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Abstract—Motivated by the explosive computing capabilities
at end user equipments, as well as the growing privacy con-
cerns over sharing sensitive raw data, a new machine learning
paradigm, named federated learning (FL) has emerged. By
training models locally at each client and aggregating learning
models at a central server, FL has the capability to avoid sharing
data directly, thereby reducing privacy leakage. However, the
traditional FL framework heavily relies on a single central server
and may fall apart if such a server behaves maliciously. To
address this single point of failure issue, this work investigates a
blockchain assisted decentralized FL. (BLADE-FL) framework,
which can well prevent the malicious clients from poisoning
the learning process, and further provides a self-motivated and
reliable learning environment for clients. In detail, the model
aggregation process is fully decentralized and the tasks of training
for FLL and mining for blockchain are integrated into each
participant. In addition, we investigate the unique issues in this
framework and provide analytical and experimental results to
shed light on possible solutions.

Index Terms—Federated Learning, Blockchain, Privacy and
Security

I. INTRODUCTION

Future wireless networks are featured by low latency and
high reliability. Thus, machine learning (ML) embedded in
each device is a ravishing solution that each user equipment
(UE) has the capability to make decisions by its local data,
even when it loses connectivity to the wireless system. Since
the data at each device is limited, the training of on-device ML
models always requires the data exchange among UEs [1].

However, directly exchanging data among UEs may cause
serious risks in privacy leakage and information hijacking
[2]]. To reduce this risk, federated learning (FL) is proposed,
which is a new ML framework that trains an Al model across
multiple UEs holding local datasets. In details, FL allows to
train machine learning models locally at distributed UEs; after
that, the UEs share the parameters of the locally trained models
to a central server (i.e., the aggregator) where a global model
is aggregated. Therefore, the UEs under the FL framework
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have the capability to cooperatively learn a global model
without exchanging their data directly. Moreover, FL has been
applied to real-world applications, including health care and
autonomous driving [3].

Although FL shows its effectiveness in preserving privacy,
it still endures several limitations. First, in the FL process, the
single centralized aggregator is assumed to be trustworthy and
it shall make fair decisions in terms of the user selection and
aggregation. However, this assumption is not always appropri-
ate, especially in the real-world operations. This is because a
biased aggregator can intentionally emerge prejudice to a few
selected UEs, thereby damaging the learning performance [/1]].
Second, the aim of FL is restricted to applications orchestrated
by the centralized aggregator. As a result, the resiliency of an
aggregator depends on the robustness of the central server,
and a failure in the aggregator could collapse the entire FL
network. Then, although local data is not explicitly shared
in the original format, it is still possible for adversaries
to reconstruct the raw data approximately, especially in the
aggregation process. In particular, privacy leakage may happen
during model aggregating by outsider attacks. Lastly, the
existing design is vulnerable to the malicious clients that might
upload poisonous models to attack the FL network [4].

As a secure technology, blockchain has the capability to
tolerate single point failure with distributed consensus, and
it can further implement incentive mechanisms to encourage
participants to effectively contribute to the system [5]]. There-
fore, blockchain is introduced to FL to solve its limitations
mentioned above. In [5]], a blockchained FL architecture was
developed to verify the uploaded parameters and it investigated
the related system performances, such as the learning delay
and the block generation rate. Moreover, work [6] proposed
a privacy-aware architecture that uses blockchain to enhance
security when sharing parameters of machine learning models
with other UEs. In addition, the authors in [7[] proposed a
high-level but complicated framework by enabling encryption
during model transmission and providing incentives from
participants, and the work [8]] further applied this framework in
the defensive military network. With the advanced features of
blockchain such as tamper-proof, anonymity and traceability,
an immutable audit trail of ML models can be created for
greater trustworthiness in tracking and proving provenance [9].
In addition, security and privacy issues of the decentralized FL
framework are investigated in [6], [10], [[11], which delegate
the responsibility of storing ML models to a trust community
in the blockchain. However, the assumption on the trust



community may infer the same privacy issue when ML models
transmitting over air, and the credibility of this community
also needs further verification. In addition, these works have
either not clearly clarified and fully addressed the incident
issues, such as the long learning delay and the impact of
blockchain forking on FL, or have difficulty in application.
Thus, in this work we have fully detailed the whole process
of blockchain assisted decentralized FL. (BLADE-FL), which
has the capability to overcome the single point of failure
problem. In addition, we further investigate the residual issues
that exist in the BLADE-FL framework, and provide related
solutions. In detail, we present the design of the BLADE-FL
framework in Sec. II, and residual issues including privacy,
resource allocation and lazy clients are investigated in Sec. III.
In Sec. IV we provide extensive experimental results to show
the effectiveness of the corresponding solutions. Finally, future
directions and conclusion are drawn in Sec. V.

