specific layers for MTS [29]–[32] instead of the original
layers that, in [28], were specifically for images. In particular,
the layers that are established for designing the blocks of
the network architecture will be Long Short-Term Memory
Network (LSTM), Convolutional Neural Network (CNN) and
Pooling layers (Figure 4 shows an example of an individual
of this GA). In addition, there are certain specific parameters
for each type of block that must also be defined:

• LSTM blocks need k, which is a parameter that deter-
mines the output size of each LSTM layer in the block.

• CNN blocks need the kernel size for all the convolutional
layers.

• Pooling blocks need the type of pooling (maximization or
averaging pooling) to be carried out. The window length
and the stride for both pooling types will be equal to 2,
hence the output size will be half of the input size.

Apart from the changes in the network architecture options,
the main change from the original proposal is made in the
fitness function used to evaluate and compare the individuals
of the GA. Based on the proposed alternative to deal with the
imbalanced scenario, the minimum recall is used as the fitness
function rather than the accuracy. However, at the beginning
of the training process, due to the highly imbalanced situation,
it is common that many of the individuals of the GA define
classifiers that simply assign all the disks to the majority class.
Therefore, if one simply aims at maximizing the minimum
recall of the classes, a great quantity of individuals will not be
comparable because they will have the same fitness value (they
will all have a minimum recall of 0). This greatly complicates
the search of the optimal individual. The quality of these
individuals thus needs to be ranked in order to guide the search
of the GA from the beginning.

To address this problem, the use of a probabilistic recall
that is an adaptation of the Brier score [33] is proposed. In
a binary classification problem with N instances of which J
are instances of class 0 and K are instances of class 1 (N =
J + K), the probabilistic recall for each class is defined as
follows:

Prob. recall0 =
1

|J |
X

j2J

(fj � 0)2

Prob. recall1 =
1

|K|
X

k2K

(fk � 1)2

where fi is the predicted probability of failure for the ith

instance. Note that, contrary to recall, the greater the proba-
bilistic recall is, the worse the prediction is. Because of this, to
maintain the consistency with the objective of maximizing the
minimum recall, the sign of the function is changed. Conse-
quently, minus the probabilistic recall between the classes will
be used in the proposed fitness function and, thus, the objective
will be also to maximize the minimum of it. In summary,
the proposed fitness function, f , for the GA is established as
follows:

f =

(
min (Recall0,Recall1) min (Recall0, Recall1) 6= 0

min (�Prob. recall0,�Prob. recall1) min (Recall0, Recall1) = 0
(1)

As can be seen, the minimum recall will be used in the
cases when this value is not 0, and for the individuals with
a minimum recall of 0, the probabilistic recall will be used.
Note that when maximizing this function, an individual with
a positive minimum recall will always be preferred to an
individual with a minimum recall of 0.

In addition, some minimal modifications are made in the
original crossover and mutation processes of the GA to allow
them to work with the new MTS specific block types and
their parameters, but without altering the original operations.
Finally, an elitist truncation method for the offspring selection
process and the random selection method for the parents
selection process are used.
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During the search process of the GA, the weights of each
individual need to be learned. As long as the loss function
is differentiable, traditional gradient-based learning methods
for deep neural networks [34] can be used for this task.
Ideally, the proposed function (1) would be plugged into any
of these common learning methods, but unfortunately, since
it is not differentiable, this cannot be done. Instead, this first
GA will only focus on optimizing the architecture with respect
to function (1) and the weights will be optimized using the
classical stochastic optimizer called Adam [35], which uses
the cross entropy as a loss function.

In conclusion, the network architecture obtained through
the GA will be specific for time series and will be the one
whose value for the proposed fitness function (function (1))
is the maximum of all those analyzed by the GA.

2) Weights Optimization: Similar to accuracy, the cross
entropy used in the GA of the previous step for learning the
weights of the selected network architecture is not designed
for imbalanced scenarios. Therefore, it is proposed to post-
optimize the weights of the selected network architecture
using function (1) which is more suitable for this highly
imbalanced problem. Since, as mentioned above, function (1)
is not differentiable, it is referred again to GAs.

