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Abstract—Random access schemes in modern wireless commu-
nications are generally based on the framed-ALOHA (f-ALOHA),
which can be optimized by flexibly organizing devices’ transmis-
sion and re-transmission. However, this optimization is generally
intractable due to the lack of information about complex traffic
generation statistics and the occurrence of the random collision.
In this article, we first summarize the general structure of access
control optimization for different random access schemes, and
then review the existing access control optimization based on
Machine Learning (ML) and non-ML techniques. We demon-
strate that the ML-based methods can better optimize the access
control problem compared with non-ML based methods, due to
their capability in solving high complexity long-term optimization
problem and learning experiential knowledge from reality. To
further improve the random access performance, we propose
two-step learning optimizers for access control optimization,
which individually execute the traffic prediction and the access
control configuration. In detail, our traffic prediction method
relies on online supervised learning adopting Recurrent Neural
Networks (RNNs) that can accurately capture traffic statistics
over consecutive frames, and the access control configuration can
use either a non-ML based controller or a cooperatively trained
Deep Reinforcement Learning (DRL) based controller depending
on the complexity of different random access schemes. Numerical
results show that the proposed two-step cooperative learning
optimizer considerably outperforms the conventional Deep Q-
Network (DQN) in terms of higher training efficiency and better
access performance.

Index Terms—Random access, traffic prediction, access control
optimization, machine learning.

I. INTRODUCTION

To achieve effective radio access, the random access tech-
nique has been integrated into multiple access protocol as a
key component of modern wireless communication systems,
e.g. Long-Term Evolution (LTE, a.k.a., 4G), Fifth Generation
New Radio (5G NR) systems, and etc.. Taking 4G/5G cel-
lular networks as an example, the random access technique
is adopted by Random Access CHannel (RACH) procedure,
which is used to establish or re-establish connection between
an unsynchronized device and its associated Base Station
(BS) [1]. The reason to adopt random access is due to its
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minimum requirements of priori information, where devices
randomly select channels and transmit preambles/packets to
the associated BS without negotiation. This uncoordinated
transmission inevitably brings uncertainty such that multiple
devices may select the same channel at the same time, which
results in collided signals that generally cannot be decoded by
the BS. Severe collisions occur when massive devices simul-
taneously access, which results in access delay, packet loss,
or even service unavailability. With the growing number of
devices, such as in massive Internet of Things (mIoT), massive
access by shared radio channels may create the heavy network
overload problem, which brings one of the key challenges in
communication networks, and motivates us to concentrate on
massive random access in this article.

The random access framework provides the flexibility of
designing access schemes to organize devices’ transmission
and re-transmission. For instance, Access Class Barring (ACB)
Scheme can defer devices to transmit preamble according to
a probability in order to alleviate network congestion. To
better manage access, access control parameters (e.g., ACB
factor), are expected to be flexibly selected according to the
communication environment and traffic statistics. However,
such flexible selection of the access control parameters in
RACH is general intractable, due to the lack of knowledge
at the BS regarding future traffic and channel statistics. To
solve this problem, classical works [2–8] have devoted substan-
tial efforts in designing efficient access control optimization
techniques by deriving explicit optimization solutions based
on a mathematical model that captures the regularities of
the practical communication environment (to be detailed in
Sec. III-B). However, their access performances are generally
limited, due to the high complexity of the problem and the fact
that the physics-based model is hard to accurately describe the
communication environment.

