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Abstract

Many state-of-the-art evolu-
tionary algorithms (EAs) can
be categorized as sequential

hybrid EAs, in which various EAs are
sequentially executed. The timing to
switch from one EA to another is critical
to the performance of the hybrid EA
because the switching time determines the
allocation of computational resources and
thereby it helps balance exploration and
exploitation. In this article, a framework
for adaptive parameter control for hybrid
EAs is proposed, in which the switching
time is controlled by a learned agent rather
than a manually designed scheme. First the
framework is applied to an adaptive differ-
ential evolution algorithm, LSHADE, to
control when to use the scheme to reduce
the population. Then the framework is
applied to the algorithm that won the
CEC 2018 competition, i.e., the hybrid
sampling evolution strategy (HSES), to
control when to switch from the univari-
ate sampling phase to the Covariance
Matrix Adaptation Evolution Strategy
phase. The agents for parameter control in
LSHADE and HSES are trained by using
Q-learning and deep Q-learning to obtain
the learned algorithms Q-LSHADE and
DQ-HSES. The results of experiments on
the CEC 2014 and 2018 test suites show
that the learned algorithms significantly

outperform their counterparts and some
state-of-the-art EAs.

I. INTRODUCTION
Evolutionary computation has been stud-
ied since the 1950s [1] and many promis-
ing evolutionary algorithms (EAs) have
been proposed for solving black-box opti-
mization problems, such as the genetic
algorithm (GA), [2] differential evolution
(DE), [3], [4] particle swarm optimization
(PSO), [5] evolution strategies (ES), [6]
and evolutionary programming (EP) [7].

The successful application of an EA
depends on a variety of factors, including
but not limited to the incorporation of
prior knowledge of the optimization prob-
lem at hand, the design of the algorithmic
components (including the recombination
and selection operators), and the determi-
nation of the algorithmic parameters. The

algorithmic parameters of an EA signifi-
cantly influence its performance. In the
previous work [8], these algorithmic para-
meters were categorized as either structural
or numerical. The structural parameters of
an EA control the algorithmic procedure
and hence influence the computational
complexity of the algorithm. Taking a
hybrid EA as an example, when to switch
fromone EA phase to another is an impor-
tant structural parameter. Parameters such
as the scaling factor (F) and the crossover
rate (CR) in DEs, and the crossover and
mutation probability in GAs can be classi-
fied as the numerical parameters, which
are usually directly responsible for the gen-
eration of offspring.

The process of finding the optimal
time-invariant parameters of EAs is com-
monly referred to as “parameter tuning”
[9]. To find the optimal parameters, the
“parameter response function,” i.e., the
metric that measures the performance of
the considered EA, is usually optimized.
Considering the intrinsic randomness of
the EA, its performance should be mea-
sured by executing it several times for
each set of parameter configurations,
which is highly time consuming. Fur-
thermore, information on the derivatives
of the parameter response function is usu-
ally unknown. These factors make
parameter tuning an expensive optimiza-
tion problem [9].

IMAGE LICENSED BY INGRAM PUBLISHING

Digital Object Identifier 10.1109/MCI.2022.3222057
Date of current version: 13 January 2023

Corresponding author: Jianyong Sun (e-mail:
jy.sun@xjtu.edu.cn).

84 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | FEBRUARY 2023 1556-603X � 2023 IEEE

Authorized licensed use limited to: Universiteit Leiden. Downloaded on March 13,2024 at 13:52:03 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-7395-1147
https://orcid.org/0000-0001-7395-1147
https://orcid.org/0000-0001-7395-1147
https://orcid.org/0000-0001-7395-1147
https://orcid.org/0000-0001-7395-1147
https://orcid.org/0000-0002-9188-1856
https://orcid.org/0000-0002-9188-1856
https://orcid.org/0000-0002-9188-1856
https://orcid.org/0000-0002-9188-1856
https://orcid.org/0000-0002-9188-1856
https://orcid.org/0000-0001-6768-1478
https://orcid.org/0000-0001-6768-1478
https://orcid.org/0000-0001-6768-1478
https://orcid.org/0000-0001-6768-1478
https://orcid.org/0000-0001-6768-1478


Time-variant (or adaptive) parameter
control has been more popular in recent
work on EAs than the use of time-invari-
ant parameters. Parameter control means
adaptively setting the parameters of an EA
during the evolutionary search process.
This has mostly involved the adaptive
control of numerical parameters, such as F
andCR in DE, [10], [11], [12] in the liter-
ature. By contrast, few studies have con-
sidered controlling such structural
parameters as the population size [13].
Further, almost all adaptive mechanisms
have been designed heuristically, which
may restrict the capacity of the control
mechanism because finding the optimal
mechanism is challenging and time-con-
suming, and the ability of humans for
searching is limited. In this paper, the
search for the optimal control mechanism
is modeled as a “learning” problem based
on the recently proposed “learning-to-
optimize” technology [14], [15].

The basic idea of “learning-to-opti-
mize” is to learn useful knowledge by
optimizing related problems and using
this knowledge to optimize new prob-
lems efficiently. In this paper, we propose
applying this idea to design an adaptive
mechanism for structural parameters in
sequential hybrid EAs. A sequential
hybrid EA is composed of several phases
in a combination of EAs. The underlying
idea is to use the advantages of different
EAs in different stages of search to ensure
excellent algorithmic performance. The
timing to switch from one phase to
another is thus critical for performance.

Due to the randomness of the search
process of an EA, one way to find the
optimal adaptive mechanism to determine
the switching time is via reinforcement
learning (RL), which is based onmodeling
the search process of the EA as a Markov
decision process (MDP). In this paper, we
propose training an agent to control the
switching time by using two popular RL
algorithms: Q-learning and deepQ-learn-
ing [16]. Our contributions can be sum-
marized as follows:
❏ An RL-based framework for

sequential hybrid EAs is proposed,
for the first time in the literature, in
which the switching time is con-
trolled by an RL agent that learns by
using Q-learning/deep Q-learning.

❏ The framework is applied to the
HSES [17] and a modified version
of LSHADE, and the resultant algo-
rithms are called DQ-HSES and Q-
LSHADE.

❏ The proposed algorithms are evaluated
by comparing them with three well-
known EAs on the CEC 2014 and
2018 test suites. The results show that
DQ-HSES and Q-LSHADE can sig-
nificantly outperform their counter-
parts, i.e., the HSES and LSHADE,
respectively. Further, the results show
that DQ-HSES outperforms the com-
pared EAs in general, which implies
that the learned RL agent can signifi-
cantly improve the performance of
existing sequential hybrid EAs.
The remainder of this paper is orga-

nized as follows: Section II briefly introdu-
ces related work, including studies on
parameter tuning/control, and provides
the preliminaries on learning-to-optimize
and reinforcement learning. Section III
details the proposed Q-learning-based
framework for the adaptive control of the
structural parameters. Its applications to
LSHADE and HSES are presented in
Sections IV and V, respectively.
Sections VI and VII show the experimen-
tal results obtained on the CEC 2014 and
2018 test suites, and Section VIII summa-
rizes the conclusions of this paper.

II. RELATED WORK AND
PRELIMINARIES

A. Parameter Tuning and Control

1) Parameter Tuning
Parameter tuning refers to the process of
choosing a set of optimal parameters for
an EA. Derivative-free methods of opti-
mization, such as the Bayesian Optimiza-
tion Algorithm (BOA) [18], Sequential
Model based Algorithm Configuration
(SMAC) [19], and Parameter Iterative
Local Search (ParamILS) [20], are often
used for parameter tuning in EAs.

Roman et al. [21] used the BOA to tune
the parameters including the spread
parameter, the population size, and the
offspring size in their hybrid kernel esti-
mation of the distribution algorithm.
Huang et al. [22] used the BOA to tune
the numerical parameters of an EA called
the scalable approach based on hierarchi-
cal decomposition [23].

2) Parameter Control
Three mechanisms are mainly used to
control numerical parameters. First a
numerical parameter is generated/sam-
pled randomly in each generation. In
SaDE [24], for example, F is sampled
from a Gaussian distributionNð0:5; 0:3Þ
in each generation for each individual. In
SaNSDE [25], F is set based on either a
fixed normal distribution or a Cauchy
distribution.

In the second mechanism to control
numerical parameters, the parameter is
generated adaptively based only on infor-
mation collected during the evolution
process. In JADE proposed by Zhang
et al. [10], the scaling factor F (resp., the
crossover rate CR) is generated from a
Cauchy (resp., Gaussian) distribution in
which the median (resp., mean) is the
Lehmer mean (resp., arithmetic mean) of
successful parameters in the last genera-
tion. Some well-known DEs, such as
LSHADE [12], iL-SHADE [26], and jSO
[27], have the same mechanism as JADE.
In the adaptive PSO proposed by Zhan
et al. [28], the inertia weight and the
acceleration coefficients are adaptively
generated according to information col-
lected during the evolution process.

In the third mechanism, the numeri-
cal parameters are controlled by both a
handcrafted mechanism and information
collected during the evolution process. In
jDE [29], F and CR are either inherited
from the last generation or sampled from
pre-fixed uniform distributions for each
individual. CoBiDE [30] samples F and

An RL-based framework for sequential hybrid EAs is
proposed, for the first time in the literature, in which
the switching time is controlled by an RL agent that
learns by using Q-learning/deep Q-learning.
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CR from bimodal Cauchy distributions
with parameters that are fixed in advance
in each generation for each individual if
the individual does not improve fitness;
otherwise, the parameters are inherited
from the last generation.

Most EAs fix such structural parame-
ters as the population size during the evo-
lutionary procedure [13]. Few studies
have investigated the adaptive control of
the population size. According to a review
by Piotrowski [13], research on the adap-
tive control of the population size can be
categorized into four classes. The first class
of methods is based on self-adaptation at
the individual level. In [31], each individ-
ual is assigned a coefficient that is updated
during the evolutionary process. The
coefficients are used to update the popula-
tion size. In the second class of methods to
adaptively control the population size,
population size is negatively correlated
with the diversity of fitness in each genera-
tion [32]. In the third class of methods, the
population size is set based on improve-
ments in fitness in recent generations [33].
That is, the population size increases if the
best fitness does not improve in a number
of generations; otherwise decreases. In the
fourth class, the population size is adap-
tively reduced, such as the linear popula-
tion size reduction (LPSR) strategy
proposed in LSHADE [12]. The LPSR
strategy has also been used in several
recently developed adaptive DEs, such as
MPEDE [34], iL-SHADE [26], and jSO
[27] Zhu et al. [35] proposed adaptively

increasing or reducing the population size
based on observations during the evolu-
tionary procedure.