II. THE FRAMEWORK OF BC-FL

With the aid of blockchain, we aim to build up a secure and
reliable FL. framework. To ensure this, the model updating
process of FL is decentralized at each participating client,
which is robust against the malfunction of traditional aggre-
gators. In this article, we detail the BLADE-FL framework, to
achieve a dynamic client selection and a decentralized learning
aggregation process.

The BLADE-FL framework is composed of three layers.
In the network layer, the network features a decentralized
P2P network that consists of task publishers and training
clients, wherein a learning mission is first published by a task
publisher, and then completed by the cooperation of several
training clients. Different from previous work that model
aggregation happens in a trust community in the blockchain
[5]-[11], we realize a fully decentralized framework that
each client needs to train ML models and mine blocks for
publishing aggregating results. In the blockchain layer, each
FL-related event, such as publishing a task, broadcasting
learning models, and aggregating learning results, is tracked
by blockchain. In the application layer, the SC and FL are
utilized to execute the FL-related events. Next, we will detail
the working flow and key components of the BLADE-FL
framework.

A. Working Flow

As shown in Fig. [I] the working flow of the proposed

framework operates in the following steps:

e Step 1: Task publishing and node selection. A task
publisher broadcasts a FL task through deploying a SC
over the blockchain network. In the deployed SC, the task
publisher needs to deposit reward as financial incentives
to the learning task. The SC selects available training
nodes to participate in this learning task.

o Step 2: Local model broadcast. Each training client runs
its local training by using its own data samples and
broadcasts its local updates and the corresponding pro-
cessing information (e.g., computation time and local data
size) over the P2P network. Privacy leakage may happen

during this transmission, and we further investigate this
issue in Sec. III-A.

o Step 3: Model aggregation. Upon receiving the local
updates from other training nodes before a preset time-
stamp, each client updates the global model according to
the aggregating rule defined in the SC.

o Step 4: Block generation. Each training client changes
roles from trainer to miner and begins mining until either
it finds the required nonce or it receives a generated block
from other miners. The learning results are stored in the
block as well. When one miner generates a new block,
other clients verify the contents of this block (e.g., the
nonce, the state changed by SC, the transactions, and the
aggregated model). The resource allocation issue happens
in each client in this step, and related discussions will be
given in Sec. III-B.

e Step 5: Block propagation. If a block is verified by
the majority of clients, this block will be added on the
blockchain and accepted by the whole network. The lazy
client issue happens in this step and we further investigate
it in Sec. III-C.

o Step 6: Global model download and update. Each training
client downloads the aggregated model from the block
and performs updates before the next round of learning.

o Step 7: Reward allocation. The SC deployed by the task
publisher rewards the training clients according to their
contributions in the learning task.

Before delving into each step, we elaborate on key designs
in the BLADE-FL as follows.

B. Smart Contract Design

Smart contracts are self-executing contracts defining rules
for negotiating, verifying the fulfilment of rules and exe-
cuting the agreement using the formal code. The BLADE-
FL framework relies on SC to enable trusted dynamic client
selections in terms of desired distributed learning services,
without relying on a centralized authority. Moreover, BC-
FL enables all clients to verify the learning results that are
recorded on the blockchain, whereby distributed clients can be
incentivized to participate and untrusted learning models can
be detected. Based on the verification results, the reputation of
each distributed client can be automatically updated, making
the selection of learning nodes more reliable. In addition, the
design of SC in the BC-FL also includes the aggregating rules,
and thus provides a fair and open rewarding feedback for
participating clients. The SC in BC-FL enables three main
functions as follows:

Function 1: Learning task publishing. A task publisher
broadcasts a FL task through SC to all users. The SC contains
the task requirements (e.g., the data size, training accuracy,
latency, etc.), the aggregating rules and rewards paid by the
task publisher.

Function 2: Dynamic bidding for requests and automatic
incentive. Distributed training nodes, acting as auctioneers,
bid for the task by replying their costs and capabilities. Note
that in order to enforce accountability, each training client has
to stake a deposit to the SC. The task replies from training
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Fig. 1. The working flow of the blockchain assisted decentralized federated

nodes are recorded on the blockchain by the SC. Then the
SC selects training clients with more valuable replies (e.g.,
higher capability and lower cost) as the bid winners to jointly
execute the FL task. The training clients that lose the bidding
will reclaim their deposits from the SC, while the deposits
made by winners will be automatically refunded if the learning
results are verified to be trustworthy afterward.

