
ar
X

iv
:2

00
9.

11
06

5v
1

 [
cs

.N
I]

 2
3

Se
p

20
20

1

Edge Learning with Timeliness Constraints:

Challenges and Solutions
Yuxuan Sun, Member, IEEE, Wenqi Shi, Student Member, IEEE, Xiufeng Huang, Student Member, IEEE,

Sheng Zhou, Member, IEEE, Zhisheng Niu, Fellow, IEEE

Abstract—Future machine learning (ML) powered applica-
tions, such as autonomous driving and augmented reality, involve
training and inference tasks with timeliness requirements and
are communication and computation intensive, which demands
for the edge learning framework. The real-time requirements
drive us to go beyond accuracy for ML. In this article, we
introduce the concept of timely edge learning, aiming to achieve
accurate training and inference while minimizing the commu-
nication and computation delay. We discuss key challenges and
propose corresponding solutions from data, model and resource
management perspectives to meet the timeliness requirements.
Particularly, for edge training, we argue that the total training
delay rather than rounds should be considered, and propose data
or model compression, and joint device scheduling and resource
management schemes for both centralized training and federated
learning systems. For edge inference, we explore the dependency
between accuracy and delay for communication and computation,
and propose dynamic data compression and flexible pruning
schemes. Two case studies show that the timeliness performances,
including the training accuracy under a given delay budget and
the completion ratio of inference tasks within deadline, are highly
improved with the proposed solutions.

I. INTRODUCTION

The convergence of machine learning (ML) and wireless

networking facilitates the concept of intelligent edge [1]. On

the one hand, ML techniques, particularly deep learning (DL),

boost the development of many emerging applications, such as

autonomous driving, augmented and virtual reality, and indus-

trial Internet. ML also revolutionizes wireless communication

technologies from model-based to data-driven, such as channel

estimation, auto-encoders, and resource allocation [2]. On the

other hand, as mobile edge computing (MEC) servers are

widely deployed and the edge devices are becoming powerful,

the wireless network itself is full of computing capabilities and

thus being intelligent. Accordingly, ML models can be trained

and implemented at the network edge, namely edge learning

[3]. Compared with centralized ML in the cloud, edge learning

has huge potential to digest the big data, drive real-time ML

applications and protect privacy.

An edge learning system includes two key components:

edge training and edge inference. For edge training, the edge

devices can collect or generate real-time data, and upload

data to the edge server for centralized training. However, the

massive volume of data makes the wireless communication a

major bottleneck. Moreover, personal data is exposed to the

Yuxuan Sun, Wenqi Shi, Xiufeng Huang, Sheng Zhou (corresponding
author) and Zhisheng Niu are with Beijing National Research Center for
Information Science and Technology, Department of Electronic Engineering,
Tsinghua University, Beijing, China.

servers, causing privacy concerns. An alternative framework is

federated learning (FL), where edge devices train their local

models in a distributed manner based on local data, under

the coordination of an edge server who aggregates the global

model periodically. Meanwhile, it is often difficult to deploy

complex ML models such as deep neural networks (DNNs)

at edge devices. Edge inference refers to deploying trained

ML models at edge servers, so that devices can offload their

inference tasks to edge servers for real-time processing.

Conventionally, the accuracy of an ML model is the most

important metric. However, many emerging ML applications

have real-time service requirements [4]. For example, in

autonomous driving, the delay deadline of inference tasks

for environmental perception and object detection is in mil-

liseconds. To enable proactive edge caching for virtual and

augmented reality, the time-varying content popularity ranking

needs to be learned frequently based on real-time service

requirements, to guarantee its freshness and effectiveness [5].

These requirements motivate us to go beyond accuracy, and

introduce timeliness as a key factor towards edge learning,

with the goal of fast and accurate edge training and inference.

Specifically, timely edge training means that the ML model is

trained up-to-date based on the fresh data, so as to adapt to

the environmental changes. For timely edge inference, tasks

should be accurately inferred under stringent delay constraints.

Although many existing papers on MEC have studied delay-

optimized task offloading, they mainly consider general com-

putation models. The goal of optimizing the accuracy of ML

models motivates “learning-driven communication” [1], where

the relation of communication and learning is explored to

reduce the communication delay for edge training.