In this second GA, the individuals will be vectors of
weights. The process of generating the initial population of
the GA consists of taking the vector of weights learned in the
previous step for the best architecture, and applying multiple
random perturbations to it. In this way, the weight vectors are
explored, which are similar to those obtained previously with
the Adam optimizer (resulting from the first GA), but which
will attempt to maximize the function (1).

Regarding the rest of the genetic operations, the following
methods are used: the one-point crossover method [36], the
multiple random perturbations method (which is previously ap-
plied to generate the initial population) as mutation operation,
the elitist selection method for the offspring selection process
and the random selection method for the parents selection
process.

After applying the described learning method, which is com-
prised of the two GAs, both the obtained network architecture
and its weights will be heuristically optimized for maximizing
the minimum recall. The schema of this learning method is
presented in Figure 5. It should be noted that the two classifiers
that are learned in the double-round learning methodology
(see Section II-A) will be trained by following this learning
method.

GA – Network architecture op�miza�on

Fitness func�on: minimum recall
based func�on (equa�on (1)).
Output: best architecture and
trained weights with Adam method.

Individuals: network architectures.

GA – Weights op�miza�on

Fitness func�on: minimum recall
based func�on (equa�on (1)).
Output: refined weights.

Individuals: vector of weights.

Fig. 5. The schema of the proposed classifier. The first GA selects the best
network architecture and the second GA refines the weights of the network
architecture selected in the first GA.

D. Deployment of the Proposed Method
In this section, how the final classifier (the classifier 2 in

Figure 2) is deployed in streaming mode in a real scenario is
explained.

The training phase would be performed offline because it
requires historical operation data from multiple hard drives and
a certain amount of computational resources. The resulting
classifier would be deployed in streaming mode. When the
SMART system collects new daily data stream from the hard
drive operation, the classifier is applied to the stream. If signs
of malfunction are detected, an alert could be reported and
the recovery mode of the hard drives could be automatically
triggered to prevent data loss or the propagation of the
malfunction to other hard drives in the data center.

As can be seen in Figure 6, sliding windows are taken from
the beginning and their class is predicted. If the predicted
class is 0, a correct window, it should wait to gather new
observations, and then it is slid to the next window and the
process is repeated. If the predicted class is 1, a malfunction
window, the analysis of the disk is stopped. Consequently, it
is determined that the disk has signs of malfunction and it is
going to fail in the following days.

NEW HARD DRIVES

1000

0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

Lead time

Lead time

10000
CLASSIFIER 2

CLASSIFIER 2

CLASSIFIER 2

CLASSIFIER 2

CLASSIFIER 2

CLASSIFIER 2

Fig. 6. Diagram of the deployment process followed to apply the final
classifier on new hard drives.

III. EXPERIMENTAL FRAMEWORK

This section describes the benchmark datasets that are
used to test the approach, the parameters that need to be
established and the experiments to compare it with other
related work.

1) Benchmark Datasets: To evaluate the proposed method,
the open data provided by the Backblaze2 company is used.

2https://www.backblaze.com/b2/hard-drive-test-data.html
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Backblaze has thousands of spinning hard drives in their cloud
storage ecosystem spread across data centers. Every day, a
snapshot of each operational hard drive is taken. This snapshot
includes basic drive information along with the SMART
statistics reported by that drive. As previously stated, each
daily snapshot is considered a time step of the corresponding
hard drive streaming MTS.

To design the classifier, the set of SMART metrics that,
according to the experience of experts, indicate imminent
failure3 are chosen. The selected attributes are listed below:

• SMART 5: Reallocated Sector Count. Represents a count
of the malfunctioning sectors that have been found and
remapped. A drive which has had reallocations is signif-
icantly more likely to fail in the immediate months.

• SMART 187: Reported Uncorrectable Errors. Counts the
errors that could not be recovered using the internal error
correcting mechanism.

• SMART 188: Command Timeout. Counts the number
of aborted operations due to timeout. Values larger than
zero may indicate power supply or data cable connection
problems.