In this article, we first briefly introduce the RACH proce-
dure and related RACH schemes in cellular-based networks.
After that, we propose the fundamental mechanism of access
control process, and conclude the state-of-the-art conventional
dynamic access control techniques. Finally, we elaborate that
Machine Learning (ML) based access control optimization has
potential to better optimize the random access KPIs, due to its
capability in addressing high complexity problem and learning
experiential knowledge from environment. Specifically, we
introduce the-state-of-arts model-free Reinforcement Learning
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TABLE I: RACH Protocols and Relevant Optimizations

Comparison of RACH Protocols

Solution KPI Parameters Exact Control Reference
Access Class Barring (ACB) Success Accesses ACB factor X [2–4, 9]
Dynamic Resource Allocation (DRA) Time Delay Channels X [5]
Back-Off (BO) Success Accesses BO factor × [6]
Prioritized Access Success Accesses Access Periodicity × [7]
Distributed Queuing (DQ) Success Accesses Depth and breadth of the tree × [8]

Comparison of Optimization Methods

Type Sub-type Performance Complexity Online Adaptation Training Efficiency Reference

Non-ML based
DA optimizer Low Low × - [2]
MoM optimizer Low Low × - [4]
MLE optimizer Moderate Moderate × - [3]

ML based
RL-based optimizer High High X Slow [9]
SL-based optimizer∗ High (Limited) Moderate X Fast [10]
CPCL-based optimizer High High X Fast This work

∗ The SL-based optimizer only offers high performance in the RACH schemes with exact configuration solutions, e.g., ACB and the resource allocation schemes.

(RL) based access control optimization [9, 11], which provides
one-step solution of both the traffic prediction and the access
control configuration. With the obtained optimal solution only
relying on interacting with network environment, this one-step
RL-based method requires minimal domain knowledge of the
communication model, while it also suffers from low training
efficiency and huge computational resource consumption. To
solve these problems, we then propose a novel two-step learn-
ing framework for access control optimization by decomposing
the learning process into two independent processes, which
are the traffic prediction and the access control configurations,
respectively. The traffic prediction is based on the online
Supervised Learning (SL) adopting Recurrent Neural Networks
(RNNs) given in [10], and the access control configuration
based on either a non-ML based controller or a cooperatively
trained RL based controller. This two-step learning framework
is proposed based on the fact that the access control config-
uration strongly depends on the forthcoming traffic load, and
the design of decomposition between prediction and control
considerably improves its training efficiency.

The remainder of the article is organized as follows. Section
II illustrates the structure and research challenges of random
access. Section III discusses the background of access con-
trol optimization and reviews existing non-ML based access
control optimization methods. Section IV proposes learning-
based access control optimization, including one-step RL-
based method, SL-based traffic prediction, and the integrated
SL-based prediction and RL-based configuration. Finally, Sec-
tion V summarizes the conclusion and future work.

II. RESEARCH CHALLENGES AND RANDOM ACCESS
SCHEMES

The RACH procedure is initialized by transmitting a pream-
ble along with three control signals transmitted via scheduled
channels. Generally, a device performs the contention-based
access via transmitting a randomly selected preamble to initiate
RACH, in which the contention refers to that the preamble
can be erroneously decoded due to collision, i.e., two or more

devices transmit using the same preamble at the same time.
To overcome such channel resource under-provision, several
efficient random access schemes has been developed over the
last decade. In the following, we first introduce the framework
and research challenges of RACH in the cellular networks, and
then describe the classical RACH schemes.

A. RACH framework and research challenges

The contention-based access requires multiple steps of con-
trol information exchanges between a device and its associated
BS, which are usually handled via two different strategies:
(a) multi-step grant-based procedure used in the conventional
cellular networks, such as LTE and 5G NR; and (b) two-
step grant-free procedure, which is proposed to handle the
sporadic traffic of low latency IoT networks. In the grant-based
RACH, the preamble transmission at step 1 is in the random
access manner, whereas the steps 2-4 use dedicated channels
scheduled by the BS that only occurs when the preamble
transmission succeeds. This successive execution inevitably
increase latency, but improves the system reliability. In the
grant-free access, the preamble, the control information, and
the data are integrated into a single sequence to be transmitted
to its associated BS without any negotiation, which decreases
the RACH delay with the sacrifice of the system reliability.