In this article, we focus on the timeliness of edge learning

specifically for ML tasks. We jointly consider the two most

important yet compromised factors - accuracy and delay, and

propose promising solutions from data, model and resource

management perspectives, to meet the timeliness requirements

for edge training and inference, respectively. In the following

two sections, we first break down the training and inference

delay, discuss the challenges and propose solutions for timely

edge training and inference, each followed by a case study

that validates its performance benefits. Finally, we conclude

the article and discuss some future research directions.

II. TIMELY EDGE TRAINING

As shown in Fig. 1, a group of edge devices collect or

generate real-time data to train an ML model at the edge

http://arxiv.org/abs/2009.11065v1

2

Fig. 1. Illustration of an edge learning system.

of wireless network. Each edge device can either transmit

its data to the edge server for centralized edge training, or

employ its local data to jointly train a shared ML model

with the coordination of an edge server, namely FL. The

two training frameworks are applicable to different scenarios.

For exmaple, centralized edge training can be implemented

for Internet of things (IoT) applications, where sensors with

very limited computing capabilities are mainly responsible for

data collection. Meanwhile, FL is more suitable for privacy-

preserved and bandwidth-limited scenarios.

A. Delay Breakdown and Challenges

We define the training delay as the time elapsed from

data generation to the end of training. For centralized edge

training, training delay includes communication delay for data

uploading, and computation delay for the edge server to train

ML models. For FL, training delay is equal to the number

of training rounds times the average delay per round, while

the latter includes computation delay for gradient update at

each edge server, and communication delay for global model

aggregation.

Existing work mainly focuses on the convergence of ML

models with respect to the number of training rounds. How-

ever, the wireless communication resources and computing

capabilities of edge devices are limited and time-varying, and

thus the communication delay for data or gradient uploading,

and the computation delay for model training may vary a lot

under different network environments and training policies.

Therefore, considering the timely requirements of edge train-

ing, we should take training delay rather than training rounds

into consideration. In particular, the objective is to minimize

the total training delay to achieve a certain accuracy threshold,

or to optimize the accuracy of an ML model under a given

delay budget.

There are three key challenges for timely edge training.

1) Limited Communication Bandwidth: For centralized

edge training, lots of raw data should be uploaded to the edge

server in real-time. For FL, the ML model to be jointly learned

is of high dimension, and many devices may be involved,

requiring high communication bandwidth for periodic global

model aggregation. The limited communication bandwidth

should be efficiently utilized for the most important data

samples or model parameters favored by training, in order to

reduce the communication delay and speed up the training

process.

2) Limited Computing Power of Edge Devices: Each edge

device has limited yet time-varying computing capability. To

update local models for FL, some edge devices may be slower

than others and thus become the bottleneck, which is called

the straggler effect. How to schedule edge devices to address

the straggler effect is a challenging issue.

3) Non-i.i.d. Data: While data is collected or generated

by edge devices in a distributed manner, the local dataset

is usually non-independent and identically distributed (i.i.d.),

that is, the local data distribution is different from the global

data distribution. Highly non-i.i.d. data strongly degrades the

accuracy and the convergence rate (thus the training delay) of

edge training.

B. Key Solutions

We propose some key solutions to address these challenges,

aiming at balancing the trade-off between the accuracy of ML

models and the training delay, from data, model and resource

management perspectives. A summary is given in Table I.

1) Data Filtering and Compression:

In centralized edge training systems, the delay to upload

a data sample is typically longer than that of training with

this sample at the edge server. Thus data uploading delay is

the major bottleneck under timeliness constraints. The key is

to make full use of the wireless communication resources to

deliver most valuable data samples.

Different data samples have different importances, that is,

the ML model can converge faster when trained with more

important data samples. Therefore, spending more commu-

nication resources on data samples with higher importance

can help the ML model converge faster. Motivated by this,

3

TABLE I
SUMMARY OF POSSIBLE SOLUTIONS FOR TIMELY EDGE LEARNING

Category Solution Target Highlights
Related

Work

Edge training

Data filtering and
compression

data and
resource

Filter and compress data samples based on the importance
and bandwidth limitation.

