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The Role of Time in a Robotic Swarm: A Joint View on
Communications, Localization and Sensing

Emanuel Staudinger, Siwei Zhang, Robert Pöhlmann, and Armin Dammann

Abstract—Autonomous robotic swarms are envisioned
for a variety of sensing applications in space exploration,
search-and-rescue and disaster management. An important
capability of a swarm is sensing spatio-temporal processes
such as radio wave propagation or seismic activities. The
spatio-temporal properties of these processes dictate the
required sensing position and time accuracy, as well as
update rate. A dedicated wireless communication sys-
tem needs to be jointly designed for swarm information
exchange, self-localization and sensing. In this article,
we emphasize the role of time in a robotic swarm. We
introduce the system ingredients and dive into realistic
clock models. Clock models and channel access schemes de-
cisively influence the swarm self-localization and synchro-
nization accuracy, and consequently the swarm sensing
performance. Finally, we discuss practical implementation
aspects, introduce our developed swarm radio system, and
give an outlook on a moon-analogue exploration mission.

I. SENSING SPATIO-TEMPORAL PROCESSES
WITH A ROBOTIC SWARM

Autonomous robotic swarms or multi-agent sys-
tems, like illustrated in Figure 1, are envisioned
for a variety of applications like space exploration,
search-and-rescue and disaster management. An im-
portant asset of a swarm compared to a single robot
is the capability to sense spatio-temporal processes.
Examples include ocean currents, seismic activities
on celestial bodies or the observation of cosmic
radiation on the far side of the moon. The goal
of sensing is the estimation of a set of parameters
of the underlying spatio-temporal process based on
jointly sensed physical quantities. Sensing accuracy
is of high interest to correctly reconstruct the pro-
cess, and three uncertainties must be taken into
account simultaneously: sensing uncertainty due to
the sensor itself, as well as uncertainty in the spatial
and temporal domain, see Figure 1.

In state of the art communication systems time in-
formation plays increasingly important roles. Coarse
time synchronization is required for coordinating
multi-user transmission, e.g., in time-division du-
plex (TDD) and coordinated multipoint (COMP)
based wireless communications. Channel estimation
and localization demand fine time synchronization.
With the development of the 5th generation mobile
networks (5G), especially for Ultra-Reliable Low-
Latency Communications (URLLC) and massive
Machine Type Communications (mMTC), precise
time synchronization and low latency are essential.
Synchronization accuracy requirements range from
tens of micro-seconds to below one micro-second,
which are commonly achieved via global navigation

Figure 1: A robotic swarm for a future Mars exploration
mission [1]: The swarm autonomously drives from the landing
site to an exploration area, where a gas source is located.
Agents, landers, mobility incapacitated rovers and a gas source
are marked in green, blue, magenta and red, respectively. Each
agent samples the spatio-temporal processes of interest with
uncertainties on the sensing value, space and time, illustrated
with a hyperellipsoid.

satellite system (GNSS), backbone networks, or
dedicated synchronization pilots [2]. Most of the
terrestrial multi-position sensing applications, such
as traffic and environmental surveillance, request
also time synchronization. In these applications, the
timing services are provided externally by infras-
tructures like GNSS and cellular networks.

A swarm for exploration is often operated in
an infrastructureless area, such as cave, underwater
or extraterrestrial environment. The coordination of
the swarm’s subsystems like communication, local-
ization, sensing and control relies on the system
time generated from a mission specific swarm com-
munication network. As a consequence, the time
information in a swarm is deeply coupled with the
aforementioned subsystems, which leads to different
timing criteria in comparison with state of the art
systems.