The contention-based RACH is built on the f-ALOHA struc-
ture, where each device is informed about the pool of available
channels, and selects one of the channel uniformly at random
for transmission. In particular, the size of channel pool can be
flexibly defined by the BS, and the notification occurs at the
beginning of each frame via broadcasting. Recent works [2–
8] on f-ALOHA networks have focused on designing effective
random access schemes and the optimization techniques for
the purpose of handling access overload. To evaluate the
the performance of the novel techniques, a list of KPIs are
presented as follows:

• Access Success Probability (Reliability): a statistical
probability mapping devices to complete access within
a limited number of frames.
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• Access Delay: the time elapsed from the start of access
to the time receiving the confirmation of access success.

• Energy Consumption: the total energy consumed during
RACH, which is mainly affected by the re-access times.

B. Random Access Schemes

To support massive and diverse access requirements, existing
literature have proposed RACH solutions in various wireless
networks, including, but not limit to, grant-based RACH in
LTE, 5G NR, NarrowBand IoT (NB-IoT), and etc.. These
solutions are based on the f-ALOHA framework, and share the
same purpose of providing more efficient access by alleviating
the collisions during RACH. In general, the key idea of
these solutions aim at overcome the channel resource under-
provision by intelligently organizing devices’ transmission and
re-transmission. A classification of existing schemes and their
optimization problems are summarized in table I and are
concluded as follows:

1) Access Class Barring (ACB) Scheme: devices are for-
bidden to transmit preamble according to a probability
PACB chosen by BS to alleviate network congestion [2–4,
9].

2) Dynamic Resource Allocation (DRA) Scheme: BS allo-
cates a number of channels for RACH according to the
requirements during congestion [5].

3) Back-off (BO) Scheme: different BO timers are assigned
to different service classes in order to postpone their
access attempts [6].

4) Prioritized Access Scheme: devices are splitting into
several classes, where the devices from one class are
allowed to perform access only in the dedicated access
cycle [7].

5) Distributed Queuing (DQ) Scheme: devices perform ac-
cess based on a tree splitting algorithm to resolve the
collisions by organizing the re-transmission of colliding
devices into several distributed queues [8].

III. CONVENTIONAL RANDOM ACCESS OPTIMIZATION

Despite that each scheme introduced in Sec. II-B has its own
mechanism to control access overload, these access schemes
are intrinsically based on f-ALOHA protocol, which formulates
a general discrete time stochastic control process. In detail,
each scheme would divide time into frames, and allows a
limited number of devices to execute access using a limited
number of channels in each frame. The BS organize devices’
transmission and re-transmission in a centralized manner to
facilitate overload control in various traffic scenarios. Taking
the ACB scheme for example, the BS controls the probability
of device access by using the ACB factor, and each non-empty
device randomly decides whether to execute RACH according
to the obtained probability.

A. Research Challenges of Random Access optimization

RACH optimization targets to identify the optimal strategy to
select RACH control parameters in real-time to optimize one

or more KPIs. This optimal strategy of each RACH scheme
is determined by an agent at the BS, which makes decision
according to the received observations. More precisely, the
observation is a set of historical transmission receptions during
the RACH, including, but not limited to, the numbers of chan-
nels’ state in success/collision/idle at the end of each frame,
and the output of the agent is a set of parameters that will be
performed in the forthcoming frame to maximize the KPIs in
the following frames. Note that obtaining an optimal RACH
configuration strategy using Bayesian approach is generally
intractable. To tackle these problems, the optimization can be
divided into two strongly related sub-tasks, including (a) traffic
load prediction for the forthcoming frame; and (b) RACH
control configuration based on the predicted traffic load. Taking
the adaptive ACB scheme as an example, by predicting the
forthcoming traffic statistic N̂ , the number of access success
devices can be optimized by choosing the ACB factor PACB
according to PACB = min(1, R

N̂
), where R refers to the number

of channels.
1) Traffic Prediction: Traffic prediction can be the most crit-

ical problem in f-ALOHA based network, due to the following
three challenges: (i) the incoming traffic is generally complex,
and may consist of mixtures of different traffic types including
periodic, event-driven (bursty), multimedia streaming patterns,
and etc.; (ii) the lack of information about the cardinality
of collisions; and (iii) with overload network, transmission
might be restricted according to the mechanism of each RACH
scheme, which can lead to temporal correlations of traffic due
to the unobserved packets accumulation.