• SMART 189: High Fly Writes. Counts the errors detected
when a recording head is flying out of its normal oper-
ating range.

• SMART 197: Current Pending Sector Count. Counts the
”unstable” sectors (waiting to be remapped, because of
unrecoverable read errors).

• SMART 198: Offline Uncorrectable. Represents the total
count of uncorrectable errors when reading/writing a
sector. A rise in the value of this attribute indicates defects
of the disk surface and/or problems in the mechanical
subsystem.

For each attribute, the raw and the normalized values are
reported, which means that every MTS stream contains 12
dimensions.

Backblaze classifies a disk as failed (class 1), when it com-
pletely stops working (does not respond to console commands
or can not be read or written), or when irrefutable evidence
of imminent failure is shown. After the failure, the drive is
removed from the list. Otherwise, if the disk operates correctly
during all the periods of time available, the class associated
to the MTS is “0”. Additionally, new units are introduced
regularly into operation.

Reported data for the same SMART attribute can vary in
meaning and values, depending on the hard drive model and
the manufacturer [13], [22], [37], [38]. Therefore, to ensure
that the behavior is homogeneous for all of the disks in the
dataset, a single hard drive model is chosen. In particular, all
the units of the ST4000DM000 model are selected because it
is one of the models with the highest number of units available
and, at the same time, it has a high number of recorded failures
in comparison with the rest of the models.

Furthermore, the most recent hard drives for the study
are chosen. Specifically, the disks that started working in
the period between the beginning of 2016 and the end of

3https://www.backblaze.com/blog/what-smart-stats-indicate-hard-drive-
failures/

TABLE I
PROPERTIES OF BENCHMARK DATASETS.

Dataset Train/Valid/Test Imbalance
rate

Correct
disks

Failed
disks

Dataset 1
64%/16%/20%

5% 5748 333
Dataset 2 3% 5748 177
Dataset 3 1% 5748 58

2019 are selected. There are also small periods of time when
measurements are not recorded. These missing time steps are
ignored. Finally, it should also be considered that there are
disks that stop recording data even if their failure is not
recorded. These hard drives are discarded for not knowing
the reason for their removal from Backblaze.

In total, there are 333 failed disks and 5748 correct disks
(the imbalance rate is about 5%). To analyze the performance
of the method for higher imbalance rates, two new datasets
with imbalance rates of 3% and 1% are also created. The
procedure for generating these new datasets is the same as
that for the original dataset, but the number of failed hard
drives is reduced. The reduction is made randomly selecting
from the total the number of failed hard drives needed to
obtain the desired imbalance rate. For the 3% imbalance rate
dataset, there are 177 failed disks; for the 1% imbalance rate
dataset, there are 58 failed disks. For each dataset, a stratified
partition is carried out by selecting 80% of the hard drives
for the training and validation subsets and the remaining 20%
for the testing subset. Then, the previously selected 80% is
divided into 80% for the training subset and the remaining
20% for the validation subset. The properties of the datasets
are summarized in Table I.

Finally, the MTS streams are divided into subsequences
through the use of sliding windows. The window size is
set to 200 time steps (days) and the slide to 5 time steps (days).

2) Parameter Settings: In order to perform any experi-
ments, it is necessary to define the parameters of the two
GAs included in the proposed framework. Recall that each
of the GAs is applied twice: once with the initial dataset
that comprises only one window for each disk (One-window
dataset), and one that is built after the double round labeling
of the windows (Labeled-window dataset).

For the first GA, a usual scheme in GAs is followed (see
Section II-C1). Specifically, the probabilities of the crossover
and the mutation are 0.95 and 0.75, respectively. Each mu-
tation type (addition, alteration and removal) has the same
probability of occurrence. Additionally, the population size
and the maximum number of generations are set at 20. Each
individual is trained by the Adam stochastic optimizer [35]
using the cross entropy as a loss function and a maximum of
45 epochs which may be interrupted if the classifier does not
improve during 3 epochs. Depending on the dataset to which
the method is applied, based on preliminary experiments,
different batch sizes and learning rates are used:

• For the One-window dataset, the batch size is set to 60
and the learning rate is initialized to 0.01, decreased to
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0.001 during the 36 to 43 epochs and decreased again to
0.0001 during the last two epochs.

