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Abstract—The fifth generation of mobile networks (5G)
and beyond are not only sophisticated and difficult to
manage, but must also satisfy a wide range of stringent
performance requirements and adapt quickly to changes
in traffic and network state. Advances in machine learning
and parallel computing underpin new powerful tools that
have the potential to tackle these complex challenges.
In this paper, we develop a general machine learning-
based framework that leverages artificial intelligence to
forecast future traffic demands and characterize traffic
features. This enables to exploit such traffic insights to
improve the performance of critical network control mech-
anisms, such as load balancing, routing, and scheduling.
In contrast to prior works that design problem-specific
machine learning algorithms, our generic approach can be
applied to different network functions, allowing to re-use
existing control mechanisms with minimal modifications.
We explain how our framework can orchestrate ML to
improve two different network mechanisms. Further, we
undertake validation by implementing one of these, i.e.,
mobile backhaul routing, using data collected by a major
European operator and demonstrating a 3× reduction of
the packet delay, compared to traditional approaches.

Index Terms—Machine learning, deep learning, mobile
networks, 5G systems, network optimization.

I. INTRODUCTION

Recent advances in machine learning (ML) en-
able optimization at levels of complexity that were
previously unaffordable. This has led to dramatic
performance improvements, fostering the use of ML
algorithms like neural networks across a wide range
of fields.

Harnessing ML to enhance the performance of
wireless networks started with 5G and will be essen-
tial to promote zero-touch configuration and man-
agement, thereby enabling self-configuration and
self-optimization envisioned for 6G networks [1].
Wireless network operation depends on many vari-
ables that are not always known at the time when de-
cisions need to be taken and which cannot be easily
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forecast or inferred. Furthermore, wireless networks
are increasingly complex and heterogeneous, as they
comprise many different radio access technologies
and modules that mutually interact, need to sat-
isfy diverse evolving requirements, and have to
adapt quickly to changes. This renders the problem
of real-time performance optimization of wireless
systems prohibitive for traditional techniques. In
contrast, the ability of ML tools to handle very
complex systems makes them suitable for managing
highly dynamic wireless networks and take more
intelligent decisions, e.g., based on predicted future
traffic patterns [2].

Stemming from these observations, this paper
proposes a modular ML-based wireless network
optimization framework, which enables plug-and-
play integration of machine intelligence into new,
as well as existing, network functions. Specifically,
we leverage ML to (i) forecast future traffic volume
and (ii) characterize traffic features. We then feed
this information into network control mechanisms
to improve their performance. The advantage of our
approach is two-fold: (i) it is sufficiently general and
allows to instantiate ML pipelines across different
network elements and functions, thus being compli-
ant with the recent ITU-T Y.3172 recommendation
for integrating ML in future networks [3], and (ii) it
permits to retrofit ML to legacy architectures and
reuse existing network control mechanisms with
minimal or no modifications.

Previous works embed ML into the design of
specific algorithms, focusing on network functions
including (i) mobility management, resource man-
agement and orchestration, and service provision-
ing [4]; (ii) detection and channel estimation in
massive MIMO systems [5]; (iii) routing [6]; and
(iv) resource scaling of Virtual Network Functions
(VNF) [7]. Their main drawback is precisely that
they are mechanism-specific, i.e., each network con-
trol mechanism requires a purpose-built ML ap-
proach, and cannot be easily reused.

In contrast, we use ML to make accurate traffic
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predictions that can be straightforwardly used as
input to well-established algorithms and decision
modules. Traffic forecasting and characterization us-
ing ML has received significant research interest [8],
[9]. Yet, previous work largely focuses on traffic
analysis to optimize specific network operations,
e.g. routing (see [10] for a survey of ML techniques
applied to SDN), or VNF resource scaling [7],
while our approach relies on traffic analytics to
improve the performance of generic network control
mechanisms.

In addition, we incorporate an ML orchestrator
that is responsible for managing and monitoring re-
sources, but also for deriving suitable configurations
for training ML models. We expect that instantiating
an ML pipeline for a specific function with the aid
of our framework will bear similar costs to those
incurred by purpose-built ML algorithms serving the
same purpose. The one-off signalling cost associated
with the orchestration of a function in our approach
is a small price to pay for the flexibility it enables.