[1]

Device scheduling and
resource management

resource
Balance the trade-off between training rounds and per round

communication plus computation delay.
[6]–[10]

AirComp and gradient
compression

model and
resource

Global model is aggregated in an analog way, so that the
communication delay does not scale with devices.

Compress gradients to reduce communication costs.

[1], [2],
[11]

Transfer learning and
knowledge distillation

model
ML models are transfered from source to target domains.

Use a pre-trained complex model to train a simpler model.
[12], [13]

Edge inference
Data compression and task

scheduling
data and
resource

Dynamically compress the input data of inference tasks to
balance communication delay and accuracy.

[14]

Model compression and
resource management

model and
resource

Using pruning or dynamic neural network for model
compression, and partition the compressed DNN on servers

and devices for co-inference.
[15]

Fig. 2. Workflow of data filtering and compression.

we introduce training loss to represent the data importance

and guide data uploading. As shown in Fig. 2, a training loss

based data filtering operation to select important data samples

is carried out at each edge device with low processing cost.

Given the bandwidth limitation, loss-aware data compression

policy then determines the compression ratio of data samples,

where less important data samples are transmitted with higher

compression ratio and vice versa. Data importance can also be

characterized by uncertainty, which quantifies how confident

each data sample is predicted by the current model [1].

Note that, if the edge server lacks some certain kinds of

data, the training loss or uncertainty on these kinds of data

samples is typically large. Accordingly, by considering data

importance based uploading, the server is also more likely to

collect an i.i.d. dataset.

2) Device Scheduling and Resource Management:

Device scheduling and resource management for FL should

consider both the computation delay for gradient update at

edge devices, and the communication delay for global model

aggregation [6]–[8]. To attain a certain accuracy, the training

delay is equal to the number of training rounds times the

average delay per round. On the one hand, scheduling more

devices for global model aggregation in each round leads to a

longer per round delay, due to the higher probability of having

stragglers and less bandwidth allocated to each device. On the

other hand, scheduling more devices increases the convergence

rate of FL in terms of the number of training rounds, and thus

reduces the total number of rounds to attain a certain accuracy.

By considering the straggler effect of edge devices and

managing the communication resources for global model

aggregation, the per round training delay is optimized. The

relation between total training delay and model accuracy can

be derived, which is balanced via device scheduling to meet

the timeliness requirements [6]. For the unscheduled devices,

ML-based estimation techniques can be further leveraged to

predict their local model updates at the edge server, in order

to improve the convergence rate [7].

When communication delay dominates the total training

delay while computing resources are relatively sufficient, local

update is further enabled in [9], [10], where edge devices

implement stochastic gradient descent algorithms for multi-

ple times between two global model aggregations. The key

challenge is to optimize the global aggregation frequency to

reduce the total training delay [9], while a momentum term can

be further introduced to the local model updates to accelerate

the convergence of FL [10].

3) AirComp and Gradient Compression:

Many edge devices may be involved for training in an FL

system, while ML models often have thousands to millions

of parameters. The communication delay of global model

aggregation via orthogonal multiple access scales with the

number of devices. Note that for ML model training, the

global model aggregation aims to obtain the average of local

parameters rather than each individual model. Over-the-air

computation, short as AirComp, is proposed as a promising

solution [1], [2]. Edge devices simultaneously transmit local

models in an analog way, so that all the local parameters are

averaged over-the-air. By doing this, the communication delay

no longer scales with the number of scheduled devices. With

AirComp, the major trade-off is that, scheduling more devices

increases the per round computation delay due to the straggler

effect, but reduces the required total training rounds, which

should be balanced via device scheduling.

To further reduce the communication delay for model

aggregation, local models or gradients can be compressed

with sparsification or quantization [2], [11]. The compression

schemes should be designed to keep the key information of

the ML model while removing its redundancy. Meanwhile,

compression ratio is a key design parameter to balance the

4

trade-off between per round communication delay for model

aggregation and total training rounds.

4) Other Techniques:

Besides the aforementioned three solutions that aim at bal-

ancing the trade-off between the accuracy of ML models and

the training delay, there are some other promising techniques

for timely training. For example, transfer learning, which

transfers the knowledge learned from the source domain to

the target domain, can avoid training a model from scratch in

the target domain. Knowledge distillation uses a pre-trained

teacher model to train a much simpler student model, which

can later be implemented at edge devices or servers to meet the

timeliness constraints of edge inference. Both techniques can

work together with FL [12], [13] to further improve training

efficiency and enable model personalization.