Structural parameters other than the
population size also often appear in
hybrid EAs [36], [37], [38]. The fre-
quency of local search, the number of
fitness evaluations assigned for local
search, the fraction of individuals used to
perform local search, and the selection of
the recombination operators can be con-
sidered to be structural parameters in a
hybrid EA. In the algorithm that won
the CEC 2018 competition, the hybrid
sampling evolution strategy (HSES)
[17], the switching time from adaptive
univariate sampling to CMA-ES is also a
structural parameter.

The structural parameters in hybrid
EAs are largely responsible for allocating
computational resources to different
phases of the EA to balance exploration
and exploitation. The adaptive setting of
the structural parameters in hybrid EAs is
often handled manually. Taking EP/LS
[37] as an example, the EP phase termi-
nates when the value of the penalty func-
tion is smaller than a pre-fixed value and
the value of the optimization function in

the current generation is smaller than
that in the previous generation. In PSO/
DE [39], the computational resources are
allocated according to the number of
non-dominated solutions obtained. The
univariate sampling phase in HSES [17]
is executed for fixed generations and the
CMA-ES phase is then applied. SaDE
[24] summarizes historical information
during the search procedure and uses it
to adaptively select operators from a pool
of mutation operators in each genera-
tion. cDE [40] defines a candidate pool
of operators and selects the best one
based on the number of success of each
operator. MPEDE [34] divides the pop-
ulation into four parts, and assigns three
of them to three DE operators and the
fourth to the operator that delivers the
best performance in the previous several
generations. The notations used in this
paper are listed in Table I.

B. Learning-to-Optimize Technology
The deep neural network is typically
used in the implementation of learning-
to-optimize to represent the knowledge
learned for optimization. Andrychowicz
et al. [14] proposed learning the descent

TABLE I The notations used in the paper.

NOTATIONS EXPLANATION NOTATIONS EXPLANATION

// Reinforcement learning

S � RD D-dimensional state space at the action at the t-th time step

A � Rd d-dimensional action space pðat jst ; uÞ the policy with parameter u

m0 initial distribution of the state pðstþ1jat ; stÞ the transition probability

r 2 R the reward vðsÞ the state-value function

T the time horizon limit Qðs;aÞ the action-value function

st the state at the t-th time step Qðs;a;wÞ deep Q network with parameter w

//Q-LSHADE and DQ-HSES

LPSR linear population size reduction Nmin;Nini the minimum and initial population size

nfes the number of fitness evaluations nfess the parameter used to decide when to use LPSR

HPSS the hybrid population size strategy LSHADEo the original LSHADE

LSHADEf the LSHADE with fixed population size LSHADEc the LSHADE with HPSS

In Alg. 1, the involved functions, including Collect(�������),
Represent(�������) and theQ-table or network, depend on
specific EA. In the following sections, this framework is
applied to twowell known hybrid EAs, i.e. LSHADE [12]
andHSES [17].
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direction in the gradient descent algo-
rithm by using a recurrent neural net-
work called long short-term memory
(LSTM) [41]. Wang et al. [42] used
LSTM to learn the hyper-parameters of
the commonly used training algorithm
ADAM [43], and Chen et al. [44] used
RNN to decide promising iterates for
derivative-free problems. Li et al. [15]
used RL to learn to optimize continuous
optimization problems.

The application of learning-to-opti-
mize is still in its infancy. Sharma et al.
proposed using deep Q-learning to
adaptively select operators from a pool
of mutation operators in a hybrid DE
[45]. In preliminary work for this paper
[8], Q-learning was used to tune the
switching time of HSES. This along
with prevalent studies show that learn-
ing-to-optimize can be advantageous
for the successful application of EAs in
the following ways: First, it can realize
the automatic tuning/control of the
structural parameters to not only signifi-
cantly reduce the amount of computa-
tional resources required for tuning, but
also to improve the efficiency of tun-
ing/control. Second, it can inspire the
learning of new EAs.

C. Markov Decision Process and
Reinforcement Learning
Reinforcement learning (RL) is a key
technology in Artificial Intelligence. It
has been applied to solve different control
tasks, such as the game of GO [46], Atari
games [47], and robot control [48]. It can
be modeled as a Markov decision process
(MDP) [49], which is defined by the
tuple ðS;A;m0; p; r;p;TÞ, where S �
RD denotes the state space, A � Rd the
action space, m0 the initial distribution of
the state, r 2 R the reward, and T the
time horizon. D (resp., d) is the number
of dimensions of the state space (resp.,
action space), and is problem dependent.
At each time step t, st 2 S and at 2 A are
the current state and the action,

respectively. The policy is then defined
as: p : S � A ! R, where pðat jst ; uÞ is
the probability of choosing action at
when observing st with u as the parame-
ter. pðstþ1jat ; stÞ is the transition
probability.

Figure 1 shows a finite-horizonMDP.
Starting from an initial state s0, an action
a0 is taken based on the policy pða0js0; uÞ.
s1 is observed according to the transition
probability pðs1ja0; s0Þ, and a reward r1 is
obtained. This procedure is repeated until
the horizon limit T is reached. The set
fs0; a0; r1; . . . ; aT�1; rT ; sTg is called a
trajectory.

The aim of RL is to find an optimal
policy p� such that the expectation of
the cumulative reward, i.e., RðtÞ ¼
½PT�1

t¼0 g t rtþ1�, is maximized, where g is
a constant that controls the time decay.
ManyRLmethods have been developed
to handle different environments, such
as Q-learning for discrete action and
state space, deep Q-Learning (DQL) for
discrete action and continuous state
space, and the policy gradient for contin-
uous action and state space [16]. Note
that Q-learning is applicable only to dis-
crete state spaces. Deep Q-learning
(DQL) has been proposed to deal with a
continuous state space [47]. A deep neu-
ral network is applied to regress the dis-
crete state into a continuous one. The
details of Q-learning and DQL have
been provided in Supplementary Materials.

III. THE FRAMEWORK
A sequential hybrid EA is composed of
various EA phases. Each EA phase is
equipped with some computational

budgets. The timing to switch from one
EA phase to another is important to a
hybrid EA’s performance. The switching
time can be considered as a structural
parameter. This paper focuses on hybrid
EAs with two EA phases and presents a
general framework in which an intelli-
gent agent is employed to control the
switching time.

The proposed framework is summa-
rized in Algorithm 1. First, new solutions
are generated by using the first EA (i.e.,
EA1ð�Þ) whereQ is the number of fitness
evaluations used for implementing
EA1ð�Þ. That is, the algorithm judges
whether to switch after every Q evalua-
tions. At each time t, G takes the current
population and the algorithmic parame-
tersGt�1 as input.1 It outputs new popula-
tionXt and its function valuesFt . Second,
information collected so far by function
Collect(�) (line 7) is summarized by func-
tion Representð�Þ (line 8) to obtain the
current state st . At last, the action at is
taken based on the learned network
Qðst ; a;wÞ in line 9 (or Q-table Qðst ; aÞ),
where a represents the action which takes
value from its domain A. In this paper
A ¼ f0; 1g. Depending on at , the search
process decides whether to switch from
EA1 to EA2 or not (line 11 to 14). If
switching happens, EA2 will be imple-
mented with left computing resources
maxNFEs� tQ where maxNFEs is the
maximum number of fitness evaluation
for this hybrid algorithm. Thus T is
always set smaller than bmaxNFEs

Q c, so that
guaranteeing some computing resources
left for EA2. Notice that a DQN
Qðst ; at ;wÞ is used in Algorithm 1 to
represent knowledge. Substituting
Qðst ; at ;wÞ with a Q-table Qðst ; atÞ can
obtain a framework based onQ-learning.

FIGURE 1 Illustration of a finite-horizon Markov decision process.

HSES [17] is the winner algorithm in the CEC 2018
competition, in which univariate sampling and CMA-ES
are applied sequentially. . . .. . .. . .. . .. . .. . .. . . In the following
discussion, how to control the switching time by
applying the proposed framework is presented.

1Gt can be either time-invariant or variant. Time-
variant parameters might be updated by some
adaptive schemes, but not by Q-learning.
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In Algorithm 1, the involved func-
tions, includingCollectð�Þ, Representð�Þ
and the Q-table or network, depend on
specific EA. In the following sections,
this framework is applied to two well
known hybrid EAs, i.e., LSHADE [12]
andHSES [17].

IV. APPLYING THE FRAMEWORK
TO LSHADE

A. Hybrid Population Size Strategy
The population size is an essential
parameter for EA, which is often fixed
during the search procedure in most
EAs. LSHADE [12] applies a simple
scheme to control the population size,
called linear population size reduction
(LPSR) strategy. The scheme takes the
population size as a linear function of
the number of fitness evaluations (nfes)
with negative slope. The LPSR strategy
can be applied as follows:

Ngþ1 ¼ Nmin �N ini

maxNFEs
� nfesþN ini

� �
(1)

where Nmin;N ini are pre-fixed con-
stants representing the minimum popu-
lation size and initial population size,
respectively; and ½a� rounds a to its near-
est integer. Some DE variants, such as
iL-SHADE [26] and jSO [27], also
apply the LPSR.

In the algorithms employing LPSR,
LPSR is applied from the very begin-
ning of the evolutionary search. How-
ever, it might be more appropriate to
apply it whenever necessary. In light of
this idea, our goal is to control when to
apply the LPSR strategy. Thus the

update formula of the population size is
proposed as follows:

where nfess is the pre-defined parame-
ter used to decide when to use LPSR.

It is seen that when nfes < nfess,
the population size is fixed, while
LPSR is used otherwise. Figure 2 shows
how different nfess values affect the
population size. It is seen that when
nfess ¼ 0 (resp. nfess ¼ maxNFEs), it

degenerates to LPSR (resp. the pre-
fixed population size). Different nfess
could result in significantly different

performance. The proposed population
size updating strategy is named as hybrid
population size strategy (HPSS).