To demonstrate the feasibility and performance
gains achievable with our framework, we show
how to orchestrate two ML pipelines, i.e., traffic-
driven VNF scaling and routing in mobile backhaul
networks. We practically evaluate the latter use case.
By feeding a state-of-the-art routing scheme with
city-scale forecasts of future traffic consumption,
obtained with a deep learning structure, our frame-
work attains 3× reductions in packet delay.

II. ML-BASED 5G NETWORK OPTIMIZATION

We propose an ML-based framework for net-
work optimization and explain how to incorporate
it within 5G networks.

A. ML-based Framework

Fig. 1 illustrates the building blocks of our frame-
work, which comprises (i) the ML orchestrator,
(ii) modules to measure mobile network traffic,
(iii) ML algorithms that process this data, and
(iv) modules performing specific network optimiza-
tions based on the output of the ML algorithms.

According to the specific network function to
optimize, the orchestrator defines in the form of
template the set of collector nodes, the duration
and the aggregation level of traffic measurements,
and ML pipeline-specific parameters, such as num-
ber of epochs, layers, and possibly a custom loss
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Fig. 1. Building blocks of the proposed framework. ML algorithms
used to characterize and forecast traffic based on measurements and
flow metadata. Knowledge extracted is fed to modules implementing
network functions.

function as in [11]. Different functions require dif-
ferent inputs; for example, while routing requires
to monitor traffic from a set of base stations to
decide optimal routes, scaling computational re-
sources of VNFs executing core services requires
to monitor control traffic from the same set of
base stations. The orchestrator thus coordinates the
instantiation of an ML pipeline accordingly, along
with the mechanisms to update the decisions for
each network function (e.g., by interacting with the
VNF orchestrator), and ensures sufficient computing
capacity is provisioned to train ML models in either
a centralized or a distributed manner.

Gathering measurements requires direct access to
flow information available at, e.g., Software Defined
Networking (SDN) switches or base stations. Rather
than defining a limited set of input features, the
measurement modules extract sequences of pack-
ets of each flow, along with their lengths, inter-
arrival times, direction (uplink/downlink), and pos-
sibly even parts of the payload. The key advantage
of working with such comprehensive data as input is
that abstract features can be extracted automatically
during training, instead of relying on a restricted and
manually identified set. Indeed, feature engineering
is costly and may lead to poor performance [12].
Further, new use cases may require different fea-
tures. Thus, our approach is future proof.

Our framework is general enough to allow for
different learning techniques. We focus on deep
learning (DL) because (i) DL algorithms scale
better than ML approaches as the volume of data
grows, (ii) in network settings where inferences
must be made based on a large number of input
parameters, DL produces highly accurate outputs,
and (iii) advances in parallel computing enable to
train complex neural networks rapidly and to apply
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Fig. 2. Example of a deep learning pipeline for mobile traffic
forecasting adapted from [13]. City level measurements are fed into
stacks of 3D-CNNs and ConvLSTMs, which extract spatio-temporal
features to predict future traffic demands at eNodeB level.

them in different settings without re-training.
We are especially interested in DL structures that

can identify distinct types of flows within large
aggregates, in order to (i) accommodate specific
requirements, such as latency and reliability (traffic
classification), and (ii) predict essential characteris-
tics of future network traffic, such as average and
peak data rates, level of burstiness, etc. (traffic fore-
casting). Depending on the target task, different DL
structures can be employed [12]. Auto-encoders are
particularly effective in traffic classification based
on TCP traffic flow information. Structures typically
used for image segmentation (e.g., Convolutional
Neural Networks – CNNs) are also effective in
classification. Optimization of network functions
like scheduling and load balancing depends on the
ability to accurately classify traffic (see Section III).

Traffic forecasting depends significantly on
temporal features. Long-Short Term Memories
(LSTMs) work well with time series. Similarly,
the convolution operation can be extended to the
temporal dimension to construct a 3D-CNN, thereby
extracting spatio-temporal features that are char-
acteristic to mobile traffic [13]. Fig. 2 illustrates
a deep learning pipeline tailored to mobile traffic
forecasting. City level traffic measurements are fed
into stacks of such 3D-CNNs and ConvLSTMs to
extract spatio-temporal features within traffic snap-
shots that a group of fully connected layers uses to
make future traffic predictions per eNB.

Finally, our decision modules (Fig. 1) are based
on existing algorithms which only need to be up-
dated to take as input the predictions made by
the DL algorithms. Thus, with our framework the
basic operation of these algorithms remains unmod-
ified. This provides much greater control over their
operation, unlike fully ML-based solutions whose
decisions are made directly by ML algorithms.
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Optimization RAN
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Fig. 3. Integration of our framework in a 5G architecture. Workflow
execution shown by highlighting measurement points and functions
benefiting from ML.