Finally, we remark that the proposed solutions for FL can be

further combined to improve the overall system performance.

For example, model compression schemes can collaborate with

device scheduling and resource management, and AirComp

can also be used in federated transfer learning for global model

aggregation.

C. Case Study: Joint Device Scheduling and Resource Man-

agement for Timely Edge Learning

We carry out a case study that applies a joint device

scheduling and resource management policy for timely edge

training [6]. A related work on convergence time minimization

is done in [7], but the computation delay is not considered.

Our objective is to maximize the model accuracy within a

given total training delay budget. By considering the straggler

effect of edge devices and optimizing the bandwidth resource

management among scheduled devices, we quantify how the

per round communication plus computation delay grows with

the number of devices scheduled in each round. Then based

on the convergence analysis proposed in [6], we show that the

number of training rounds required to attain a certain accuracy

decreases with the average number of devices scheduled in

each round, and further capture the trade-off between the

per round delay and the number of training rounds required.

Our convergence analysis takes the gradient divergence into

consideration, so that it can adapt to different data distribu-

tions. We formulate an accuracy maximization problem with

a training delay budget, and propose a joint device scheduling

and resource management policy with fast convergence (FC).

The experiments are performed on an FL system with one

edge server and 20 edge devices. The learning task is the

handwritten-digit recognition using the MNIST dataset, with

60, 000 training images and 10, 000 testing images of 10 digits.

Both i.i.d. and non-i.i.d. data distributions across edge devices

are evaluated. In the i.i.d. case, each device is assigned a local

training dataset which is uniformly sampled from the whole

training dataset. For the non-i.i.d. cases, each device randomly

selects 1 or 2 digits to capture different non-i.i.d. levels. A

multilayer perceptron (MLP) model with one hidden layer of

64 hidden nodes is trained.

The experiment results with a total training delay budget 50s

are shown in Fig. 3. In the experiment, the average per round

0 3 6 9 12 15 18 21
Number of scheduled devices

75.0

77.5

80.0

82.5

85.0

87.5

90.0

92.5

95.0

Ac
cu

ra
cy

 (%
)

0.2

0.4

0.6

0.8

1.0

No
rm
al
ize
d
nu
m
be
r o
f

ro
un
ds
 /
pe
r r
ou
nd
 d
el
ay

122 rounds in 50s 1.71s/round

baseline, i.i.d.
FC, i.i.d.
baseline, non-i.i.d., 2 digits
FC, non-i.i.d., 2 digits

baseline, non-i.i.d., 1 digit
FC, non-i.i.d., 1 digit
Normalized number of rounds
Normalized per round delay

Fig. 3. Performance of the FC policy.

delay reaches 1.71s when scheduling all 20 devices in each

round, while scheduling only one device in each round can

have 122 rounds within the delay budget. Based on these, the

normalized number of rounds performed within the training

delay budget and the normalized per round delay are shown in

the blue curves. Results confirm that scheduling more devices

in each round increases the per round delay, and thus reduces

the possible rounds within the delay budget. Each scatter point

represents the average number of scheduled devices by the

proposed FC policy under a certain data distribution, and the

corresponding accuracy. Each red curve shows the accuracy

achieved by the baseline policy, where a fixed number of

devices (reflected by the x-axis) are scheduled in each round.

We can see that scheduling either too few or too many

devices degrades the accuracy of baseline policies, due to the

aforementioned trade-off between the required training rounds

and the per round delay.

The advantages of the proposed policy are as follows.

When applying FL in a new environment with unknown

data distribution, conventional FL needs to manually tune

the number of scheduled devices per round, leading to slow

convergence and high tuning cost. Nevertheless, our proposed

policy can adapt to various data distributions and resource

constraints to achieve fast convergence.

III. TIMELY EDGE INFERENCE

As shown in Fig. 1, in edge inference systems, the well

trained ML models are implemented at edge servers. Edge

devices generate tasks and offload them to the edge server for

inference. Upon completion, the edge server then sends the

inference results back to the device. Edge devices can also

store part of the ML model locally and collaborate with edge

server to process tasks, namely co-inference.