B. Q-LSHADE
This section presents how to apply the
proposed framework (Algorithm 1) to
LSHADE with HPSS. Note that
LSHADE equipped with or without
LPSR are regarded as two EAs.
For clarification, LSHADE with fixed
population size is denoted as LSHADEf ,
and the original LSHADE is denoted as
LSHADEo. Then the proposed frame-
work is used to control when to switch
from LSHADEf to LSHADEo.

The evolution procedure of LSHADE
is summarized in Supplementary Materials. It
can bewritten in a concise form as follows:

½Xt ; f~f kbestgGmax
k¼0 ;Gt �

¼ LSHADEoðXt�1; f ;NFEs;Gt�1Þ;FIGURE 2 The effect of nfess on the population size reduction.

Algorithm 1. The Algorithmic Framework based on Adaptive Structural Parameter Control

Input: an optimization function fðxÞ; x 2 R
~d , an initial populationX0 2 R

~d�N ,
maximum number of
fitness evaluation maxNFEs, a Q network
Qð�; �;wÞ and horizon T .

Output: an optimal solution x�

1: Initialization: X0, G0, F  ; and X  ;;
2: Set G  EA1ð�Þ;Q NFEs;
3: for t ¼ 1! T do
4: ½Xt ;Ft ;Gt �  GðXt�1; f ;Q;Gt�1Þ;
5: F  F S

Ft ;
6: X  X S

Xt ;
7: U t  CollectðX ;FÞ;
8: st  RepresentðU tÞ;
9: at  argmaxa2AfQðst ;a;wÞg;
10: if at ¼¼ 1 or t ¼¼ T then
11: G  EA2ð�Þ;
12: Exit;
13: else
14: G  EA1ð�Þ;
15: end
16: end
17: ½X�;F�;Gtþ1�  GðXt ; f ;maxNFEs� tQ;GtÞ;
18: return x�  arg min F�.

Ngþ1=
Nmin�N ini

maxNFEs�nfess �ðnfes-nfessÞ+N
ini

h i
if nfes�nfess;

Ng otherwise,

(
(2)
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where NFEs is the number of fitness
evaluations used by the algorithm, Gmax

is the number of generation conducted
in NFEs, f~f kbestgGmax

k¼0 is the union set of
the best solutions found in each genera-
tion, and Gt is the algorithmic parameter
including the means of F and CR, H
and p. The form of LSHADEf is the
same as LSHADEo.

Further the LSHADE with HPSS is
named as LSHADEc , which is the com-
bination of LSHADEf and LSHADEo

and it has the similar form:

½Xt ; f~f kbestgGmax
k¼0 ;Gt� ¼

LSHADEcðXt�1; f ;NFEs;Gt�1; nfessÞ;

where nfess is the number of fitness
evaluations assigned for LSHADEf .

By applying the proposed frame-
work, the resultant algorithm is named
as Q-LSHADE and summarized in
Algorithm 2. In Algorithm 2, LSHADE
with fixed population size (i.e.,
LSHADEf ) is carried out for 0:2 �
maxNFEs (line 5). The best function
value fbest is updated afterwards (line 6).
The state is then computed according to
the obtained best solutions found in
each generation (line 7). The agent,
which is a Q-table, is used to output an
action (line 11) to decide whether to use
LPSR or not. In case at ¼ 1, LSHADEo

is run for ð1� 0:2tÞ �maxNFEs. Other-
wise, LSHADEf is run for another 0:2 �
maxNFEs. Here T is the horizon limit
which is set to be 4.

C. Training the Agent
The evolution process of Q-LSHADE
is modeled as an MDP and the Q-learn-
ing algorithm is used to train the agent.
In the following, the MDP components
for Q-LSHADE are presented, includ-
ing state, action, transition probability
and reward. f kbest represents the mini-
mum function value obtained up to the
k-th generation.

State: st is a concatenation of s1t and
s2t , i.e., st ¼ ½s1t ; s2t �, which are defined as
follows. Denote

gt ¼
�
0:2 � t �maxNFEs

N

�
þ 1

where N is the initial population size,
and bxc means the greatest integer less
than or equal to x. For t ¼ f1; 2; 3; 4g,

s1t ¼
log f gt�50best

� �
� log f gtbest

� 	
log f gt�50best

� �


 


 ; s2t

¼ log f 0best
� 	� log f gtbest

� 	
log f 0best

� 	

 


(3)

where s1t is used to measure the differ-
ence between the best function values
in adjacent 50 generations; s2t measures
the descent rate from the first popula-
tion. Eq (3) realizes the Represent (�)
function in line 7 of Algorithm 2.

Action: The action space A is
f0; 1g. That is, the agent can either
choose to implement LPSR (at ¼ 1) or
not (at ¼ 0) at the t-th time step.

Transition Probability: Given a
horizon limit T , when t < T � 1 and
at ¼ 0, the next state stþ1 is defined as
above. However, in case at some t < T ,
at ¼ 1, and t ¼ T � 1; at ¼ 0, stþ1 will
be the “terminal state” since in both cases
Q-LSHADE will implement the LPSR:
t < T , at ¼ 1 implies Q-LSHADE

implements LPSR at t-th time step. t ¼
T � 1; at ¼ 0 implies that Q-LSHADE
does not implement LPSR at t ¼ T � 1.
However, the time horizon is set as T ,
which implies Q-LSHADE implements
LPSR at t ¼ T . Thus t ¼ T � 1; at ¼ 0
implies Q-LSHADE uses LPSR at t ¼ T .

Reward: The agent will have no
effect on the search after terminal state.
If stþ1 is a terminal state, the following
cases are considered.
❏ If t ¼ T � 1 and at ¼ 0, the reward

rtþ1 will be the negative logarithm
of the minimum function value
found by LSHADEc with nfess ¼
0:2 � T �maxNFEs.

❏ If t < T and at ¼ 1, reward rtþ1 will
be the negative logarithm of the mini-
mum function value found by
LSHADEc with nfess ¼ 0:2 � t �
maxNFEs.
If stþ1 is not a terminal state, the

reward is set zero since the algorithm’s
performance is not observed before ter-
minal state.

The training process is summarized
in Algorithm 3. In the algorithm, to
handle the scale problem (i.e., different

Algorithm 2. Pseudo Code of Q-LSHADE

Input: Initial parameters G0, the maximum number of fitness evaluation maxNFEs,
objective function f and the agent Q

Output: fbest
1: Set fbest  þ1, a0  0;
2: Initialize population X0 ¼ fx0i ;1 	 i 	 Ng randomly;
3: Set G  LSHADEf ; Initialize G0;
4: for t ¼ 1! T do
5: ½Xt ; f~f kbestgGmax

k¼0 ;Gt �  GðXt�1; f ;0:2 �maxNFEs;Gt�1Þ;
6: fbest  minffbest; fðXt

i Þ;1 	 i 	 Ng;
7: st  Representðflog ð~f kbestÞgGmax

k¼0 Þ;
8: if Qðst ;0Þ ¼¼ Qðst ;1Þ then
9: Take action at randomly;
10: else
11: at  argmaxa2f0;1gfQðst ;aÞg;
12: end
13: if at ¼¼ 1 or t ¼¼ T then
14: G  LSHADEo;
15: Exit;
16: else
17: G  LSHADEf ;
18: end
19: end
20: ½Xf ; f~f kbestgGmax

k¼0 ;Gtþ1�  GðXt ; f ; ð1� 0:2tÞmaxNFEs;GtÞ;
21: return fbest ¼ minffbest; ffðxiÞ; xi 2 Xfgg.
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functions have different ranges of val-
ues), Qðs; aÞ is used to aggregate the Q-
tables qðs; aÞ trained for each function.

In Algorithm 3, for each training
function fl , T trajectories Trlm; m ¼
1; 2; . . . ;T are first generated (line 4 to

line 17). Each trajectory Trlm is generated
as follows: first LSHADEc is imple-
mented with nfess ¼ 0:2m �maxNFEs
for 51 times. The best function
values in each generation f~f i;kbestg51i¼1; k ¼
0; . . . ;Gmax (line 7) are recorded.
The mean of the logarithm
of these best function values, i.e.,
1
51

P51
i¼1 log ð~f i;kbestÞ; k ¼ 0; . . . ;Gmax is

computed (line 9). The state, action and
reward are then obtained by summariz-
ing these values according to the
equations defined beforehand. With
these trajectories, the Q-table qðs; aÞ
is updated from line 24 to line 28.
Finally Qðs; aÞ is updated by aggregat-
ing the trained Q-tables qðs; aÞ
(line 34 and line 37). After training,
Qðs; aÞ is used for Algorithm 2.

Remark. Notice that from
line 13 to line 17, the recorded tra-
jectories are divided into two cases
(m < T and m ¼ T ). The two cases
are corresponding to the two cases of
reward. For m < T , it records the
trajectory generated by LSHADEc

using LPSR at 0:2m �maxNFEs. For
m ¼ T , it records the trajectory gen-
erated by LSHADEc using LPSR at
0:2T�maxNFEs. Thus for m ¼ T , the
trajectory only records actions until
aT�1, since aT�1 ¼ 0 implies
LSHADEc using LPSR at 0:2T �
maxNFEs, which can result in a ter-
minal state.

V. CONTROLLING THE SWITCHING
TIME IN HSES
In this section, the proposed framework
is applied to control the switching time
in HSES.

A. HSES
HSES [17] is the winner algorithm in the
CEC 2018 competition, in which univari-
ate sampling and CMA-ES are applied
sequentially. The pseudo-code of HSES
can be found in Supplementary Materials. In
HSES, the timing to switch fromunivariate
sampling to CMA-ES is very important to
the performance of HSES. In HSES, the
CMA-ES is implemented after using uni-
variate sampling 100 generations. In the fol-
lowing discussion, how to control the
switching time by applying the proposed
framework is presented.