B. 5G Architecture Integration

The design of our framework adheres to the
ITU-T guidelines [3]. Although it is tailored specif-
ically for (beyond) 5G networks, the solution is
backward-compatible with 4G networks (except
with limited range of network mechanism that can
be optimized). Our framework can instantiate mea-
surement modules in the core, backhaul/fronthaul,
and RAN, while exploiting standard interfaces to
extract measurements from the network equipment.

Fig. 3 shows a realization of our architecture.
The sources (src) are User Equipments (UEs) and
base stations (eNodeB/eNBs and gNBs according to
4G and 5G terminology respectively) with diverse
radio access technology (RAT). Our framework can
also interact with other sources, such as the Net-
Work Data Analytics Functions (NWDAF), which
3GPP has introduced in Rel. 15, and RAN Data
Analytics Function (RAN-DAF - not within 3GPP’s
umbrella) to extract user location, cell/slice ID,
cell/slice load, channel quality, amount of trans-
mitted/received data, etc. This allows to collect
data (collector c) close to where it can undergo
pre-processing, so as to expose properly formatted
inputs to deep learning algorithms by applying a set
of transformations to map the measurements into a
tensor format that learning algorithms can process.

According to the specific optimization objective,
the training and inference phases take place either
in edge clouds or at the level of individual base sta-
tions/routers/UEs, depending on the required com-
puting capabilities. Traditionally, training an ML
model requires to move all the data into a central
location, which is the result of trading privacy and
bandwidth (e.g., backhaul links) to obtain accurate
models. With federated learning, an ML model is
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trained in a distributed manner, which suits better
scenarios with the UE in the loop and entails
minimal communication overhead, e.g., with data
compression or reduction on the number of updates
per node. This allows to harness the computing re-
sources of the federated nodes, while partial model
parameter updates affect the model’s convergence
speed only marginally. Once the output parameters
are determined, e.g., an update of the scheduling or
routing policy, they are distributed to the sink nodes
(e.g., the RATs in Fig. 3).

III. USE CASES FOR NETWORK OPTIMIZATION

We now cover a diverse set of use cases that our
framework can serve.

Semi-persistent, elasticity- and latency-aware
scheduling: Different types of traffic have different
levels of latency requirements, ranging from ex-
tremely small (e.g., ultra-reliable low-latency com-
munications – URLLC), to medium (interactive
voice or video), all the way to slack latency require-
ments (media streaming). ML can extract specific
flow characteristics and the associated latency re-
quirements, and feed this information to schedulers.

With semi-persistent scheduling, periodic uplink
flows can be assigned transmission slots without
notifying the scheduler of the user equipment’s
queue occupancy. Such allocations will change dy-
namically over time, to adapt to changes in the
modulation and coding scheme (MCS) that reflect
the perceived channel quality. Reserving resources
in advance brings significant advantages, i.e., re-
duced control overhead and signaling load (which
is critical in dense networks) and notifications to
neighboring cells of these reservations, to better
coordinate transmissions and limit inter-cell inter-
ference. While this technique has many advantages,
it requires flow classification, i.e., inferring whether
a given flow is amenable to this type of scheduling,
its periodicity, and the resources required for each
period.

Elastic flows can (within limits) adapt to the
available capacity; e.g., HTTP video streaming ap-
plications can switch between codecs of different
rates. Dropping packets of a flow directly reduces its
rate by the corresponding fraction of packets in case
of UDP. When TCP is employed, packet dropping
indirectly reduces the rate of that flow by triggering
congestion control. Further, dropping packets of
elastic flows reduces the Quality of Experience

(QoE) of the corresponding users significantly less
than reducing the rate of inelastic traffic. In contrast,
URLLC traffic of industrial automation and tactile
applications poses extreme requirements in terms of
latency and reliability (1 ms target latency and 10−5

reliability as per 3GPP Rel. 15 specifications).
A prompt and correct classification of latency

requirements enables to prioritize and schedule dif-
ferent flows to meet their deadlines, if necessary
at the expense of serving less important traffic
with higher delay. The classification of the level of
elasticity allows (i) to intelligently drop packets of
specific flows, so as to minimize QoE degradation
and (ii) to shape the traffic of known applications
early on, thereby preventing congestion.