2) RACH Control Configuration: Even with known pre-
dicted traffic statistics, maximizing the long-term KPIs for
RACH is generally mathematical intractable, due to that these
KPIs are not only determined by the current configuration, but
also correlated with the future configurations. Most non-ML
works only optimize the KPI of the next frame, where they ig-
nored the dependency among the RACH control configurations
of multiple consecutive frames over the long-term KPI. This
simplified assumption of traffic is made due to the limitation in
mathematical tool to capture these complex long-term correla-
tion over traffic and the RACH control configurations. For the
schemes introduced in Sec. II-B with the aim of optimizing
the number of success access devices, the ACB scheme [4]
and the resource allocation scheme [5] offered exact closed-
form solutions, while the back-off scheme [6], the prioritized
access scheme [7] and the distributed queuing scheme [8] only
enjoyed approximated solutions.

B. Conventional non-ML based Access Control Optimization

Given a known RACH control configuration strategy, the
traffic prediction problem can be cast as a Bayesian probability
inference problem, requiring the calculation of the probability
for each possible traffic statistics under given historical obser-
vation. However, due to the lack of a priori probabilistic model
for traffic generation, it is impossible to compute the probabil-
ity of each occurring status. To solve this problem, previous
works [2, 4, 12] assumed that the traffic load statistic to be
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predicted at the (t + 1)th frame (forthcoming) is equal to the
traffic load at the frame t (current). Note that this assumption
is necessary to enable tractability of traffic prediction in non-
ML based methods. The details of existing traffic estimation
are concluded as:

1) Drift Analysis (DA) estimator: A unified framework
for traffic load estimation was proposed in [2], where
the estimation was updated via a heuristic recursion
algorithm. The traffic value is calculated by summarizing
the last traffic value as well as the estimated traffic
difference between the last and the current frames. The
traffic difference estimation determines the prediction
accuracy relying on the selection of adjusting parameters,
which may be determined by either network analysis or
trial-and-error processes.

2) Method of Moment (MoM) estimator: Given a specific
traffic load value, the expected numbers of idle, suc-
cess, and collision channels can be calculated using
[4, Eq. (27)]. MoM predictor aims at matching one
or more of the moments (i.e., the expectations) to the
current observations, respectively. In other word, the
MoM estimator determines the traffic load value that
minimizes the discrepancy between the moments and
its respective observations. Simplified MoM estimators
have been proposed in [4, 11], which enjoy closed-form
solutions, with generally lower prediction accuracy. For
instance, in [11, Eq. (17)], traffic load was estimated by
matching the first moment of idle preambles with the
current observation of the number of idle preambles.

3) Maximum Likelihood Estimator (MLE): MLE calculates
the maximum likelihood of the optimal Bayes estimator
with respect to each traffic load value under each given
current observation. This is done in [12] by assuming
that, in a frame, devices sequentially and independently
select channels one after another, rather than selecting
channels simultaneously. This sequential channel selec-
tion can be represented by a Markov chain, where the
maximum likelihoods for each traffic load statistics of
all observations can be calculated using the steady-state
probability vector of the Markov chain.

IV. LEARNING-BASED ACCESS CONTROL OPTIMIZATION

According to the high complexity of access control opti-
mization, ML is a potential tool to provide better optimization
performance than conventional methods. Due to the millisec-
onds level requirement of the RACH response time [1, 13],
it highly fit the ML methods with decoupled feedforwarding
and training (e.g., DQN). In this scenario, the ML agent only
feedforwards the ML agent, whose response time is accept-
able, and this procedure only consumes little computational
resource. Furthermore, the ML agent in the BS can be replaced
by an updated one in anytime, where the updating can occur in
an edge or a cloud, training by the collected data from all BSs.
To do so, in the following, we first introduce conventional one-
step RL-based access control optimization, and then propose

a two-step learning based access control optimization, which
decouples traffic prediction and parameter configuration.