In this article, we shed light on the role of time in
a swarm in infrastructureless environments, which
decisively determines the swarm exploration perfor-
mance. The required time synchronization and self-
localization accuracy is determined by the mission-
specific sensing application. Figure 2 gives insight
on requirements for a variety of sensing applica-
tions. We identify radio-based sensing as the most
demanding one, both in terms of sensing time- and
position accuracy. Radio-based sensing applications
are for example low frequency arrays (LOFARs),
and return-to-base navigation for a robotic swarm.
A LOFAR is a distributed coherent antenna array
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for radio astronomy, and in return-to-base navi-
gation the robotic swarm shall navigate back to
the lander through observing a low-frequency radio
beacon. Decimeter-level sensing position accuracy
and nanoseconds sensing time accuracy are required
for radio-based sensing applications, which are not
achievable with state of the art communication sys-
tems in GNSS-denied environments. We introduce
building blocks for a swarm system, incrementally
develop the role of time, and show fundamental
dependencies among those building blocks. We also
provide insights and examples on the design of
a mission-specific wireless communication system
for swarm exploration, and introduce our real-world
swarm system.

II. SWARM SYSTEM BUILDING BLOCKS

As discussed previously, designing such a swarm
system, particularly the mission-specific commu-
nication system, requires a joint look at all the
building blocks, which we describe next.

A. Communication
Communication among agents is required to enable
collaborative behavior. Self-organized meshed ad-
hoc communication networks are preferred to avoid
single-point of failures. Distributed algorithms for
self-localization and sensing are mission-specific
and may require a low latency depending on swarm
mobility and the sensed spatio-temporal process.
The communication system’s physical layer (PHY)
and media access control layer (MAC) with its chan-
nel access scheme, and protocols must meet those
requirements. The design of such PHY and MAC
for broadcast-based meshed ad-hoc communication
is challenging.

B. Self-Localization
In exploration it is important to know where sensors
carried by robots are located within the exploration
area to map measured physical quantities. Knowl-
edge of position in three dimensions is sufficient
to map scalar fields like temperature or pressure
and sensing vector fields like electromagnetic fields
or wind/water currents additionally requires knowl-
edge about the orientation. Control algorithms for a
robotic swarm need to know position and preferably
orientation of agents as well. Requirements on self-
localization accuracy are determined by the sens-
ing application and control building blocks. Wire-
less communication systems are utilized twofold in
swarm self-localization. Firstly, the wireless compo-
nents can be considered as localization sensors. The
geometrical information among agents, e.g., dis-
tance and angle, can be extracted from the signal
propagation properties like signal delay and carrier
phase. Secondly, agents use the communication sys-
tem to exchange their position and time estimates,
as well as the corresponding uncertainties, which is
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Figure 2: Typical requirements for selected robotic swarm
sensing applications.

essential particularly for decentralized localization
algorithms [3], [4].

C. Sensing
The fundamental task of exploration is the recon-
struction of a spatio-temporal process through pa-
rameter estimation based on sensed physical quanti-
ties. Spatio-temporal processes show dependencies
in space and time which are described by appro-
priate models. Depending on the model, physical
quantities have to be taken sufficiently dense with
respect to space and time. Expected process change
rates, described by partial first order derivatives,
proportionally set the accuracy requirements for
self-localization and timing building blocks, and
determine communication latency.

D. Control
Control algorithms steering the individual agents
aim to optimize the exploration progress by, for
instance, maximizing the information gain in each
control step while taking all constraints and require-
ments into account. Besides localization, sensing
and timing accuracy requirements, control algo-
rithms also have to take into account safety aspects
like collision avoidance when operating in challeng-
ing environments.

E. Timing
All of the building blocks addressed before need
knowledge about time among all agents with certain
accuracy. Precise localization using radio signal
propagation delay based methods requires accurate
timing in the order of nanoseconds or even below
for signal time of arrival measurements. Timing
requirements for communications are less strict and
for the control part it depends on the dynamics of
the swarm system itself, see Figure 2. Requirements
on timing accuracy from sensing applications de-
pend on the dynamics of the spatio-temporal pro-
cess to be observed. These requirements may range
from sub-nanoseconds for the observation of elec-
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tromagnetic waves up to the order of seconds when
observing slowly varying temperature fields, see
Figure 2. However, localization accuracy require-
ments indirectly determine timing requirements for
propagation delay based localization.