Load balancing: Advance knowledge of be-
havior and characteristics of different flows, such as
the average/peak rate, and level of burstiness, allows
to intelligently assign different flows to base stations
and scale in and out VNF resources.

Load balancing may be based on average load
or the statistical behavior of the different flows
and the probability that they congest the corre-
sponding base station. More importantly, prediction-
based load balancing can occur proactively rather
than reactively, i.e., when some base stations have
already become congested. In 5G scenarios, users
may benefit from being simultaneously attached
to conventional LTE and New Radio (NR) base
stations. NR will typically operate in mm-wave
bands, which offer much higher data rates, but are
more susceptible to blockage. Early prediction of
blockage on NR links allows to steer traffic over
proper fallback LTE links.

Load balancing is also essential for VNF orches-
tration. The placement of the different VNFs serving
a given flow depends on (i) the traffic generated by
that flow and (ii) the latency requirements of the
application. Since moving or start-up new VNFs
incur high overheads, it is important to predict
these features as far in advance as possible thus
minimizing the disruption of their operation. For
example, co-location in the same rack of VNFs
executing RAN and core services that exchange a
significant amount of signaling traffic (e.g., Access
and Mobility Function (AMF) and Session Manage-
ment Functions (SMF)) is beneficial to reduce load
peaks, queuing delays, and energy consumption.
Additionally, traffic prediction is an enabler for joint
optimization of radio configuration (MCS) and CPU
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allocation of VNFs executing RAN services [11].
Unlike core services for which statistics about con-
trol traffic are required to optimize resource alloca-
tion and orchestration of VNFs, RAN services and
flow assignment require data traffic statistics.

Mobile traffic routing: Efficient route manage-
ment is essential for mobile networks, especially
for high rate and low latency traffic flows, which
may originate in edge clouds, are routed to the
core, and then continue on to servers responsible for
C-RAN processing. Poorly chosen paths lead to net-
work congestion and degrade the quality of service.
While typically routing protocols assign (static or
dynamic) weights to links, the increasing popularity
of SDN offer new degrees of freedom for routing
(e.g., flow-based routing). With an ML algorithm
that can learn flow statistics with high accuracy
and mine traffic patterns, more sophisticated and
accurate routing policies can be devised. In the next
section, we present a realization of our framework
that addresses this particular routing use case.

IV. ORCHESTRATION AND USE CASE
IMPLEMENTATION

We demonstrate how the proposed ML-based
optimization framework can be instantiated to or-
chestrate simultaneous ML pipelines for learning-
driven routing and VNF scaling. Further, we assess
the benefits of ML in the former use case.

Let us consider part of a mobile core network,
a cluster of eNBs deployed in the city of Milan
(see Fig. 4). We envision a set of routing nodes
that connect the eNBs to the core network via
diverse backhaul links. The traffic measurements
were collected by Telecom Italia between Nov–Dec
2013 [14]. The experiments preserve the trends in
the original dataset, but we scale up the demands by
a factor of 10, according to current market studies
on traffic consumption growth. Fig. 5 illustrates
different 30-min snapshots of the ground truth ob-
servations and the demand forecast with our D-STN
at 4 selected eNBs (as numbered in Fig. 4).

Orchestration: In a 5G core network with
control-user plane separation, the User Plane Func-
tion (UPF) takes care of the data path while AMF
and SMF cover the control path. AMF performs
functions related to user authentication, authoriza-
tion and handles mobility management. SMF is in
charge of all session management functions, allo-
cates IP addresses and selects the UPF (see Fig. 4).

Our ML framework (see Fig. 1) will orchestrate
simultaneously the scaling of AMF and routing.
The orchestrator instructs one ML-pipeline to gather
control traffic to determine the number of accepted
UEs and the time they need to attach to the net-
work [7]. A second ML-pipeline is instructed to
aggregate data traffic into minute-granularity sum-
maries along with timing information and the co-
ordinates of the corresponding source nodes (“Ex-
traction of Input Parameters”). Both ML pipelines
extract these parameters from mobile traffic ob-
served at different eNodeBs (“Measurement Points”
and “Data” in Fig. 1). Input parameters are fed to
specific ML-algorithms, e.g., LSTM, and ConvL-
STM and 3D-CNN structures for VNF scaling and
routing respectively (“Traffic Forecasting” module).
Finally, the outputs, i.e., the optimal number of
VNFs and paths are fed to the (“Decision Module”)
that instruct the VNF orchestrator and routers.