A. One-step Reinforcement Learning Based Access Control
Optimization

The non-ML based RACH access control optimization in
Sec. III-B produces explicit optimization instructions, where its
performance is limited due to the strong reliance on a math-
ematical model that captures the regularities of the practical
communication environment. Instead of using explicit instruc-
tions, ML-based access control optimization expects to perform
the RACH access control optimization relying on patterns and
inference. These patterns and inference are obtained by training
a “machine”, also known as a hypothesis class, to discover
regularities in data using computational approach, rather than
acquiring domain knowledge via the constructed physics-based
model. Generally, by choosing a powerful “machine”, the ML-
based method can better understand the environment than the
constructed mathematical model [13, 14].

The access control optimization can be formulated as a
general Partially Observed Markov Decision Process (POMDP,
a.k.a., belief MDP) problem. In detail, at the beginning of
each frame, the BS assesses the traffic overload condition
of the network relying on the observation of the network
environment; then, it determines the RACH control action
according to the observation using an optimization algorithm
(eg., convex optimization, ML); finally, the BS evaluates the
executed RACH control action at the end of each frame. The
partial observation here refers to that the BS is unable to
know all the information of the communication environment,
including, but not limited to, the random collision and the
traffic generation processes.

The RL algorithms are well-known in addressing dynamic
control problem in complex POMDPs by learning the optimal
control strategy via interacting with environment [15]. In
access control optimization, the POMDP problem (in Sec.
III-A2) can be described as a four-tuple {state, action, re-
ward, new state}, and an RL-agent is located at the BS to
discover the optimal RACH control configurations in each
frame yielding the best long-term KPI by trying them. To
memorize these experiences, the RL-agent parameterizes the
action-state value function that be represented by either an
exact table, or an approximated function (e.g., linear function,
neural network, decision tree, and etc.). The training progress
is briefly concluded as: 1) at the beginning of each frame,
the RL-agent configure RACH parameters (action) by feeding
the unprocessed observation (state) into the value function;
2) devices initiate access according to the RACH control
parameters; and 3) the RL-agent receives a scalar (reward) to
evaluate the current access performance, and updates its value
function using Bellman equation.

The RL algorithms have proven to be useful in several
applications in the area of access control optimization [5, 9, 11].
Recent work [5, 9] has proposed tabular Q-learning based con-
gestion minimization schemes, which aim at selecting optimal
(action) to maximize the number of success accesses (reward).
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These Q-learning based schemes are shown to outperform the
conventional dynamic ACB scheme given in [4]. Unfortunately,
a direct application of the tabular RL algorithms may not be
feasible to solve all the access optimization problems. For
instance, tabular RL algorithms cannot be adopted in NB-
IoT networks, due to that its large size of the action and
state space results in low training efficiency. To solve it, Deep
Reinforcement Learning (DRL) was adopted to enable learning
over a large state space in [11] inspired by intelligent game
playing [15], while the action space was broke down into
several action variables to be cooperatively trained by multiple
agents that solves the oversize action space problem [11].

B. Supervised Learning Based Traffic Prediction with Conven-
tional RACH Control Configuration

Adopting one-step DRL based access control optimization
methods proposed in Section IV-A still face several challenges
including: a) training DRL agent requires huge computational
resource; b) the DRL agent is less interpretable and reliable
due to the basis of “black box” characteristics; and c) the
DRL agent is expected to be updated in an online manner,
but the convergence is really slow due to the complexity of
value function as well as the tradeoff between exploration and
exploitation. To solve these problems, we propose two-step
ML-based optimization methods based on individual learning
in the traffic prediction as well as in the RACH control
configuration in follows.