• The Labeled-window dataset is larger and more complex
than the previous one. Therefore, the batch size is set to
128 and the learning rate is initialized to 0.01, decreased
to 0.001 during the 6 to 30 epochs, decreased again to
0.0001 during the 31 to 43 epochs, and for the last two
epochs it is set to 0.0001.

Regarding the definition of the individuals, the number of
LSTM and CNN blocks is limited to a maximum of 3 (for
each type) and to a maximum of 2 for the pooling blocks. In
addition, for the convolutional blocks, the number of layers is
restricted to values between 1 and 8, the available choices for
the output size are 32, 64, 128, 256 or 512 and the kernel size
can be 1, 3 or 5 based on the settings used for CNNs in other
state-of-the-art works. For the LSTM blocks, the number of
layers is restricted to values between 1 and 4 and the output
size can take the following values: 64, 128 or 256. All these
restrictions are applied to limit the computational resources.

For the second GA, the same schema as for the first one
is followed. The parameters for the GA are the same, except
for the population size, which is 50 individuals instead of 20.

3) Experiments to Compare the Proposed Approach with
Other Methods: The objective of the experimentation is to
validate the proposed method. To this end, the results obtained
in the original dataset, Dataset 1 (see Table I), are compared
with those obtained in other related works.

In general, the approaches used in the literature are very
different in nature, in the type of data they require, in the
evaluation metrics they apply, etc. In this sense, carrying out
a fair comparison is not always possible [4], [13]. Taking
this into account, relevant and recent works that have also
addressed the problem as a binary classification problem and
are sufficiently detailed to be replicated are selected. The
methods chosen for comparison are those described below:

• In [17], each daily vector of SMART measurements is
considered an instance of the classification problem. Nine
raw SMART features highly correlated to failure events
are selected. Then, they define the lead-time as a hyper-
parameter to optimize and all the observations inside
this lead-time are labeled as failed samples. In order to
reduce the impact of the class imbalance, they propose
using the SMOTE oversampling technique. Finally, lo-
gistic regression, SVM, random forest (RF) and gradient
boosted tree (GBT) classifiers are applied. They obtain
the best results with a lead-time of 20 observations (days)
together with the SVM with the selected features and
without using the SMOTE, and with the RF and the GBT
with all the features and without using SMOTE. These
three approaches are applied to the previously described
dataset.

• In [16], each daily vector of SMART measurements is
considered an instance of the classification problem. As
in the previous approach, the lead time is preset, but in
this case, sliding windows and a majority voting strategy
are implemented for classification. They apply RF, feed-
forward neural networks and the k-means clustering algo-

rithm for failure prediction. The best results are achieved
with the RF classifier with 7-observations (days) lead-
time and with windows of 3 observations for the majority
voting strategy.

• In [22], the measurements of the SMART attributes over
time are considered a MTS. To address the problem of
failure prediction they follow this process: first, they find
the subset of SMART attributes indicative of disk replace-
ments by identifying those dimensions of the MTS that
have significant change points. After that, they compute
a compact representation of the selected dimensions of
the full-length MTS stream using exponential smoothing.
Each selected dimension of the MTS is compacted into
a single point and consequently, each MTS is compacted
into a vector. The class assigned to each vector will be the
class of the corresponding disk. In order to deal with the
imbalanced dataset, they perform down-sampling of the
correct hard drives via k-means clustering. Only correct
disks that are the nearest neighbors of the k-centroids
are selected. Finally, the regularized greedy forests (RGF)
classifier is trained.

The best performing parameter combinations and features
that are reported in the original papers are directly adopted
and applied to the benchmark dataset. For all the methods, the
evaluation is done at the disk level, establishing the criterion
that a disk is going to fail when they predict an instance or a
set of instances as malfunctioning.