A. Delay Breakdown and Challenges

We define the inference delay as the time elapsed from

task arrival to the reception of inference results, which mainly

includes communication delay for uploading the input data

of tasks from device to edge server, and computation delay

for inference at the edge server. Since the result is often

5

light-weight, we neglect the result feedback delay. With co-

inference, a local computation delay is further introduced

before uploading. Key challenges for timely edge inference

are as follows.

1) Limited Communication Bandwidth and Computing Ca-

pabilities: The inputs of inference tasks, such as videos and

images, are with high data volume. However, the wireless

communication bandwidth is usually limited, making it dif-

ficult for multiple devices to upload tasks with low delay.

Meanwhile, the edge server and devices have limited com-

puting capabilities, but the ML-based inference tasks require

intensive computations. The allocation of communication and

computing resources should be jointly optimized to meet the

timeliness constraints.

2) Dynamic, Random and Heterogeneous System: The edge

learning system faces many kinds of dynamics, such as the

arrival and departure of edge devices due to mobility and

the time-varying workloads of edge servers. Wireless channel

states and the instantaneous computing speeds often have

randomness. To meet the timeliness requirements of inference

tasks, it is necessary yet challenging to design online schedul-

ing policies to adapt to the dynamic environment. Furthermore,

inference tasks may have different timeliness requirements,

and edge servers and devices are with heterogeneous com-

munication and computing capabilities, which should also be

considered for task scheduling and resource management.

B. Key Solutions

Our solutions aim to reduce the inference delay, by ex-

ploring the dependency between inference accuracy and costs

of communication and computation. We remove the redun-

dant information of data and ML models, and optimize the

compression ratio of data or model and resource management

jointly.

1) Joint Data Compression and Task Scheduling:

The input data of an inference task often has information

redundancy. By lossy data compression, redundancy can be

removed to reduce communication delay. However, higher

compression ratio may degrade the inference accuracy. There-

fore, the task scheduling scheme needs to dynamically select

data compression ratio based on the arrival of tasks and

available bandwidth, to balance the trade-off between com-

munication delay and inference accuracy [14]. Task scheduling

and compression ratio selection scheme should also consider

the computation delay, and make full use of communication

resources to maximize the ratio of tasks being inferred suc-

cessfully under delay constraints.

2) Joint Model Compression and Resource Management:

To reduce the computation workload of inference tasks, the

ML models, particularly DNNs can be compressed. By using

structured pruning, some unimportant parts of the original

DNN, such as neurons or convolution channels are removed

to obtain a smaller, faster and more energy-efficient one,

and thus reducing the computation delay. The pruned DNN

can be further partitioned into two parts and deployed at

edge server and device, respectively, for joint inference. Fig.

4 illustrates a 2-step structured pruning algorithm. The first

Fig. 4. Illustration of a two-step structured pruning.

step prunes the whole DNN to reduce the total computation

workload for inference, and the second step prunes the last

layer before offloading to reduce the communication delay

for task uploading. Note that, the second step is in fact

a generalized data compression method. The pruned model

exported by step 1, and a series of layers, each corresponds to a

pruning ratio as the result of step 2, are recorded. These models

can be selected on-the-fly with low loading cost according

to the available communication and computing resources, in

order to enable flexible accuracy-delay trade-off.

Furthermore, the idea of dynamic neural network can be

integrated with resource management [15], where a large DNN

is first trained and then specific sub-networks can be flexibly

selected according to available resources.

3) Other Techniques:

Since the limited computing capability of the edge device

is a major bottleneck for timely edge inference, there are

many papers focusing on reducing the complexity of the ML

models. For example, there are some light-weight architectures

such as MobileNet and ShuffleNet. Besides pruning, other

model compression techniques such as knowledge distillation

and parameter quantization can also be utilized to reduce

the computational complexity while avoiding much accuracy

degradation.

We remark that the proposed solutions above can form

flexible combinations. For example, we can implement a com-

pressed ML model while using data compression techniques

for task uploading.

C. Case Study: Dynamic Data Compression for Timely Edge

Inference

In this case study, we consider delay-constrained edge

inference with an edge server and multiple edge devices,

focusing on how to reduce the data size for transmission while

avoiding accuracy degradation [14].