Algorithm 3. The Training Process for Q-LSHADE

Input: Training functions f1; . . . ; fL, the maximal number of epochs maxE, the horizon
T and the learning rate a

Output: Q-table Qðs;aÞ
1: Initialize Qðs;aÞ  0 for all s 2 S;a 2 f0;1g;
2: for l ¼ 1! L do
3: Initialize qðs;aÞ  0 for all s 2 S;a 2 f0;1g;

//Create trajectories for each training function:
4: form ¼ 1! T do
5: for i ¼ 1! 51 do
6: Randomly initializeX0;
7: f~f i;kbestgGmax

k¼0  
LSHADEcðX0; fl ;maxNFEs;G;0:2m �maxNFEsÞ;

8: end
9: �f kbest  1

51

P51
i¼1 log ð~f i;kbestÞ; k ¼ 0; . . . ;Gmax;

10: calculate fstgmt¼1 according to Eq. (3) by using
f�f kbestgGmax

k¼0 ;
11: set at  0; t < m and am  1;
12: ifm < T then
13: frtgmt¼1  0 and rmþ1  �minðf�f kbestgGmax

k¼0 Þ;
14: Trlm  fs1;a1; r2; . . . ; sm;am; rmþ1g;
15: else
16: frtgm�1t¼1  0 and rm  �minðf�f kbestgGmax

k¼0 Þ;
17: Trlm  fs1;a1; r2; . . . ; sm�1;am�1; rmg;
18: end
19: end
20: // Update the Q table qðs;aÞ
21: for e ¼ 1! maxE do
22: for t ¼ 1! T � 1 do
23: if t ¼¼ T � 1 then
24: qðst ;0Þ  ð1� aÞqðst ;0Þ þ aðrtþ1Þ where

fstg 2 TrlT , rtþ1 2 TrlT ;
25: else
26: qðst ;0Þ  

ð1� aÞqðst ;0Þ þ amaxatþ1qðstþ1;atþ1Þ,
where fstg 2 TrlT ;

27: end
28: qðst ;1Þ  ð1� aÞqðst ;1Þ þ aðrtþ1Þ where

fstg 2 TrlT , rtþ1 2 Trlt ;
29: end
30: end
31: // Aggregate the Q-tables for the training functions
32: for s 2 S do
33: if qðs;1Þ > qðs;0Þ then
34: Qðs;1Þ  Qðs;1Þ þ 1;
35: end
36: if qðs;1Þ < qðs;0Þ then
37: Qðs;0Þ  Qðs;0Þ þ 1;
38: end
39: end
40: end
41: return Qðs;aÞ.
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B. DQ-HSES
Here we present how to use a Deep Q
Network (DQN) to control the switch-
ing time in HSES. Algorithm 4 summa-
rizes the pseudo-code of the developed
algorithm (named as DQ-HSES).

In DQ-HSES, whether to switch
from univariate sampling to CMA-ES is
judged in every 10 generations. In
Algorithm 4, univariate sampling is first
carried out for 10 generations (line 3).
The obtained function values are sum-
marized to obtain the current state
(line 5). The DQN with the learned
parameter w determines an action in
line 6, which takes a value of 0 or 1. If
the action is 1, the switch happens; oth-
erwise the univariate sampling is carried
out again. The rest of the components,
including the parameter settings, are the
same as in HSES. Notice that in the
original HSES, the fitness evaluation
number of CMA-ES is limited to
maxNFEs/2. In our experiment, we
guarantee the evaluations for the first
univariate sampling is not larger than
maxNFEs/2 by setting T for the first
univariate sampling procedure. The
flow chart of DQ-HSES is shown in
Figure 3, in which the RL agent is used
to control when to escape from the uni-
variate sampling phase.

C. Training the Switcher Agent
To find the optimal weights (denoted as
w�) for the DQN, which is called the
switcher agent, deep Q-learning is used
by modeling the evolution process of
DQ-HSES as a finite-horizon MDP
with continuous state and discrete
action space. f kbest represents the mini-
mum function value obtained up to the
k-th generation.

State: st is a concatenation of s1t and
s2t which are defined as follows. When
t > 1,

s1t ,
log f 10ðt�2Þbest

� �
� log f 10tbest

� 	
log f 10ðt�2Þbest

� �


 


 ;

s2t ,
log f 0best

� 	� log f 10tbest

� 	
log f 0best

� 	

 


(4)

In case t ¼ 1, s11 ,
log ðf 0bestÞ�log ðf

10
bestÞ

jlog ðf 0bestÞj
: In

the definition, s1t is used to measure the

difference between the best function
values in adjacent 20 generations; s2t
measures the descent rate from the first
population.

The state st is thenmodified as a com-
bination of various bins including ½10s1t ;
10s2t �; ½10s1t ; 10s2t �; ½s1t ; 200s2t �; ½s1t ; 200s2t �
for 10D, 30D, 50D and 100D problems,
respectively.

Action: The action spaceA is f0; 1g.
That is, the agent can either choose to
switch (the action takes 1) to CMA-ES or
not switch (the action takes 0).

Transition Probability: In case at
some t < T , at ¼ 1, and t ¼
T � 1; at ¼ 0, stþ1 will be the “terminal
state”. The horizon T constrains the
maximal computational resources used
for the first univariate sampling.

Reward: Three cases are considered
when defining the reward. For the ter-
minal state stþ1,
❏ if t ¼ T � 1; at ¼ 0 the reward rtþ1

will be the negative logarithm of the
minimum function value found by
HSES by switching at the 10T�th
generation.

❏ if t < T and at ¼ 1, the reward rtþ1
will be the negative logarithm of the
minimum function value found by
HSES by switching at the ð10tÞ-th
generation.
For non-terminal state, its reward is

set to zero.

1) The Training Details
Given the above tuple definitions, the
DQL training procedure can be summa-
rized in Algorithm 5. Algorithm 5 differs
from the classical DQL in two aspects.
First, in classical DQL, the network takes a
state as input. Its output is a vector which
has the same dimension as the action space.
Each component of the output vector cor-
responds to the Q-value for each action
[50]. This means that the weights in the
DQN except the last layer are shared for
all actions. The shared weights can extract
some common features of the state, but
such structure could sacrifice the DQN’s
learning capacity. To address this problem,
two networks Q1ðS;wÞ and Q2ðS;wÞ
are used to replace QðS; 0;wÞ and
QðS; 1;wÞ, respectively.

Second, a DQN is trained for each
training function rather than a DQN for
all the functions. This is to eliminate the
interferences among different learned
DQNs due to the diverse ranges of differ-
ent training functions.

Notice that in line 3, the trajectory
Trlm is generated similarly to that in the
training process for Q-LSHADE (Algo-
rithm 3). The difference is implementingFIGURE 3 The flow chart of the proposed approach DQ-HSES.

Algorithm 4. The Pseudo-Code of DQ-HSES

Input: an optimization function fðxÞ; x 2 R
ed , initial populationX0 2 R

ed�N , and the
maximum number of evaluations maxNFEs

Output: an optimal solution x�

1: Set Idx 2 R
ed  ~0; t  0;a0  0;

2: while at 6¼ 1 and t < T do
3: Xtþ1  UniSamplingðXt ; f ; Idx;10Þ;
4: t  t þ 1;
5: st  RepresentðXt ; log ðfðXtÞÞÞ;
6: at  argmaxaDQNðst ;a;wÞ;
7: end
8: ½Xt2 ; x�2�  CMA-ESðXt ; uÞ;
9: Idx DetectðXt2 Þ;
10: ½Xt3 ; x�3�  UniSamplingðXt2 ; f ; IdxÞ;
11: return x�  x�3.
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HSES with G1 ¼ 10 m for 51 times and
recording the best function values in
each generation (G1 is the number of
generation assigned to the first univariate
sampling in HSES), i.e., f~f i;kbestg51i¼1; k ¼
0; . . . ;Gmax, instead of using LSHADEc

in Algorithm 3.

2) DQ-HSES
By embedding the learned DQNs into
HSES, the resultant algorithm is named
as DQN based HSES (dubbed as DQ-
HSES). DQ-HSES is summarized in
Algorithm 6. In the algorithm, the uni-
variate sampling is first implemented for
10 generations. The learned DQNs are
used to determine whether switching to
CMA-ES or not (line 4 to 24). The rest
of the algorithm after switching is the
same as HSES. Likewise, the parameter
settings for CMA-ES and univariate
sampling are the same as in HSES.

Line 5–21 show how to use the L
learned DQNs to determine an action
for an optimization function. Here the
concept of ‘boosting’ [51] is borrowed
from machine learning. The core idea is
to combine several weak agents for a

strong agent. In our study, the L learned
DQNs can be seen as weak agents.
They vote to decide the action.

To implement the boosting mecha-
nism, Vote0 and Vote1 are used to
respectively record the number of votes
for selecting action 0 and 1 by the
learned DQNs (line 5 to line 15). The
action is selected based on the greatness
of the two values. If they are equal, a
random action is selected.

To avoid over-fitting, the value of
DQNs is set to be zero when a new state
is far from the states ever met in the
training set (line 8). The function
Judgeðst ;TrlT ; c;T Þ, summarized in
Algorithm 7, is used to make this deci-
sion. The Euclidean distance between s
and the states in the training set TrlT is
firstly computed (line 3). If the minimum
distance is larger than a fixed constant c,
zero returns; otherwise one returns. The
thought behind is that if a new state st is
too far from the states in the training set,
the prediction could be unstable and
implausible since the training data is not
comprehensive. In the experiment, c is

set as 2.4,1.6,16.7,18.2 for 10D, 30D,
50D and 100D problems, respectively.

VI. EXPERIMENTAL RESULTS ON
Q-LSHADE
The performance of Q-LSHADE is first
investigated against its counterpart
LSHADE on the CEC 2018 test suite2

as the benchmark. The test suite con-
tains 29 test functions that can be classi-
fied into four categories: unimodal
functions F1 and F3, multi-modal func-
tions F4 � F10, hybrid functions F11 �
F20, and composition functions F21 �
F30. In this section, Q-LSHADE is
tested on 10D test functions and its per-
formance is compared with LSHADE.

F13 and F16 are taken as the training
functions. The training parameters are
a ¼ 0:005 and maxE ¼ 100; 000. The
other parameters of Q-LSHADE and
LSHADE are the same as in the original
reference [12]. maxNFEs is set to
10,000D. Because Q-learning works
only for MDP with a finite and discrete
state space, the space is divided into
½0; 10�6�, ð10�6; 10�5�, ð10�5; 10�3�,
ð10�3; 10�1�, ð10�1; 1�; ð1;þ1Þ for s1,
and [0,0.1], (0.1,0.25], (0.25,0.4],
(0.4,0.6], (0.6,1.5], ð1:5;þ1Þ for s2.