4) Experiments to Analyze the Performance of the Pro-
posed Method in Datasets with High Imbalance Rates:
To verify that the proposed framework is effective in highly
imbalanced scenarios, it is also applied to the datasets created
with imbalance rates of 3% and 1% (see above in Section
III-1).

In addition, the double-round learning methodology is
applied, but the specific function based on the minimum
recall (function (1)) is replaced with accuracy in all the
steps in which it was used. Thus, the classifier will be
learned to maximize the accuracy rather than maximize
the minimum recall. The objective is to verify that, for
imbalanced situations, training a classifier to maximize the
minimum recall of the classes obtains more balanced results
than training it to maximize the accuracy. Henceforth, to
abbreviate, the proposed double-round learning methodology
with the specific function based on minimum recall (function
(1)) is referred to as DRL-Rec and the proposed double-round
learning methodology but with the accuracy as DRL-Acc.

IV. RESULTS AND DISCUSSION

In this section, the obtained results after running the experi-
ments are discussed. It should be noted that, although the pro-
posed approach classifies malfunction and correct windows,
the objective is to predict whether the disk is going to fail
in the following days or not (see Section II-D). Therefore,
the results of the experiments are measured in terms of how
well the hard drives are predicted as correct or failed drives.
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TABLE II
THE OBTAINED RESULTS BY THE PROPOSED METHOD AND THE

STATE-OF-THE-ART METHODS. EACH METHOD IS RUN 10 TIMES. FOR
EACH METHOD, THE AVERAGE AND THE STANDARD DEVIATION OF THE
ACCURACY, THE RECALLS, THE PRECISION, THE FALSE POSITIVE RATE,
THE AVERAGE LEAD TIME OF THE FAILURES AND THE AVERAGE LEAD

TIME OF THE FAILURES RESTRICTED TO CORRECTLY PREDICTED HARD
DISKS FOR ALL THE RUNS ARE PRESENTED.

Method ACC Rec0 Rec1 Prec. FPR LT RLT

DRL-Rec 0,94±0,01 0,96±0,00 0,59±0,06 0,46±0,04 0,04±0,00 65±04 112±13

SVM [17] 0,95±0,00 1,00±0,00 0,04±0,02 1,00±0,00 0,00±0,00 03±03 40±43

RF [17] 0,95±0,00 1,00±0,00 0,14±0,01 0,68±0,03 0,00±0,00 07±01 48±08

GBT [17] 0,95±0,00 1,00±0,00 0,07±0,00 1,00±0,00 0,00±0,00 03±00 34±00

RF [16] 0,95±0,00 1,00±0,00 0,06±0,01 0,74±0,08 0,00±0,00 02±01 30±14

RGF [22] 0,49±0,11 0,47±0,12 0,73±0,05 0,08±0,02 0,53±0,12 224±57 305±63

Considering the stochastic nature of the proposed algorithm
as well as the related work, each method is run 10 times.
For each run, the accuracy (ACC), the recalls of both classes
(Rec0 and Rec1), the precision (Prec, defined as FP/(TP +
FP)), the false positive rate (FPR, defined as FP/(TN + FP))
are reported. Additionally, the lead-time with which the failure
is predicted is defined as the number of observations (days)
from the last observation used to predict the failed disk to
the observation when it really fails (see Figure 6). In contrast,
if all the windows are predicted as 0 up to the last available
one, the disk is classified as a correct disk. The average lead
time of the failures for all the failed drives (LT) and this same
metric restricted to the failed drives that are correctly classified
(RLT) are calculated. Note that the lead time for incorrectly
classified disks is 0.

A. Comparison with The State-of-The-Art

The objective of the first analysis is to compare the proposed
method, DRL-Rec, with other related works and analyze
whether it is an effective solution to the problem of hard drive
failure prediction.

The obtained results for the DRL-Rec and the related work
are presented in Table II. For each method, the average and
the standard deviation of the measures described above for all
the runs are presented. In addition, in Figure 7, a scatter plot
is displayed where, for all the runs of each method, the recall
of the class 0 and the recall of the class 1 are depicted (the
further to the top-right, the higher the recalls).