Function 3: Learning results aggregation and rewards feed-
back. Before generating a new block, each client will aggregate
the uploaded models according to the aggregating rule in
SC, in which the contribution of each one in the aggregated
model is also recorded in the newly generated block. Then
SC is automatically triggered to reward the miner that helps
aggregate the learning model and the training clients that
contribute to the FL process.

C. The BLADE-FL Design

The main purpose of the BLADE-FL is to enable a
trusted cooperative machine learning among distributed nodes.
The decentralized accountability enables all miners to verify
the quality of uploaded models that are recorded on the
blockchain. In addition, distributed training nodes can be
motivated to participate in the FL process and misbehaving
ones can be recognized from providing low quality of FL
services. The key steps are illustrated as follows:

Local model update and upload: Training nodes are
bid winners with capable devices and available sets of data
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aggregating learning models,
some clients may directly copy
models from other honest ones
and save computing resources
to gain more profits, which will
degrade the learning

performance.

Process
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samples. In each learning iteration, each training node updates
a local ML model in a parallel manner by using the global
model and its local data samples, and broadcasts its local
model in the network. This article considers that local updates
can be received by all miners through the gossip protocol [[12]]
over the P2P network. In this context, the aggregation process
in the traditional FL is decentralized to each client that stores
the uploaded models in its model pool, respectively.

Model aggregation: After collecting the uploaded models
in the pool, each client calculates the global model updates
according to the aggregating rule in SC. In the proposed
architecture, the clients are designed to aggregate the learning
parameters truthfully through a distributed ledger. Similar to
the prevailing block structure in [6], each block in a ledger
consists of the body and header parts. Concretely, the body
stores the local model updates, such as the local data size
and computing time of the associated training node and the
aggregated learning parameters. The header contains the in-
formation of a pointer to the previous block, block generation
rate, and the output value, such as the proof of work (PoW),
in the consensus protocol.

Model recording and publishing: The clients record the
the aggregated models in their block and publish the recorded
models by broadcasting the generated block to the whole
network. The blocks can be generated by using distributed
or lightweight consensus protocols, such as PoW, proof of
stake (PoS), delegated PoS (DPoS), etc. [[13[]. In this article,
we consider PoW due to its strong security over decentralized



networks. This article uses a synchronous schedule to ensure
that all miner start mining at the same time Once a client
find the hash value, its candidate block becomes to be a new
block, and this block generation rate is controlled by the PoW
difficulty. Then, this generated block is broadcasted to all other
miners in the framework. All the other miners need to verify
the nounce and the aggregated results contained in this block.
For example, clients can compare the aggregated results with
the one in the publishing block or use a public testing dataset
to justify the effectiveness of the uploaded models. If the
verification result is correct, other clients will accept it as a
legal block and record it; otherwise, others will discard this
generated block and continue to mine on the previous legal
block.

Reward allocation: The task publisher provides learning
rewards for the participating training nodes, and the volume
can be proportional to the size of training data. It is noted that
the reward mechanism can be further mended by combining
consider the data size and the quality of data samples. In
this case, clients are responsible to verify the trustworthiness
of local updates after aggregation, to address the situation
that untruthful UEs may exaggerate their sample sizes with
abnormal local model updates. Specifically, when clients
calculate the rewards to each training node, they can give
scores/reputations to the training nodes based on the model
qualities. In the next aggregation, nodes with low scores will
be given less weights, and identified and gradually ignored
during the learning. In practice, this can be guaranteed by
Intel’s software guard extensions, allowing applications to be
operated within a protected environment, which has already
been used in the blockchain technologies [14]. In addition,
miners can also obtain rewards from mining and aggregating
models, which can be treated as a gas tax in the traditional
blockchain.