Table II summarizes the statistics
obtained by Q-LSHADE and LSHADE
on the benchmark functions over 51 runs.
All the statistics in Table II and subsequent
tables are computed based on the error
values (i.e., the difference between the
obtained optimum and the known global
optimum). When the error values are
smaller than or equal to 10�8, they are
assumed to be zero. The Wilcoxon rank-
sum hypothesis test between LSHADE
and Q-LSHADE at the 5% significance
level is also listed, where y=x implies that
LSHADE performs significantly better/
worse than Q-LSHADE and 
 means
that there is no significant difference
between the algorithms. Furthermore,
the value of BM is listed for recording the
number of functions for which the algo-
rithm obtains the best mean value.

Table II shows that Q-LSHADE sig-
nificantly outperforms LSHADE on four
functions and is worse than it on two
functions. The value of BM obtained by

Algorithm 5. The training process for the DQN

Input: Training functions f1; . . . ; fL, the maximal number of epochs maxE, the horizon
limit T and the learning rate a

Output: DQNs fQ1
l ð�;w�1Þ;Q2

l ð�;w�2ÞgLl¼1
1: Randomly Initialize fQ1

l ð�;w1Þ;Q2
l ð�;w2ÞgLi¼1

2: for l ¼ 1! L do
3: Create T trajectories Trlm;1 	 m 	 T ;
4: for e ¼ 1! maxE do
5: for t ¼ 1! T � 1 do
6: //Compute the target
7: if t ¼¼ T � 1 then
8: d1

t  rtþ1, where rtþ1 2 TrlT ;
9: else
10: d1

t  gmaxfQ1
l ðstþ1;w1Þ;Q2

l ðstþ1;w2Þg,
where fstg 2 TrlT ;

11: end
12: d2

t  rtþ1, where rtþ1 2 Trlt ;
13: //update the parameters of the DQNs
14: w1  w1 � arw1kQ1

l ðst ;w1Þ � d1
t k2;

15: w2  w2 � arw2kQ2
l ðst ;w2Þ � d2

t k2;
16: end
17: end
18: w�1  w1, w�2  w2;
19: return Q1

l ð�;w�1Þ;Q2
l ð�;w�2Þ.

20: end

2 https://github.com/P-N-Suganthan/CEC2018

92 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | FEBRUARY 2023

Authorized licensed use limited to: Universiteit Leiden. Downloaded on March 13,2024 at 13:52:03 UTC from IEEE Xplore.  Restrictions apply. 

https://github.com/P-N-Suganthan/CEC2018


Q-LSHADE is larger than that of
LSHADE. Furthermore, the values of
BM and the results of the hypothesis test
on the remaining functions, i.e., func-
tions excluding F13 and F16, are pre-
sented in the brackets in Table II. When
only the functions excluding the training
functions are considered, Q-LSHADE
still performs significantly better than
LSHADE on four functions and worse
on two functions. The value of BM
obtained by Q-LSHADE is still greater
than that of LSHADE. Thus the pro-
posed learning-to-optimize based frame-
work can learn a suitable agent to control
the structural parameter.

VII. EXPERIMENTAL RESULTS ON
DQ-HSES
In this section, DQ-HSES is compared
with its counterpart HSES and some

well-knownEAs on the CEC 2018 com-
petition test suite. Furthermore, to verify
the capability of DQ-HSES for generali-
zation, it is tested on the CEC 20143 test
suite. Note that the original HSES is the
winner of the CEC 2018 competition.
The authors of a review [52] comprehen-
sively studied various DEs, and con-
cluded that SHADE, cDE, and CoBiDE
with the rand/1/bin and curr-to-pbest/
1/bin operators are the best three meth-
ods. Therefore, cDE, CoBiDE, and
jSO (an advanced version of SHADE)
are chosen as the baselines.

CoBiDE [30] is an adaptive DE that
adapts the scaling factor F and crossover
rateCR as follows: First, the initial values

of F and CR for each individual are sam-
pled from the following distributions:

F ¼
randcð0:65; 0:1Þ if randu½0; 1� � 0:5

randcð1; 0:1Þ if randu½0; 1� < 0:5

�
(5)

CR ¼
randcð0:95; 0:1Þ if randu½0; 1� � 0:5

randcð0:1; 0:1Þ if randu½0; 1� < 0:5

�
(6)

During the evolution, the successful
values of F and CR are inherited, while
their failed values are re-initialized using
Eq. (5) and Eq. (6), respectively.

cDE [40] is also an adaptive DE. Its
values of F and CR are sampled from a
candidate pool composed of Fpool ¼
f0:5; 0:8; 1g and CRpool ¼ f0; 0:5; 1g.
The candidate pool contains nine candi-
date pairs in total. They are denoted by
O1 ¼ f0:5; 0g; . . . ;O9 ¼ f1; 1g. In the
tth generation, the probability of selec-
tion of each candidate pair is st;k ¼
Nsucc
k þcP
i
Nsucc
i þc

, where Nsucc
k is the number of

individuals with better fitness values
when the pair Ok is used and c > 0 is a
constant used to avoid a singularity.

jSO [27] is an advanced version of
LSHADE [12] and iL-SHADE [26],
which are two variants of SHADE [11].
It took second place in the CEC 2017
competition.

To train the DQNs, six functions
from CEC 20134, F2;F6 � F10, and five
functions from CEC 2018: F1;F10;F15;

F18, and F29 are chosen as training

Algorithm 6. Deep Q network based HSES (DQ-HSES)

Input: an optimization function fðxÞ; x 2 R
ed , initial populationX0 2 R

ed�N , the
learned DQNs fQ1

l ð�;w1Þ;Q2
l ð�;w2ÞgLl¼1 and the maximum number of

evaluations maxNFEs and a threshold c;
Output: an optimal solution x�

1: Set Idx ~0, t  0;
2: while t < T do
3: ½Xtþ1; x�1�  UniSamplingðXt ; f ; Idx;10Þ;
4: Compute the state st by Eq. (4);
5: set Vote0  0;Vote1  0;
6: for l ¼ 1! L do
7: if Judgeðst ; TrlT ; c; TÞ ¼¼ 0 then
8: Q1

l ðst ;w1Þ  0;Q2
l ðst ;w2Þ  0;

9: end
10: if Q1

l ðst ;w1Þ > Q2
l ðst ;w2Þ then

11: Vote0  Vote0 þ 1;
12: end
13: else if Q1

l ðst ;w1Þ < Q2
l ðst ;w2Þ then

14: Vote1  Vote1 þ 1;
15: end
16: end
17: if Vote1 6¼ Vote0 then
18: at  ðVote1 > Vote0Þ;
19: else
20: Take at randomly;
21: end
22: if at ¼¼ 1 then
23: Exit;
24: end
25: t  t þ 1;
26: end
27: ½Xt2 ; x�2�  CMA� ESðXt ; uÞ;
28: Idx DetectðXt2 Þ;
29: ½Xt3 ; x�3�  UniSamplingðXt2 ; f ; IdxÞ;
30: return x�  x�3.

Algorithm 7. Judge

Input: s, TrlT , c, and time horizon T

Outut: output
1: dmin  þ1;
2: for i ¼ 1! T � 1 do
3: dmin  minfdmin; ks� sik22g, si 2
TrlT ;
4: end
5: if dmin > c then
6: return output 0.
7: else
8: return output 1.
9: end

3The CEC 2014 test suite can be found at https://
github.com/P-N-Suganthan/CEC2014

4The CEC 2013 test suite can be found at https://
github.com/P-N-Suganthan/CEC2013
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functions. The functions chosen from
CEC 2018 cover all four categories in the
suite. Further, both the CEC 2013 and
theCEC 2018 test suites contain functions
that are variations of some basic functions,
such as the Bent Cigar function, Rose-
nbrock’s function, and Rastrigin’s func-
tion. The CEC 2013 test suite uses the

Rotated Bent Cigar function and the
CEC 2018 test suite uses the Shifted and
Rotated Bent Cigar function. The two
functions hold the same properties: unim-
odal, non-separable, and smooth-but-nar-
row ridge. This renders the functions in
the CEC 2013 test suite more suitable
for training the agent. A multi-layer

perceptron (MLP) network with one hid-
den layer is used to be the agent. The
other hyper-parameters are shown in
Table III.

A. Results of DQ-HSES
In this section, first the results of com-
parison between DQ-HSES and HSES
on the CEC 2014 and 2018 test suites
are shown, and then the results of com-
parisons between DQ-HSES and cDE,
and CoBiDE and jSO are presented.
Then the learned DQNs in different
dimensions are visualized.

1) DQ-HSES vs. HSES on CEC
2018
DQ-HSES and HSES are run for 200,
100, 51, and 20 times for all the prob-
lems in 10D, 30D, 50D, and 100D.
The results are summarized in Tables IV
and V. The Wilcoxon rank-sum
hypothesis test is applied between
HSES and DQ-HSES at the 5% signifi-
cance level, where y=x implies that
HSES performs significantly better/
worse than DQ-HSES and 
 means
that there is no significant difference
between the algorithms.

Tables IV and V show that DQ-
HSES performs better than HSES on
eight functions and worse on one func-
tion on all 10D problems, while the
results for 30D problems are nine and
three; for 50D, five and three; for
100D, two and one.

The values of BM and the results of
the hypothesis test on functions excluding
the training functions are also presented in
parentheses in the tables. DQ-HSES per-
forms better than HSES on eight func-
tions and worse on one function for 10D
problems. For 30D problems, it performs
better on seven functions and worse on
two functions, and DQ-HSES performs
better than HSES on five functions and
worse on three functions for 50D prob-
lems. For 100D problems, it performs
better on two functions andworse on one
function.

On the whole, DQ-HSES obtains
greater values of BM than HSES. Thus
we conclude that the learned agent
improves the performance of HSES.

TABLE III The hyper-parameter settings for algorithm 5.

HIDDEN LAYERS 1 LEARNING RATE a 0.0001

Hidden units 200 MDP horizon T 20

Activation functions Sigmoid, Sigmoid Maximal epochmaxE 5000

Optimization method Gradient descent

TABLE II Results obtained by LSHADE and Q-LSHADE on the CEC 2018 test suite in
10D, averaged over 51 runs.