Given a Non-ML based RACH control configuration strat-
egy, we can focus on solving the traffic prediction using
learning-based method to improve the access performance,
namely, SL-based optimizer. This learning-based predictor has
been given in [10], which applies a powerful “machines” to
learn the mathematical models during traffic generation and
communication. In Table I, we summarize the basic charac-
teristics, performance, and efficiency of each access control
optimization method.

This SL-based traffic predictor adopts a modern RNN model
based on the Long Short-Term Memory (LSTM) architecture,
which can capture traffic statistics over consecutive frames.
The input of predictor is a set containing the historical RACH
control configurations as well as the observation on the number
of idle, collided, and successful channels in each frame.
Different from those conventional methods only utilizing the
most recent observation, this SL-based predictor captures the
historical information from the previous observations to learn
the time varying traffic trend for better prediction accuracy.

The LSTM RNN is trained by leveraging a novel approx-
imate labeling technique that is inspired by MoM estimators
given in Sec. IV. This approximate labeling technique enables
online training in the absence of feedback on the exact car-
dinality of collisions. This online adaptation allows LSTM
RNN to adapt to the traffic statistics in runtime. In details,
LSTM RNN is progressively fed with a finite observations to
produce the predicted traffic at beginning of frame t. At frame
t + 1, an error-correction traffic value can be estimated using
the exact transmission receptions over the frame t using any

traffic estimation method described in Sec. III-B. In this way,
with one frame delay, the weights of the LSTM RNN can be
adjusted in order to minimize the error of the traffic value
predicted by the LSTM RNN at frame t with respect to the
error-correction traffic value estimated at frame t + 1.

Fig. 1: The actual and predicted backlog of each predictor.

Fig. 2: The average number of success access devices per episode of each optimizer in
the ACB scheme.

The results are obtained by simulations using Python by
comparing the traffic prediction accuracy and the average
number of success access devices of the ACB scheme with the
MoM optimizer, the ML optimizer, and the SL-based optimizer
using LSTM RNN. In simulations, we set the number of
channels as 54, the retransmission constraint as 10, and the
traffic as the time limited Beta profile with parameters (3, 4)
repeated every 10 frames (The following results in Sec. V.B are
also based on these network parameters). Fig. 1 plots the actual
and predicted backlog of each predictor, where the SL-based
result is obtained by the predictor trained over 105 frames. We
observe that only SL-LSTM can predict the backlog spikes
coming from bursty traffic, due to their capability in capturing
historical trends of time-varied traffic. Fig. 2 plots the average
number of success access devices per episode (each containing
100 frames) of each optimizer and the “Genie-aided ACB”
(i.e., referring to the ACB scheme aided by actual backlog).
It is seen that the SL-based optimizer outperforms the other
optimizers, due to its better prediction accuracy. However, it
should be emphasized that each optimizer relies on the exact
ACB configuration solution. Once the RACH scheme becomes
complex (e.g., the hybrid ACB and Back-Off (ACB&BO)
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Fig. 3: Illustration of the feedforward and the online adaptation of the multi-step CPCL optimizer.

scheme and the DQ scheme), the access performance may be
degraded due to the ineffectiveness of non-ML based access
control configuration.

C. Supervised Learning Based Traffic Prediction with Rein-
forcement Learning Based Access Control Configuration

The SL-based optimizer relies on non-ML RACH controller.
To optimally perform the traffic prediction as well as access
control, in this subsection, we propose a two-step Cooperative
Prediction and Control Learning (CPCL) optimizer, which
individually executes the RNN traffic prediction and the DRL-
based access control configuration as shown in Fig. 3 using
the following 4 steps:

1) At the beginning of any frame t, the RNN predictor is to
produce the traffic load N t using the raw observations
[Ot−To+1, · · · , Ot−2, Ot−1] as Sec. IV-B;

2) The predicted traffic load is input into the DRL-agent to
control random access parameters;

3) At the next frame t+ 1, the error-correction traffic value
N̂ t can be estimated by a fully connected Deep Neural
Network (DNN) using the new observation Ot;

4) Finally, the SL-based predictor is updated by minimizing
the error ΛL of the predicted traffic value N t via the
SL-based predictor at frame t with respect to the error-
correction traffic value N̂ t estimated via DNN estimator
at frame t + 1.