III. UNIQUE ISSUES AND POTENTIAL SOLUTIONS

In this section, we describe three critical issues that the pro-
posed framework may confront with, namely privacy, resource
allocation, and lazy clients

A. Privacy

In the BLADE-FL, the roles of each client includes mining
and training. To aggregate the global model, the trained local
model will be published among clients which raises privacy
issues. Previous works [S]|—[11]], usually artificially assign the
training and mining tasks to two disjoint sets of clients, and
widely adopt that the miners are always trustful. However,
if there exists an eavesdropper in the wireless environment,
the published information of local models can cause privacy
leakage. To address this, a differentially private mechanism
can be implemented at the client side. In detail, keys steps are
listed as follows:

o Each client sets up a self-required privacy level for itself
before training. For example, the i-th client may have
a local privacy budget ¢;. Note that a small value of ¢;
represents a high local privacy level, and will induce more
additive noises on the parameters.

o To achieve a local differential privacy (LDP), each client
will add a random noise which follows a certain distri-
bution on the uploaded models. For example, a random
Gaussian noise N (0, 0?) or a Laplace noise Lap(\) will
be added. Note that, a large noise power, i.e., sigma2
implies a high privacy level.

o Upon receiving the perturbed models, all clients can
aggregate the global model locally, and store it in the
generated block. Because of the injected noise, the learn-
ing convergence as well as the system performance will
be negatively affected. A tradeoff between the privacy
requirement and the learning performance needs further
investigation. In addition, an non-uniform allocation of
additive noise over communication rounds may improve
the learning performance. For example, a decay rate
for the noise power can be applied when the learning
accuracy between two adjacent communication rounds
stops improving [15].

B. Computing Resource Allocation

Since the computation resource is limited at each client,
each participant needs to appropriately allocate the resources
for local training and mining to complete the task. Specifically,
more computing resources can be devoted to either faster
model update or block generation. To meet the specific task
requirements, such as learning difficulty, accuracy, and delay,
each node optimizes its allocation strategy to maximize its
reward under constraints of local capability.

According to the constraints, the computation resource
allocation can be formulated as an optimization problem under
the accurate mathematical model. In details:

o The block generation rate is determined by the com-
putation complexity of the hash function and the total
computing power of the blockchain network (i.e., total
CPU cycles). The average CPU cycles required to gener-
ate a block can be defined as kcg, where k denotes the
mining difficulty, and cp denotes the average number of
total CPU cycles to generate a block. Thus, the average
generation time of a block (¢g) can be expressed as ];TC;’
where NN is the number of clients, and f denotes the CPU
cycles per second of each client.

o The training time consumed by each training iteration ¢y
can be expressed as [Dler where | D| denotes the number
of samples of each client, and cy denotes the number of
CPU cycles required to train one sample.

o Considering that a typical FL learning task is required
to be accomplished within a fixed duration of Tgy, it
should satisfy that K (7tr+tg) < Tsum, where K denotes
the total communication round, and 7 denotes the local
training epoches. Thus, to achieve a required learning
performance, an appropriate choice for the communica-
tion round K should be investigated under a certain ratio
between the computing and mining time.

C. Lazy nodes

As the verification is processed locally, a lazy client may not
perform local learning and directly copy uploaded parameters



from other clients to save its computing resource. As a result,
the client can devote more mining resources to reaping more
mining rewards with a higher probability. However, this action
significantly degrades the network learning performance. To
investigate the effect of lazy nodes on the system performance,
we provide related experimental results in Sec. V-D.

To address the lazy client issue, we can implement a signa-
ture process at each client, which is based on the pseudo-noise
(PN) sequence. Note that the signature mechanism here is
completely different from the digital signature. What we need
is a signature that is resilient to noise perturbation because the
lazy clients are likely to perturb the plagiarized local models to
hide the misbehavior. This process will introduce a negligible
burden to the system but can provide a high detection accuracy.
In details,

o Before broadcasting the local updates, each client will
produce a PN sequence with a length L, where L is
usually a very large number (larger than the number of
model parameters) and we select a same length with
model parameters and add them to the updates. This PN
sequence has a high self-correlation coefficient and is
hard to detect or re-produce by other clients. At least,
the complexity of detecting the PN sequence should be
much larger than that of training the neural network so
as to deter the attempt to discover the used PN sequence.

o Upon receiving local updates from the other clients,
each client will use its own PN sequence to check the
correlation coefficient with the updates. If there exists
high peaks in terms of the cross-correlation coefficient,
then the lazy clients will be detected.

e Once a lazy client is recognized by a local client, this
client can publish the previously used PN sequence
to others and invite other honest clients to verify this
process. Then any future updates from the lazy client
might be discarded as punishments.

IV. EXPERIMENTAL RESULTS AND PROBABLE SOLUTIONS

In this section, we provide some experimental results to
show the issues in the multi-functional miner in the proposed
BLADE-FL system.