10D

Q-LSHADE LSHADE

MEAN STD MEAN STD

F1 0.00e+00 0.00e+00 0.00e+00
 0.00e+00

F3 0.00e+00 0.00e+00 0.00e+00
 0.00e+00

F4 0.00e+00 0.00e+00 0.00e+00
 0.00e+00

F5 2.34e+00 7.66e-01 2.44e+00
 9.81e-01

F6 0.00e+00 0.00e+00 0.00e+00
 0.00e+00

F7 1.20e+01 7.98e-01 1.23e+01
 1.18e+00

F8 2.38e+00 9.54e-01 2.53e+00
 9.40e-01

F9 0.00e+00 0.00e+00 0.00e+00
 0.00e+00

F10 1.94e+01 3.12e+01 2.80e+01
 4.30e+01

F11 2.21e-02 1.57e-01 2.49e-02x 1.78e-01

F12 1.03e+01 3.34e+01 3.14e+01
 5.29e+01

F13 3.09e+00 2.44e+00 3.09e+00
 2.49e+00

F14 5.47e-01 7.17e-01 7.93e-01
 9.20e-01

F15 5.02e-02 1.18e-01 1.88e-01x 2.14e-01

F16 3.38e-01 2.13e-01 3.50e-01
 2.23e-01

F17 1.76e-01 2.11e-01 7.15e-02y 1.04e-01

F18 1.30e-01 1.90e-01 2.47e-01x 2.63e-01

F19 2.56e-02 1.67e-02 5.76e-03y 8.77e-03

F20 0.00e+00 0.00e+00 1.22e-02
 6.11e-02

F21 1.47e+02 5.18e+01 1.51e+02
 5.23e+01

F22 9.84e+01 1.10e+01 9.80e+01
 1.40e+01

F23 3.03e+02 1.44e+00 3.02e+02
 1.47e+00

F24 2.94e+02 8.46e+01 3.03e+02
 7.51e+01

F25 4.11e+02 2.10e+01 4.13e+02
 2.18e+01

F26 3.00e+02 0.00e+00 3.00e+02
 0.00e+00

F27 3.89e+02 2.19e-01 3.89e+02
 1.78e-01

F28 3.00e+02 6.11e+01 3.30e+02x 9.20e+01

F29 2.34e+02 2.88e+00 2.34e+02
 3.36e+00

F30 3.96e+02 9.56e+00 1.64e+04
 1.14e+05

BM 25(23) 13(12)

y= 
 =x 2/22/4 (2/20/4)
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2) DQ-HSES vs. HSES on CEC
2014
To validate the capability of DQ-HSES
for generalization, more experiments on
the CEC 2014 test suite are conducted.
Note that no function from CEC 2014 is
used for training. Table VI shows the
results obtained on the benchmark in

10D, 30D, and 50D over 51 runs. It is
clear that for 10D problems, DQ-HSES
performs significantly better than HSES
on seven functions and worse on two
functions. DQ-HSES performs signifi-
cantly better than HSES on 10 functions
and worse on two functions for 30D
problems. For 50D problems, it performs

significantly better on seven functions and
worse on one function.

In general, DQ-HSES obtains greater
values of BM than HSES. Thus we may
conclude that the learned agent can gen-
eralize well on unseen optimization
problems. The curves of optimization of
some functions from the CEC 2014 test

TABLE V Results obtained by HSES and DQ-HSES on functions of CEC 2018 in 100D, averaged over 20 runs.

100D

HSES DQ-HSES

MEAN STD MEAN STD

F1 0.00e+00
 0.00e+00 0.00e+00 0.00e+00

F3 1.28e-08
 3.58e-08 0.00e+00 0.00e+00

F4 6.15e+00
 2.19e+01 1.37e+01 4.15e+01

F5 3.73e+00
 1.43e+00 4.47e+00 2.17e+00

F6 8.47e-08
 2.03e-08 9.33e-08 2.36e-08

F7 1.10e+02
 1.59e+00 1.09e+02 1.04e+00

F8 4.32e+00x 2.12e+00 2.78e+00 1.63e+00

F9 2.78e+00
 5.57e+00 5.00e-01 8.24e-01

F10 1.29e+03
 3.79e+02 1.25e+03 3.13e+02

F11 2.04e+01
 3.21e+01 3.82e+01 4.06e+01

F12 7.64e+02
 2.45e+02 8.60e+02 2.75e+02

F13 4.39e+01
 5.23e+00 4.73e+01 1.14e+01

F14 2.04e+01
 4.84e+00 1.92e+01 6.82e+00

F15 1.05e+02
 2.30e+01 9.85e+01 2.19e+01

F16 1.09e+03
 3.89e+02 1.55e+03 9.10e+02

F17 7.11e+02
 2.84e+02 5.88e+02 3.28e+02

F18 4.94e+00
 7.42e+00 3.57e+00 5.96e+00

F19 2.30e+01x 1.59e+01 1.42e+01 1.99e+00

F20 5.41e+02
 2.52e+02 4.93e+02 2.08e+02

F21 2.21e+02
 4.11e+00 2.23e+02 3.33e+00

F22 1.00e+02y 3.51e-07 4.37e+02 8.29e+02

F23 5.45e+02
 5.92e+00 5.43e+02 8.13e+00

F24 8.44e+02
 5.35e+00 8.44e+02 8.21e+00

F25 7.47e+02
 4.72e+01 7.36e+02 3.28e+01

F26 2.35e+03
 1.00e+02 2.34e+03 1.37e+02

F27 6.38e+02
 8.01e+00 6.39e+02 9.81e+00

F28 4.72e+02
 1.01e+02 5.08e+02 8.39e+01

F29 1.19e+03
 2.76e+02 1.34e+03 3.35e+02

F30 2.67e+03
 1.28e+02 2.65e+03 1.22e+02

BM 14(12) 17(13)

y= 
 =x 1/26/2 (1/21/2)
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are presented to show the process of opti-
mization of DQ-HSES in comparison
with that of HSES in Figure 4.

For each function, HSES and DQ-
HSES are run 11 times and the loga-
rithm of the mean of the function values
obtained during the search process are
plotted. The figures show that DQ-
HSES performs significantly better than
HSES, and usually requires fewer fitness
evaluations (nfes) to reach a better
solution than it.FIGURE 4 The curves of optimization of six functions on the CEC 2014

test suite. (a) F16 in 10D, (b) F24 in 10D, (c) F11 in 30D, (d) F16 in 30D,
(e) F17 in 50D, and (f) F21 in 50D.

TABLE VII Results on 10D test functions of CEC 2018.

cDE CoBiDE jSO DQ-HSES

MEAN STD MEAN STD MEAN STD MEAN STD

F1 0.00e+00
 0.00e+00 0.00e+00
 0.00e+00 0.00e+00
 0.00e+00 0.00e+00 0.00e+00

F3 0.00e+00
 0.00e+00 0.00e+00
 0.00e+00 0.00e+00
 0.00e+00 0.00e+00 0.00e+00

F4 0.00e+00
 0.00e+00 0.00e+00
 0.00e+00 0.00e+00
 0.00e+00 0.00e+00 0.00e+00

F5 4.62e+00x 1.84e+00 3.57e+00x 1.53e+00 1.75e+00x 7.60e-01 8.15e-01 8.79e-01

F6 0.00e+00
 0.00e+00 0.00e+00
 0.00e+00 0.00e+00
 0.00e+00 0.00e+00 0.00e+00

F7 1.55e+01x 2.74e+00 1.34e+01x 2.00e+00 1.17e+01x 6.06e-01 1.10e+01 5.61e-01

F8 5.73e+00x 2.11e+00 3.76e+00x 1.71e+00 1.95e+00x 7.43e-01 7.01e-01 7.96e-01

F9 0.00e+00
 0.00e+00 0.00e+00
 0.00e+00 0.00e+00
 0.00e+00 0.00e+00 0.00e+00

F10 1.87e+02x 1.10e+02 9.17e+01x 9.56e+01 3.58e+01
 5.54e+01 8.88e+01 1.30e+02

F11 5.54e-01y 9.14e-01 9.75e-02y 2.98e-01 0.00e+00y 0.00e+00 7.61e-01 3.50e+00

F12 1.39e+02x 1.60e+02 1.67e-01y 1.31e-01 2.66e+00y 1.67e+01 2.26e+01 5.52e+01

F13 5.05e+00x 2.97e+00 1.07e+00y 1.83e+00 2.96e+00y 2.35e+00 3.17e+00 2.58e+00

F14 6.48e-01y 9.73e-01 0.00e+00y 0.00e+00 5.85e-02y 2.36e-01 6.00e+00 1.20e+01

F15 3.09e-01y 4.85e-01 9.31e-03y 3.52e-02 2.20e-01y 2.00e-01 8.17e-01 1.73e+00

F16 2.96e+00y 1.68e+01 2.24e-01y 1.52e-01 5.68e-01y 2.64e-01 4.41e+00 2.03e+01

F17 1.32e+00y 8.12e+00 1.57e+00y 6.18e-01 5.02e-01y 3.48e-01 1.18e+01 9.95e+00

F18 1.13e+00x 3.92e+00 6.37e-03y 2.77e-02 3.08e-01y 1.95e-01 7.02e-01 1.61e+00

F19 4.19e-03y 8.08e-03 8.99e-03y 1.33e-02 1.07e-02y 1.25e-02 4.31e-01 8.89e-01

F20 9.90e-02y 1.97e-01 0.00e+00y 0.00e+00 3.42e-01y 1.28e-01 6.98e+00 9.06e+00

F21 1.79e+02y 4.90e+01 1.37e+02y 5.15e+01 1.32e+02y 4.83e+01 1.98e+02 1.76e+01

F22 9.28e+01y 2.65e+01 7.86e+01y 4.16e+01 1.00e+02
 0.00e+00 1.00e+02 0.00e+00

F23 3.07e+02x 2.56e+00 3.04e+02x 1.58e+00 3.01e+02x 1.58e+00 2.99e+02 2.13e+01

F24 3.26e+02x 4.62e+01 2.74e+02y 1.02e+02 2.96e+02
 7.93e+01 3.21e+02 3.90e+01

F25 4.17e+02y 2.34e+01 3.99e+02y 9.14e+00 4.05e+02y 1.74e+01 4.46e+02 1.18e+00

F26 3.19e+02x 1.30e+02 3.00e+02
 0.00e+00 3.00e+02
 0.00e+00 3.00e+02 8.82e+00

F27 3.89e+02y 2.01e+00 3.88e+02y 9.02e-01 3.89e+02y 2.25e-01 3.97e+02 1.93e+00

F28 4.04e+02y 1.39e+02 3.05e+02y 3.97e+01 3.39e+02y 9.65e+01 5.92e+02 3.80e+01

F29 2.36e+02y 6.43e+00 2.29e+02y 2.77e+00 2.34e+02y 2.95e+00 2.64e+02 1.10e+01

F30 8.06e+04x 2.45e+05 3.95e+02y 3.50e+00 3.94e+02y 4.49e-02 4.13e+02 2.34e+01

BM 6(5) 18(14) 12(10) 10(9)

y= 
 =x 13/5/11(11/1/9) 18/6/5(15/5/4) 16/9/4(13/7/4)
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3) DQ-HSES vs. the Baselines
Tables VII to X shows the results
obtained by cDE, CoBiDE, jSO, and
DQ-HSES on the CEC 2018 test func-
tions in 10D, 30D, 50D, and 100D.
cDE, CoBiDE, and jSO are imple-
mented 51 times. The values of BM and
the results of the hypothesis test on the
functions excluding the training func-
tions are presented in the parentheses in
the tables. They show the following:
❏ On 10D functions, DQ-HSES per-

forms better than cDE on 11 func-
tions and worse on 13 functions,
better than CoBiDE on five func-
tions and worse on 18, and better

than jSO on four functions and
worse on 16 functions.