The use of DRL-based configuration in lieu of the con-
ventional parameters configuration in Sec.IV-B enables more
effective configuration in high complexity access schemes.
Note that the RNN traffic predictor and the DRL-agent for
access control configuration in CPCL-based optimizer can be
updated at runtime, which allows it to adapt to the realistic
traffic. Conversely, the DNN-agent for error-correction traffic
estimation can be trained using the offline rather than online,
due to its independence on the real dynamic traffic in the
environment. Compared to the one-step DRL-based optimizer,

this two-step CPCL optimizer may take much less training
time with less computational resource. Furthermore, the two-
step CPCL optimizer can achieve optimization for multiple
access control parameters configuration using multiple agents
but sharing only one traffic predictor, which can ease the
implementation.

Fig. 4: The average number of success access devices per episode of DRL-based optimizer
and CPCL-based optimizer in the ACB&BO scheme.

Fig. 4 compare the average number of success access devices
per episode of the DRL-based optimizer and the CPCL-based
optimizer for the ACB scheme and the ACB&BO scheme, re-
spectively. Both figures shown that the CPCL-based optimizer
slightly outperforms the DRL-based optimizer due to that the
CPCL-based optimizer is capable of converging to a better so-
lution. The advantage of the CPCL-based optimizer may come
from the fact that it breaks down the optimization procedure
into two sub-learning problems, which makes learning easier.

Fig. 5 plots the evolution (averaged over 200 training
trails) of the average success accesses per frame as a func-
tion in the online phase for “CPCL-based ACB&BO (Pre-
trained)”, “CPCL-based ACB&BO (Pre-trained)”, and “DRL-
based ACB&BO”. Here, the “CPCL-based ACB&BO (Pre-
trained)” refers to that its DRL-agent for access control config-
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uration has been pre-trained, while “CPCL-based ACB&BO”
is without any pre-training. The approximated converging point
of each scheme is highlighted by circles. It is seen that the pre-
training can help the CPCL-based ACB&BO optimizer to be
fairly faster to converge than it without pre-training. It can also
be observed that the training speed of “CPCL-based ACB&BO
(Pre-trained)” (consumes about 2 episodes) is about 100 times
faster than the DRL-based optimizer (consumes about 170
episodes), which sheds light on its capability of its efficient
adaptation. Furthermore, CPCL-based optimizers show better
performance than the DRL-based ACB&BO after convergence.

Fig. 5: The required number of episodes for each ML-based optimizer that converges to
an efficient solution, where each optimizer has the same hidden layers of neural network
and the same hyperparameters for training.

V. CONCLUSION AND FUTURE WORK

In this article, we elaborated ML techniques to be applied
in access control optimization for random access schemes,
which has the potential to play an essential role in real-
izing the efficient access of future wireless networks. The
conventional single-step DRL-based optimizer is shown to
outperform the non-ML based optimizers in terms of success
access devices, due to that it is capable of learning to master
the challenging optimization task. However, the single-step
DRL-based optimizer suffers from low training efficiency and
the requirement of huge computational resource. To solve
this problem, we proposed two-step CPCL-based optimization
methods to individually learn the traffic prediction and the
RACH control configuration, which considerably improved the
training efficiency.

Our results revealed that ML techniques have great potential
to revolutionize access control optimization. Compared with
the conventional DRL-based method, the proposed CPCL-
based method can achieve higher training efficiency and better
access performance, and can be applied for performance op-
timization of other types of random access schemes. Further-
more, we have identified following future research directions:
1) develop transfer learning and meta-learning for online
updating to improve training efficiency; 2) develop distributed
learning at devices and BSs to cooperatively guide the trans-
mission decisions; and 3) exploit learning based priority-aware
optimization for heterogeneous applications.
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