As Table II shows, the three methods that are proposed in
[17] and the RF model proposed in [16] obtain the highest
accuracy, an average of 95%. These methods correctly classify
all the correct disks as the value of 1 for the recall of this
class indicates. However, these four methods are hardly able
to correctly classify any failed disks, obtaining a very low
recall for class 1. That is problematic because, even if no false
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Fig. 7. Scatter plot with the recall of the class 0 and recall of the class 1 for
all the runs of each method. The further to the top-left, the higher the recalls.
Each method has a different shape and color.

positives are reported, the majority of the failed disks will be
missed, resulting in a high cost.

On the contrary, the RGF model proposed in [22] obtains the
highest values for the recall of the class 1. However, as can be
observed in the table, although an average of more than 70%
of the failed disks is detected, the accuracy is very low due
to the high FPR obtained. Therefore, this model detects most
of the failed disks at the cost of incorrectly predicting more
than half of the correct ones. This would also mean a high
economic cost because many disks would be replaced by new
ones even though they did not show any signs of imminent
failure.

Finally, the DRL-Rec method obtains almost the same
accuracy and recall values for the class 0 as the first 4 methods
and it is able to identify nearly 60% of the failed disks
(significantly more than the first 4 methods). Moreover, when
compared with RGF, although the proposed method does not
reach the recall values for the class 1 of this method, it does
not incur in a high FPR and it maintains a high recall value for
the majority class (significantly higher than the RGF model).
In conclusion, DRL-Rec achieves the most balanced results.
This is confirmed by Figure 7, which shows that for the DRL-
Rec, the points are more to the top-right corner than for the
rest of the methods.

In addition, according to the lead time of the failure predic-
tions, DRL-Rec manages to detect signs of malfunction that
indicate future failure an average of 66 days before it occurs
for all the failed disks and an average of about 112 days for the
correctly predicted failed disks. This provides the user enough
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TABLE III
THE OBTAINED RESULTS BY DRL-REC AND DRL-ACC WHEN APPLIED TO

DATASET 2 AND 3 WITH IMBALANCE RATES OF 3% AND 1%
RESPECTIVELY. EACH METHOD IS RUN 10 TIMES. FOR EACH METHOD,

THE AVERAGE AND THE STANDARD DEVIATION OF THE ACCURACY, THE
RECALLS, THE PRECISION, THE FALSE POSITIVE RATE, THE AVERAGE
LEAD TIME OF THE FAILURES AND THE AVERAGE LEAD TIME OF THE

FAILURES RESTRICTED TO CORRECTLY PREDICTED HARD DRIVES FOR
ALL RUNS ARE PRESENTED.

Dataset 1
5 %

ACC Rec0 Rec1 Prec. FPR LT RLT

DRL-Rec 0,94±0,01 0,96±0,00 0,59±0,06 0,46±0,04 0,04±0,00 65±04 112±13

DRL-Acc 0,94±0,01 0,97±0,01 0,52±0,07 0,47±0,06 0,03±0,01 52±11 99±11

Dataset 2
3 %

ACC Rec0 Rec1 Prec. FPR LT RLT

DRL-Rec 0,95±0,01 0,96±0,01 0,57±0,03 0,33±0,04 0,04±0,01 31±11 55±18

DRL-Acc 0,96±0,01 0,98±0,01 0,30±0,12 0,32±0,08 0,02±0,01 10±05 36±15

Dataset 3
1%

ACC Rec0 Rec1 Prec. FPR LT RLT

DRL-Rec 0,96±0,01 0,96±0,01 0,60±0,08 0,14±0,02 0,04±0,01 61±01 111±15

DRL-Acc 0,97±0,01 0,98±0,01 0,40±0,11 0,17±0,07 0,02±0,01 45±09 117±27

time to take preventive actions. In comparison with the other
methods, it obtains higher lead time values than the first 4
methods and lower values than the RGF model. One reason
why the RGF model obtains higher lead time values may be
that this method is strongly biased towards predicting class
1, and hence it detects the windows of this class the earliest,
even if it missclassifies many correct disks in this process.