❏ On 30D functions, DQ-HSES per-
forms better than cDE on 23 func-
tions and worse on two functions,
better than CoBiDE on 15 functions
and worse on seven functions, and
better than jSO on 10 functions and
worse on nine functions.

❏ On 50D functions, DQ-HSES per-
forms better than cDE on 26 func-
tions and worse on three functions,
better than CoBiDE on 26 functions
and worse on three functions, and
better than jSO on 16 functions and
worse on seven functions.

❏ On 100D functions, DQ-HSES per-
forms better than cDE on 28 func-
tions and is not worse than it on any
function, is better than CoBiDE on
29 functions and not worse than it
on any function, and is better than
jSO on 22 functions and worse on
two functions.

❏ DQ-HSES delivers the best perfor-
mance on all functions excluding
the training functions, on 30D,
50D, and 100D functions.
In general, except for the test func-

tions in 10D, DQ-HSES obtains the
largest BM values.

TABLE VIII Results on 30D test functions of CEC 2018.

cDE CoBiDE jSO DQ-HSES

MEAN STD MEAN STD MEAN STD MEAN STD

F1 0.00e+00
 0.00e+00 0.00e+00
 0.00e+00 0.00e+00
 0.00e+00 0.00e+00 0.00e+00

F3 0.00e+00
 0.00e+00 0.00e+00
 0.00e+00 0.00e+00
 0.00e+00 0.00e+00 0.00e+00

F4 5.68e+01x 1.08e+01 4.20e+01x 2.82e+01 5.86e+01x 7.77e-01 4.11e+00 9.37e+00

F5 5.06e+01x 6.17e+00 3.99e+01x 9.75e+00 8.55e+00x 2.09e+00 6.95e+00 2.11e+00

F6 0.00e+00
 0.00e+00 3.91e-08x 4.48e-08 0.00e+00
 2.71e-08 0.00e+00 0.00e+00

F7 9.20e+01x 6.45e+00 7.11e+01x 1.01e+01 3.89e+01x 1.45e+00 3.53e+01 1.31e+00

F8 5.81e+01x 9.17e+00 3.91e+01x 1.07e+01 9.09e+00x 1.83e+00 6.48e+00 2.06e+00

F9 7.53e-01x 1.44e+00 0.00e+00y 0.00e+00 0.00e+00
 0.00e+00 2.63e-02 2.22e-01

F10 2.32e+03x 2.87e+02 1.82e+03x 4.56e+02 1.52e+03x 2.77e+02 8.43e+02 3.36e+02

F11 2.02e+01x 1.19e+01 1.62e+01x 9.81e+00 3.03e+00y 2.64e+00 1.61e+01 2.29e+01

F12 2.02e+04x 1.44e+04 2.83e+03x 5.20e+03 1.70e+02x 1.01e+02 2.38e+01 9.60e+01

F13 5.27e+01x 2.30e+01 2.50e+01
 8.67e+00 1.48e+01y 4.83e+00 3.01e+01 1.53e+01

F14 3.41e+01x 9.23e+00 1.08e+01y 4.70e+00 2.18e+01x 1.24e+00 1.55e+01 9.35e+00

F15 1.86e+01x 4.81e+00 6.85e+00
 2.79e+00 1.08e+00y 6.91e-01 1.16e+01 1.17e+01

F16 4.87e+02x 1.36e+02 3.78e+02x 1.47e+02 7.89e+01y 8.47e+01 2.93e+02 1.81e+02

F17 9.68e+01x 2.90e+01 4.38e+01y 3.29e+01 3.29e+01y 8.07e+00 6.33e+01 9.21e+01

F18 3.16e+01x 5.46e+00 1.85e+01y 8.65e+00 2.04e+01
 2.87e+00 1.89e+01 6.85e+00

F19 1.53e+01x 2.31e+00 4.77e+00x 1.44e+00 4.50e+00x 1.73e+00 3.78e+00 2.04e+00

F20 1.00e+02y 5.48e+01 4.31e+01y 5.79e+01 2.93e+01y 5.85e+00 1.58e+02 5.88e+01

F21 2.57e+02x 7.19e+00 2.42e+02x 9.26e+00 2.09e+02x 1.95e+00 2.07e+02 3.05e+00

F22 2.07e+02x 5.37e+02 1.00e+02
 0.00e+00 1.00e+02
 0.00e+00 1.00e+02 0.00e+00

F23 3.98e+02x 6.56e+00 3.88e+02x 8.96e+00 3.50e+02
 3.29e+00 3.52e+02 8.79e+00

F24 4.80e+02x 8.44e+00 4.64e+02x 1.18e+01 4.26e+02x 2.46e+00 4.19e+02 5.30e+00

F25 3.86e+02
 4.74e-01 3.86e+02
 4.72e-01 3.86e+02
 7.72e-03 3.86e+02 2.25e-02

F26 1.55e+03x 2.03e+02 1.36e+03x 2.90e+02 9.20e+02
 4.29e+01 9.03e+02 1.37e+02

F27 4.96e+02y 1.24e+01 4.96e+02y 1.04e+01 4.97e+02y 7.00e+00 5.25e+02 9.05e+00

F28 3.23e+02x 4.63e+01 3.27e+02x 4.77e+01 3.08e+02y 3.02e+01 3.15e+02 3.73e+01

F29 5.19e+02x 4.89e+01 4.29e+02y 4.68e+01 4.33e+02
 1.36e+01 4.62e+02 7.25e+01

F30 2.12e+03x 1.45e+02 2.05e+03
 8.41e+01 1.97e+03y 1.89e+01 2.06e+03 4.91e+01

BM 5(4) 9(6) 15(13) 15(13)

y= 
 =x 2/4/23(2/3/19) 7/7/15(5/5/14) 9/10/10(8/7/9)
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The average performance score (APS)
[52] [53], is also used as a metric to com-
pare the performances of the algorithms.
Considering the comparison of M algo-
rithms A1; . . . ;AM on K functions
F1; . . . ;FK , if algorithm Aj outperforms
Ai on the k-th function Fk with

statistical significance, dki;j is set to be
1, otherwise 0. The performance
score of algorithm Ai on function
Fk is defined as: PSkðAiÞ ¼P

j2f1;...;Mgnfig d
k
i;j. PSkðAiÞ represents

the number of algorithms that outper-
form Ai on function Fk. The APS can

then be computed as APSðAiÞ ¼
1
K

PK
k¼1 PS

kðAiÞ. A smaller APS repre-
sents better performance.

Table XI shows the APS values
obtained by cDE, CoBiDE, jSO,
HSES, Q-HSES [8] (the conference
version of this paper), and DQ-HSES

TABLE IX Results on 50D test functions of CEC 2018.