Learning Driven Proactive Routing: We now
quantify the benefits of a specific ML-pipeline. Our
approach stems from the observation that traditional
shortest-path routing is increasingly phased out,
because of the highly dynamic nature of traffic de-
mands within mobile networks and the progressively
denser network deployments. More often, alterna-
tives like backpressure routing [15] that forward
packets based on information about queue sizes
along possible paths are preferred. DL was proven
to outperform conventional OSPF by taking routing
decisions based on observed traffic patterns [6].
However, both load-based and early DL-powered
solutions select routing paths a posteriori, i.e., only
after network conditions changed. This increases
delays, as traffic demand information may be stale
by the time forwarding decisions are enforced.

By forecasting future traffic demands and make
routing decisions proactively can circumvent these
limitations. Unfortunately, widely used forecasting
techniques (e.g. ARIMA) require to be fed con-
tinuously with measurement time series, which is
expensive. Furthermore, such tools must be re-
configured each time they are deployed in a new
network topology. In contrast, our framework adopts
DL techniques that are trained offline once, and
afterwards can provide city-scale traffic predictions
to routing logic without retraining.

Therefore, we incorporate our recently developed
deep spatio-temporal neural network (D-STN) [13],
which through ConvLSTM and 3D-CNN structures
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Fig. 4. Example of eNBs cluster in the city of Milan, with our ML framework orchestrating in the core network VNF scaling and proactive
routing both based on traffic forecast measured per eNB.
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Fig. 6. Delay CDF for the topology shown in Fig. 4. The path
selection is made using a vanilla backpressure algorithm, an enhanced
version that uses mobile traffic forecasts, and the ideal case where
perfect knowledge of future traffic is available.

extracts abstract spatial and temporal features of
mobile traffic, achieving high forecasting accuracy
with only limited measurements. Our approach does
not require fine-grained information about individ-
ual flows because it makes predictions based on
aggregate traffic volumes. Further, by mixing pre-
dictions with historical information, this solution
estimates the future traffic demand with small errors
for long periods of time.

We assume the backhaul routers are intercon-
nected with wireless backhaul links that employ 2×2
MIMO transceivers (up to 300 Mb/s nominal data
rates). We emulate the traffic flowing from each of
the eNBs (see Fig. 4), assuming UDP packets with
1000 Byte payload. UDP is commonly employed

to tunnel user traffic traveling from eNBs to the
core network. To assess the gains attainable with
traffic forecasting driven routing, we measure the
delay that packets experience from the moment they
are injected into the backhaul at eNB level, until
they reach the core network. We examine this delay
when routes are established with a vanilla back-
pressure algorithm that makes a posteriori decisions
(without any ML logic) to balance queue sizes as
traffic arrives. We compare the performance of this
approach with an enhanced version that makes path
computation decisions based on traffic forecasting
obtained with D-STN. Decisions are made with the
granularity of one traffic prediction step (1 second),
whereas the computation time is dominated by the
inference time of the neural network (in the order of
milliseconds). Fig. 6 shows the cumulative distribu-
tion function (CDF) of the delays. Observe that even
in the small topology considered, the median of the
packet delay is 3× smaller with traffic forecasting
driven routing. To appreciate the potential negative
effects of incorrect traffic forecasts, we also show
the latency performance in the ideal case where
perfect knowledge of future traffic is available (i.e.,
no prediction errors). Our approach follows closely
the ideal scenario, as the median of the delay is only
marginally higher which confirms that the proposed
ML-based framework can bring substantial perfor-
mance benefits in (beyond) 5G mobile networks.

V. CONCLUSIONS

In this paper, we presented a ML-based frame-
work to optimize the operation of (beyond) 5G
networks. Unlike current approaches that embed ML
directly within network control systems, our frame-
work does not require to design use-case specific
ML algorithm and change existing network algo-
rithms. Our framework instantiates ML pipelines
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to characterize traffic features and predict future
traffic demands. The predictions are subsequently
fed into existing network control mechanisms. Our
approach brings together and harmonizes concepts
from ITU-T, 3GPP and other specifications, in a sin-
gle comprehensive framework. We showed how our
framework can instantiate multiple ML pipelines for
different objectives. We implemented and tested our
framework for one, i.e., proactive routing. Results
indicate that even in small topologies, our solution
reduces packet delay significantly.
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