B. Comparison of the Proposed Methods in High Imbalance
Rates

The results obtained when applying DRL-Rec and DRL-
Acc to Datasets 1, 2 and 3 are shown in Table III. As for the
previous table, the average and the standard deviation of the
measures described above for all the runs are presented.

It can be observed that DRL-Acc obtains the same accuracy
as DRL-Rec for the Dataset 1 and a slightly higher accuracy
for the rest of the datasets. This makes sense because the
objective of DRL-Acc is to maximize the accuracy. Due to
the imbalance of the class frequencies, it achieves these values
by correctly predicting almost all the correct disks, obtaining
somewhat higher values for the recall of the majority class
than the DRL-Rec.

In contrast, DRL-Rec obtains a notably higher recall for the
minority class than DRL-Acc, but classifies the class 0 almost
as well as it. Moreover, for DRL-Acc, the standard deviation
of the recall of class 1 and of the precision is higher than for
DRL-Rec, especially in Dataset 2. This shows that DRL-Rec
is the most robust method (it has less variability) for correctly
predicting failed disks. Consequently, it can be determined
that by using the proposed function (1), the importance of

both classes is balanced and, even when the accuracy slightly
decreases, more failed disks are predicted with almost no loss
in the predictions of the majority class. This becomes more
evident when the original imbalance rate is increased from 5%
to 3% or 1%. Finally, DRL-Rec manages to detect signs of
malfunction that indicate future failure more days in advance
than DRL-Acc (except for the RLT in the Dataset 1 which is
very similar for both methods).

These results validate the main adaptation proposed to
address the challenge of the imbalanced scenario.

V. CONCLUSIONS AND FUTURE WORK

The objective of this paper is to develop a method for ad-
dressing the hard drive failure prediction problem. The method
is capable of effectively detecting when the hard drive begins
to malfunction, allowing the user to take preventive actions.
This goal is successfully achieved by designing a double-round
learning methodology. It allows training a classifier which can
automatically identify the time series window in which the
hard drive starts to show signs of malfunction instead of setting
a predefined lead time of malfunction, as in previous state-of-
the-art proposals.

In addition, to deal with the imbalanced nature of the
problem, a classifier for MTS that is designed to maximize
a minimum recall based function is proposed rather than the
accuracy-based functions, which are typically used. Specifi-
cally, a deep neural network classifier for MTS is used. Since
traditional gradient-based learning methods for learning neural
network classifiers require a differentiable loss function to
be applied and the minimum recall is not differentiable, a
framework comprised of two consecutive genetic algorithms
(GAs) is proposed that heuristically optimizes the network
architecture and its weights respectively for maximizing the
minimum recall of the classes. Due to this, equal importance
is given to both classes, failed and correct disks, and classifiers
are obtained that tend to equilibrate the recall value of both
classes.

The experimental results obtained when applying the pro-
posed method to the open data provided by the Backblaze
company are compared with the results obtained with other
state-of-the-art methods, showing that the proposed method
obtains the most balanced results in terms of the recall of
both classes. Moreover, in order to analyze the performance
of the proposed method when the imbalance rate is increased,
two additional datasets with higher imbalance rates than the
original rate are generated. The results of this experimentation
highlight the effectiveness of the proposed classifier to deal
with high imbalance rates.

It should be noted that, although it is presented specifically
for the hard drive failure prediction problem, the developed
learning methodology is applicable to other MTS streaming
classification problems. Consequently, future work could focus
on applying it to similar problems that are also highly unbal-
anced. In addition, another possible research line could be to
try to improve the training process of the classifier investigat-
ing how to approximate the proposed minimum recall based
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function with differentiable functions. This would allow the
application of classical techniques such as gradient methods
(instead of applying GAs) for learning the weights.

Finally, if the classifier is operating for a long period of
time, it could be possible that the operating conditions could
change and new types of hard drives could be added to the
data center. As a result, the effectiveness of the classifier
could decrease [39]. An interesting future research topic is
to propose methods to discover when classifier degrades its
performance sufficiently to require intervention.
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