cDE CoBiDE jSO DQ-HSES

MEAN STD MEAN STD MEAN STD MEAN STD

F1 6.38e-03x 1.68e-02 1.11e+04x 4.31e+03 0.00e+00
 0.00e+00 0.00e+00 0.00e+00

F3 6.72e-08x 1.05e-07 6.56e+00x 2.73e+00 0.00e+00
 0.00e+00 0.00e+00 0.00e+00

F4 5.71e+01x 4.47e+01 7.10e+01x 3.07e+01 5.62e+01x 4.87e+01 4.17e+01 4.95e+01

F5 1.57e+02x 1.39e+01 2.54e+02x 1.38e+01 1.64e+01x 3.46e+00 7.60e-01 8.57e-01

F6 2.14e-03x 3.65e-03 1.98e+00x 2.60e-01 1.09e-06
 2.62e-06 1.25e-06 2.16e-06

F7 2.32e+02x 1.55e+01 3.44e+02x 1.71e+01 6.64e+01x 3.47e+00 5.51e+01 6.75e-01

F8 1.57e+02x 1.34e+01 2.58e+02x 1.29e+01 1.69e+01x 3.13e+00 1.46e+00 1.11e+00

F9 2.82e+00y 4.09e+00 2.27e+02x 1.01e+02 0.00e+00y 0.00e+00 1.61e+01 2.51e+01

F10 6.26e+03x 3.41e+02 8.54e+03x 3.75e+02 3.13e+03x 3.67e+02 4.86e+02 4.31e+02

F11 2.12e+02x 6.41e+01 1.07e+02x 7.78e+00 2.79e+01x 3.32e+00 2.25e+01 2.01e+00

F12 6.12e+04x 5.62e+04 6.27e+03x 1.10e+03 1.68e+03x 5.22e+02 1.16e+02 1.25e+02

F13 6.58e+03x 9.15e+03 2.44e+02x 2.00e+01 3.05e+01y 2.12e+01 4.76e+01 1.55e+01

F14 3.47e+02x 8.84e+01 9.18e+01x 7.09e+00 2.49e+01x 1.87e+00 1.49e+01 9.14e+00

F15 3.87e+02x 2.07e+02 8.52e+01x 8.08e+00 2.38e+01x 2.48e+00 1.76e+01 4.61e-01

F16 1.44e+03x 2.25e+02 1.34e+03x 1.60e+02 4.50e+02y 1.37e+02 6.42e+02 2.60e+02

F17 9.91e+02x 2.16e+02 8.75e+02x 1.14e+02 2.82e+02y 8.61e+01 5.05e+02 3.39e+02

F18 5.77e+03x 8.02e+03 5.67e+01x 4.32e+00 2.42e+01x 2.01e+00 2.09e+01 1.34e-01

F19 1.70e+02x 4.30e+01 4.68e+01x 4.33e+00 1.41e+01x 2.26e+00 1.02e+01 7.64e+00

F20 8.70e+02x 1.80e+02 6.37e+02x 1.24e+02 1.40e+02x 7.73e+01 4.19e+01 5.44e+01

F21 3.63e+02x 1.44e+01 4.57e+02x 1.30e+01 2.19e+02x 3.76e+00 2.04e+02 8.95e-01

F22 5.47e+03x 2.87e+03 5.51e+03x 4.48e+03 1.48e+03
 1.75e+03 1.00e+02 1.48e-06

F23 5.89e+02x 1.58e+01 6.83e+02x 1.32e+01 4.30e+02x 6.23e+00 4.23e+02 7.72e+00

F24 6.55e+02x 1.93e+01 7.40e+02x 2.01e+01 5.07e+02x 4.12e+00 4.88e+02 2.85e+00

F25 5.15e+02y 4.30e+01 4.82e+02y 5.91e+00 4.80e+02y 2.79e+00 5.45e+02 2.97e+01

F26 2.68e+03x 1.77e+02 3.57e+03x 1.50e+02 1.12e+03x 5.61e+01 5.81e+02 1.64e+02

F27 6.37e+02x 6.21e+01 5.49e+02y 1.56e+01 5.11e+02y 1.10e+01 5.69e+02 2.69e+01

F28 4.84e+02y 2.43e+01 4.58e+02y 5.73e-02 4.59e+02y 6.83e+00 5.01e+02 1.36e+01

F29 6.84e+02x 1.67e+02 8.51e+02x 9.93e+01 3.62e+02
 1.31e+01 5.02e+02 1.74e+02

F30 7.76e+05x 1.50e+05 6.28e+05x 1.30e+04 6.01e+05
 2.98e+04 5.96e+05 1.13e+04

BM 0(0) 1(0) 10(8) 20(16)

y= 
 =x 3/0/26(3/0/21) 3/0/26(3/0/21) 7/6/16(7/4/13)
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TABLE X Results on 100D test functions of CEC 2018.

cDE CoBiDE jSO DQ-HSES

MEAN STD MEAN STD MEAN STD MEAN STD

F1 1.93e+03x 2.99e+03 2.46e+07x 5.12e+06 0.00e+00
 0.00e+00 0.00e+00 0.00e+00

F3 6.77e+01x 6.37e+01 1.31e+04x 2.51e+03 2.39e-06x 2.72e-06 0.00e+00 0.00e+00

F4 2.14e+02x 3.15e+01 3.05e+02x 2.33e+01 1.89e+02x 2.89e+01 9.71e+00 3.66e+01

F5 5.53e+02x 3.34e+01 7.74e+02x 3.32e+01 4.39e+01x 5.60e+00 4.03e+00 2.17e+00

F6 4.06e-01x 5.09e-01 1.64e+01x 1.74e+00 2.02e-04x 6.19e-04 9.03e-08 2.41e-08

F7 7.36e+02x 4.11e+01 9.04e+02x 3.86e+01 1.44e+02x 6.70e+00 1.09e+02 1.18e+00

F8 5.54e+02x 3.55e+01 7.72e+02x 2.30e+01 4.21e+01x 5.52e+00 3.12e+00 1.84e+00

F9 1.89e+03x 1.21e+03 6.08e+03x 1.64e+03 4.59e-02
 1.14e-01 3.35e-01 6.81e-01

F10 1.80e+04x 4.42e+02 2.22e+04x 5.39e+02 9.70e+03x 6.81e+02 1.34e+03 3.97e+02

F11 1.18e+03x 2.39e+02 7.01e+02x 4.18e+01 1.13e+02x 4.32e+01 3.04e+01 4.01e+01

F12 5.35e+05x 3.20e+05 5.37e+06x 1.49e+06 1.84e+04x 8.35e+03 8.51e+02 2.76e+02

F13 4.92e+03x 5.63e+03 4.79e+03x 6.90e+02 1.44e+02x 3.80e+01 4.57e+01 9.86e+00

F14 4.69e+03x 7.02e+03 3.53e+02x 1.81e+01 6.43e+01x 1.08e+01 1.96e+01 6.32e+00

F15 3.65e+03x 5.62e+03 6.77e+02x 4.02e+01 1.62e+02x 3.80e+01 1.01e+02 1.98e+01

F16 4.61e+03x 3.03e+02 5.16e+03x 3.11e+02 1.85e+03x 3.48e+02 1.28e+03 8.44e+02

F17 3.55e+03x 2.52e+02 3.42e+03x 1.88e+02 1.27e+03x 2.38e+02 5.41e+02 3.01e+02

F18 4.97e+04x 1.77e+04 5.32e+02x 6.24e+01 1.67e+02x 3.64e+01 4.00e+00 6.74e+00

F19 4.91e+03x 7.31e+03 3.01e+02x 2.13e+01 1.04e+02x 2.00e+01 2.03e+01 2.28e+01

F20 3.43e+03x 2.18e+02 3.18e+03x 2.00e+02 1.37e+03x 2.42e+02 5.14e+02 2.44e+02

F21 7.81e+02x 3.91e+01 1.00e+03x 2.74e+01 2.63e+02x 6.42e+00 2.22e+02 3.18e+00

F22 1.90e+04x 5.78e+02 2.34e+04x 6.05e+02 1.02e+04x 2.18e+03 2.92e+02 6.76e+02

F23 8.67e+02x 2.46e+01 1.18e+03x 1.80e+01 5.71e+02x 1.07e+01 5.45e+02 7.67e+00

F24 1.38e+03x 3.72e+01 1.62e+03x 2.64e+01 9.02e+02x 7.89e+00 8.44e+02 6.92e+00

F25 7.58e+02
 5.41e+01 8.71e+02x 2.72e+01 7.36e+02
 3.53e+01 7.41e+02 3.91e+01

F26 8.56e+03x 4.62e+02 1.07e+04x 3.17e+02 3.26e+03x 8.01e+01 2.35e+03 1.21e+02

F27 8.28e+02x 9.80e+01 8.46e+02x 4.38e+01 5.85e+02y 2.16e+01 6.39e+02 9.95e+00

F28 5.54e+02x 2.74e+01 6.75e+02x 2.15e+01 5.26e+02
 2.73e+01 4.80e+02 9.88e+01

F29 3.40e+03x 3.31e+02 4.05e+03x 2.45e+02 1.25e+03
 1.91e+02 1.28e+03 2.93e+02

F30 7.35e+03x 3.53e+03 1.48e+04x 2.00e+03 2.32e+03y 1.18e+02 2.68e+03 1.26e+02

BM 0(0) 0(0) 6(4) 24(20)

y= 
 =x 0/1/28(0/1/23) 0/0/29(0/0/24) 2/5/22(2/3/19)

TABLE XI The APS values obtained by cDE, CoBiDE, jSO, HSES, Q-HSES, and DQ-HSES.

DIM. cDE CoBiDE jSO HSES Q-HSES DQ-HSES

10D 2.250 0.875 0.958 1.792 1.750 1.667

30D 3.958 2.750 1.375 1.333 0.833 0.792

50D 4.167 4.083 1.583 0.875 0.667 0.708

100D 4.083 4.792 2.333 0.375 0.208 0.167

Avg. 3.615 3.125 1.562 1.094 0.865 0.833

W. Avg. 3.779 3.812 1.779 0.858 0.625 0.604
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on the CEC 2018 test suite excluding
the training functions. It is clear that
CoBiDE obtains the minimum APS on
10D functions, and DQ-HSES obtains
the minimum APS on 30D and 100D
functions. The last two rows of the table
show the average APS and the
weighted-average APS on the functions
over the four sets of dimensions with
weights 0:1; 0:2; 0:3; and 0:4 for 10D,
30D, 50D, and 100D functions, respec-
tively, as used in the CEC 2017 compe-
tition [27]. It is clear that DQ-HSES
achieves the minimum average and
weighted-average APS values. More-
over, Q-HSES has a higher score than
HSES but lower than DQ-HSES,
which implies that using Q-learning
can improve the performance of HSES
while DQN can deliver even better

results. Thus we may conclude that
DQ-HSES is competitive with the
state-of-the-art EAs.

4) Visualization of DQNs
Figure 5 shows the results of voting of
DQNs on four dimensions. It shows the
following: 1) The results of voting are
different in different dimensions. 2) For
each dimension, the result is too irregu-
lar to be manually designed. This verifies
the advantage of using a trained agent.

5) Time Complexity Analysis
Table XII shows the average running
times of HSES and DQ-HSES on
F1 � F30 for each set of dimensional
functions. It is clear that DQ-HSES
generally requires slightly longer
than HSES except on 50D problems.

This shows that the switcher agent
can better allocate computational
resources without sacrificing too
much time.

VIII. CONCLUSION
In this article, we propose a framework
for the adaptive control of the structural
parameters of sequential hybrid EAs
based on Q-learning. By way of case
studies, we apply the framework to
adaptively control the switching time
of the strategy to set the population
size in LSHADE as well as that of
HSES from the univariate sampling
phase to the CMA-ES phase. The
experimental results on the CEC 2018
test suite show that the learned algo-
rithm based on LSHADE, Q-
LSHADE, outperforms LSHADE. The
learned algorithm based on HSES (the
winner of the CEC 2018 competition),
DQ-HSES, also outperforms it as well
as some well-known EAs. The results
verify the effectiveness of the proposed
framework and indicate that learned
knowledge is useful for solving new
optimization problems. In the future
work, we intend to study how to
adaptively design EAs instead of only
controlling their algorithmic parame-
ters. Moreover, we will examine ways
to learn local search algorithms to solve
combinatorial optimization problems.
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