We assume that tasks arrive randomly at each edge device.

The edge server schedules devices to send tasks for inference,

and sends the results back upon completion. Offloading the

input data of tasks is bandwidth and time consuming. Each

task is given a delay deadline, that is, the time interval

between task arrival and completion of inference should not

6

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Task arrival rate (/time slot)

88

90

92

94

96

98

100

C
om

pl
et

ed
 ta

sk
 r

at
io

 w
ith

in
 d

ea
dl

in
e

(%
)

offline w/o augmentation
online w/o augmentation
augmentation (known correctness)

augmentation (uncertainty)
packet loss(w/o retransmission)
packet loss(retransmission)

Fig. 5. Task completion ratio of the dynamic compression ratio selection
algorithms under different arrival rates.

exceed this deadline. We focus on communication delay in this

case study and ignore the inference time at the edge server.

Data compression overhead is also neglected, but can be

incorporated to the communication delay if it is not negligible.

A task is successfully completed only when the edge device

gets the correct inference result within deadline.

To reduce the communication cost for task uploading and

complete more tasks before the deadline, lossy compression is

used before data transmission. Our objective is to successfully

complete more tasks under the constraint of communication

bandwidth and delay deadline. A dynamic data compression

ratio selection scheme is proposed to balance the trade-off

between communication cost and inference accuracy. In the

offline case, where the arrival time of each task is known

beforehand, dynamic programming is used to design the com-

pression ratio selection algorithm. However, in many scenar-

ios, the system cannot obtain the arrival time a priori. We thus

propose an online algorithm based on Markov decision process

(MDP). The state is the set of the remaining time for tasks

in the queue, the action is the optional compression ratio for

transmission and the reward is the accuracy of inference with

the selected compression ratio, which can be pre-calculated by

performing inference on validation dataset.

Since that the optimal compression ratio of every single task

is unknown before being inferred, an information augmenta-

tion algorithm is proposed. The edge device can first transmit

the task with high compression ratio. If the result is wrong,

the edge server can determine whether to ask the edge device

to transmit the task with lower compression ratio. In addition,

the correctness of the result may be unknown in real systems.

Therefore, the uncertainty of the output result is further used to

estimate its correctness. Finally, retransmission for combating

packet loss due to the unreliable wireless channel is proposed.

We use the MNIST dataset to provide inference tasks, and

set the deadline of each task to 12 slots (10ms for 1 slot). Each

image data sample is with 28×28 pixels. Fig. 5 shows the task

completion ratio of the proposed algorithms under different

arrival rates. Without compression, the ratio of completed tasks

is less than 70% when the arrival rate is 0.5, while the task

completion ratios of the proposed algorithms are over 90%.

The information augmentation algorithm brings significant

improvement, especially when the arrival rate is high. With

unknown correctness of results, the uncertainty-based infor-

mation augmentation algorithm still performs better than the

original online algorithm. When the packet loss probability is

set to 0.05, there is a serious performance degradation without

retransmission, but the proposed retransmission algorithm can

get almost the same performance as the one without packet

loss.

IV. CONCLUSION AND OUTLOOK

The real-time requirements of ML applications at the net-

work edge call for attentions beyond accuracy. We therefore

introduced the concept of timely edge learning in this article,

and proposed promising solutions to achieve accurate and

fast training and inference at the network edge. For edge

training, the proposed solutions can balance the trade-off

between accuracy and training delay, by the joint data or model

compression and resource management. For edge inference,

we explored the dependency between inference accuracy and

costs for communication and computation, and optimized the

compression ratio of data inputs or ML models based on the

availability of computing and communication resources.

As future directions, first, the concept of age of information,

which describes the information timeliness and works as a key

metric in timely status update systems, can be further used in

the edge learning system to describe the timeliness of data, ML

model and inference results. Second, the energy cost for both

edge training and inference is also a key issue. When jointly

consider the timeliness requirements and energy budgets,

the interplay between delay, energy and accuracy should be

further investigated. It is also important to make edge learning

greener by reducing the energy costs of edge devices and

servers. Third, the non-i.i.d. data may significantly degrade

the accuracy of ML models and increase the required training

rounds, but the corresponding convergence analysis is at an

initial stage. To reduce the non-i.i.d. level via data encoding or

generative adversarial networks while preserving the privacy

of local data is challenging yet important. Last but not least,

privacy and security issues need to be integrated to the timely

edge learning framework, where the reputation of edge devices

should be considered to design reliable scheduling schemes.