A. System setup

For each experiment, we first divide the original training
data into non i.i.d. training sets, locally compute a stochastic
gradient descend (SGD) update on each dataset, and then
aggregate updates to train a globally shared classifier. We eval-
uate the prototype on the Fashion-MNIST dataset and Cifar-
10 data. In the following results, we collect 20 runs for each
experiment and record the average results. For the blockchain
setup, we set the total computation resource Tsyy, = 200 for
each training node, and the total number of clients is set to
N = 20. In each communication round, each client uses tg
time resources to generate a block and ¢y time resources to
pursue a learning epoch, where tg = 2 for all experiments.
Let 6 = tr/tg, and a larger 6 implies that the client spares
more computing resources to learning in each communication
round.
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B. Investigation on the local differential privacy

In this subsection, we apply local differential privacy on
each client by adding random Gaussian noises on the uploaded
models in each communication round. The testing accuracies
of the Fashion-MNIST and Cifar-10 dataset are plotted in
Fig. 2] with respect to different privacy levels e. In addition, an
adaptive noise decaying method is compared with the constant
one, which will decrease the noise power when the accuracy
stopes increasing. As can be observed in this figure, the system
achieves a higher performance with a larger value of €, which
is under a weaker privacy protection, and the adaptive method
can further improve the learning performance under the same
level of privacy protection.

C. Investigation on the resource allocation

In this subsection, we mainly present the results for the
resource allocation, and the training loss value with different
ratios (6) of both datasets are represented in the Fig. [3]

As can be found in Fig. 3] the system performances for
different ratios are investigated with the increasing number
of total communication rounds. In details, we can find that
there exists an optimal total communication round (K) for
each computing ratio 6. For example, the smallest training
loss value can be obtained if clients end learning in 14



TABLE I
THE DETECTING RATE WITH DIFFERENT PN SEQUENCE POWER IN THE
FASHION-MNIST AND CIFAR-10 DATASETS

Signal to Noise Ratio | 9 dB 6 dB 3 dB
Fashion-Mnist 0.931 | 0.989 | 0.999
Cifar-10 0.925 | 0.975 | 0.996
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Fig. 4. Learning performance with/without lazy clients detection

communication rounds with 15 learning epochs in each round
when 7 = 1 in the Fashion-MNIST dataset. Moreover, for
different computing ratios, the optimal loss value tends to be
different. This is due to the fact that the optimal number of
local learning epoch is different with various 6. In addition,
similar trends can be found in the Cifar-10 dataset.

D. Investigation on the lazy nodes

In this subsection, we investigate the impact of lazy clients
on the proposed framework. We use signal to noise ratio
(SNR) to denote the ratio between the power of original model
parameters and that of the injected PN sequence, and Table [I|
represents the detecting rate of lazy clients under different
SNRs. If the high peaks in terms of the cross-correlation
coefficient surpass a predefined threshold, we can identify this
client as a lazy one. We generate a 2'° length of PN sequence
and use the first 25400 values to add on the parameters. From
the results with different SNRs, the detecting performances are
remarkable and we can obtain a nearly 100% rate to recognize
the lazy clients when SNR=3 dB. Then Fig. 4] shows the PN
sequence protecting performance (SNR=6 dB) when there are
30% (6) lazy clients in each communication round. As can
be found in this figure, the system performance with a certain
percentage of lazy clients degrades sharply, i.e., 22.1% and
19.6% reduction in the Fashion-MNIST and Cifar-10 datasets,
respectively. In addition, the proposed PN sequence protection
method achieves 18% and 13.8% performance gain in each
dataset, respectively.

V. FUTURE DIRECTIONS AND CONCLUSION

In this article, we have reviewed the weakness of FL and
further investigated a blockchain assisted decentralized FL,
called BLADE-FL. We then showed the effectiveness that the
BLADE-FL can well address the potential issues, especially
the single point of failure issue, existing in the traditional FL
system. In addition, we have investigated the newly raising
issues including privacy, resource allocation and lazy clients.
Lastly, we have further provided related possible solutions
and experimental results to solve these issues, which provide
guidelines to the design of the BLADE-FL framework. For
future directions, some asynchronous and heterogenetic inves-
tigations for different capabilities of clients, such as computing
capability, training data size and transmitting diversity, as
well as the smart contract design which provides reasonable
rewards allocation for training and mining can be considered
in the system. In addition, the light-weight model transmitting
using quantization and sketch may be an alterative way to
reduce the transmission cost.
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