ACKNOWLEDGEMENT

This work is sponsored in part by the National Key

R&D Program of China 2018YFB0105000, Nature Science

Foundation of China (No. 61871254, No. 91638204, No.

61861136003), and Hitachi Ltd.

REFERENCES

[1] G. Zhu, et al., “Toward an intelligent edge: Wireless communication
meets machine learning,” IEEE Commun. Mag., vol. 58, no. 1, pp. 19-
25, Jan. 2020.

[2] D. Gündüz, et al., “Machine learning in the air,” IEEE J. Sel. Areas

Commun., vol. 37, no. 10, pp. 2184-2199, Oct. 2019.
[3] J. Park, S. Samarakoon, M. Bennis and M. Debbah, “Wireless network

intelligence at the edge,” in Proceedings of the IEEE, vol. 107, no. 11,
pp. 2204-2239, Nov. 2019.

7

[4] E. Peltonen, et al., “6G white paper on edge intelligence,” [Online]
Available: https://arxiv.org/abs/2004.14850, Apr. 2020.

[5] S. Niknam, H. S. Dhillon and J. H. Reed, “Federated learning for
wireless communications: Motivation, opportunities, and challenges,” in
IEEE Commun. Mag., vol. 58, no. 6, pp. 46-51, Jun. 2020.

[6] W. Shi, et al., “Joint device scheduling and resource allocation for
latency constrained wireless federated learning,” [Online] Available:
https://arxiv.org/abs/2007.07174, Jul. 2020.

[7] M. Chen, et al., “Convergence time optimization for
federated learning over wireless networks,” [Online] Available:
https://arxiv.org/abs/2001.07845, Jan. 2020.

[8] Z. Yang, et al., “Energy efficient federated learning over wire-
less communication networks,” [Online] Available: https://arxiv.org/
abs/1911.02417, Nov. 2019.

[9] S. Wang, et al., “Adaptive federated learning in resource constrained
edge computing systems,” IEEE J. Sel. Areas Commun., vol. 37, pp.
1205-1221, Jun. 2019.

[10] W. Liu, et al., “Accelerating federated learning via momentum gradient
descent,” IEEE Trans. Parallel Distrib. Syst., vol. 31, pp. 1754-1766,
Aug. 2020.

[11] Y. Du, S. Yang, and K. Huang, “High-dimensional stochastic gradient
quantization for communication-efficient edge learning,” IEEE Trans.

Signal Process., vol. 68, pp. 2128-2142, Mar. 2020.
[12] Y. Chen, et al., “FedHealth: A federated transfer learning framework for

wearable healthcare,” IEEE Intelligent Systems, early access, Apr. 2020.
[13] E. Jeong, et al., “Communication-efficient on-device machine learning:

Federated distillation and augmentation under non-iid private data,”
NIPS Workshop, Montreal, Canada, Dec. 2018.

[14] X. Huang, and S. Zhou, “Dynamic compression ratio selection for edge
inference systems with hard deadlines,” IEEE Internet Things J., early
access, May 2020.

[15] H. Cai, et al., “Once-for-all: Train one network and specialize it for
efficient deployment,” in International Conference on Learning Repre-

sentations, Apr. 2020.

	I Introduction
	II Timely Edge Training
	II-A Delay Breakdown and Challenges
	II-A1 Limited Communication Bandwidth
	II-A2 Limited Computing Power of Edge Devices
	II-A3 Non-i.i.d. Data

	II-B Key Solutions
	II-C Case Study: Joint Device Scheduling and Resource Management for Timely Edge Learning

	III Timely Edge Inference
	III-A Delay Breakdown and Challenges
	III-A1 Limited Communication Bandwidth and Computing Capabilities
	III-A2 Dynamic, Random and Heterogeneous System

	III-B Key Solutions
	III-C Case Study: Dynamic Data Compression for Timely Edge Inference

	IV Conclusion and Outlook
	References