III. THE ROLE OF CLOCKS

Clocks play a fundamental role for time synchro-
nization, localization, and as we will see, com-
munication system design. The frequency of an
underlying oscillator of a clock is a function of the
type of oscillator and its physical properties [5].
Clocks are characterized through relative values:
time differences and fractional frequency difference
between a device under characterization and an ideal
one. Two key metrics must be taken into account,
which we discuss next: Frequency accuracy and the
stability of frequency.

Frequency accuracy is denoted as the fractional
frequency relative to the nominal frequency, and
is a unitless quantity [5]. The value of this quan-
tity depends on the type of oscillator technology.
A low-cost temperature controlled crystal oscilla-
tor (TCXO) has a typical frequency accuracy of
±10ppm resulting in a frequency offset of ±100Hz
for a 10 MHz oscillator.

The stability of frequency depends on noise
sources within the oscillator. A common method
to capture this stability, and consequently the abil-
ity to predict the clock, is the overlapping Allan
deviation (OADEV). The OADEV is denoted as
square-root of the two-sample variance of time
differences for a commonly called averaging in-
terval τ . Figure 3 shows exemplary OADEVs for
different oscillators in order of increasing stability:
TCXO, microelectromechanical systems (MEMS),
oven-controlled crystal oscillator (OCXO), and Ru-
bidium. The TCXO has been characterized with our
swarm radio system, and the OCXO and Rubid-
ium clock have been characterized in [6]. OADEV
curves show three distinct regions over τ which
are of interest for us: A decreasing OADEV for
small averaging intervals to a minimum or flat
region, and an increasing OADEV for larger τ .
Short-term and long-term stability are affected by
different noise sources within the oscillator and its
physical properties [5]. Increased stability comes
with increased cost per device and larger power con-
sumption. We focus on two important findings only:
Firstly, the minimum value at a specific averaging
interval. Secondly, the averaging interval at which
the OADEV turns into a +1/2 or +1 slope.

The averaging interval τ can equivalently be seen
as an observation interval, which results in two
practical implications. 1) The minimum OADEV is
a lower limit on the clock estimation uncertainty. 2)
The averaging interval τ at the transition to a +1/2
or +1 slope is an upper limit on the observation
interval to adequately estimate and track the clock.
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Figure 3: Exemplary OADEVs of selected clocks: A low
OADEV over τ is desired. Depicted costs and power demands
are shown in the order of magnitude.

An observation interval beyond that results in a de-
graded clock estimation accuracy. The update rate of
clock observations determined by the channel access
scheme is important for 1) and 2). For example,
using the TCXO in Figure 3 limits the minimum
update rate for the wireless communication system
to 1/1.5Hz to still be able to track the clock
adequately. By using MEMS we can decrease the
update rate to 1/400 Hz, and we therefore only need
to access the mobile radio channel once in 400 s
resulting in less energy required.

From this section we can conclude that the sta-
bility of the used clock is key for the design of a
wireless communication system, and we refer the
interested reader to [6] on the state-space represen-
tation and simulation of clocks.

IV. TIME INFORMATION IN SWARM
SELF-LOCALIZATION

Localization in network is a well addressed topic
in literature from theoretical limits [7] to algorithm
design [3], [8]. There is little research on a joint
look at localization and clock. Simultaneous lo-
calization and synchronization is discussed in [9],
whereas localization accuracy and latency trade-
off is discussed in [10], both with simplified clock
models. Besides, most of these research assume an
established communication system. In this section,
we focus on the impact of realistic clock models on
localization, which decisively determines the PHY
and MAC design of the underlying mission-specific
wireless communication system.

Extracting distance information from signal in-
tensity like received signal strength (RSS) or signal
delay, is referred to as ranging [11]. RSS based
ranging is independent from any clock information.
It simplifies the ranging implementation but cannot
inherently provide the essential time information to
the swarm. More importantly, RSS based ranging is
sensitive to the applied propagation model, and thus,
often associated with insufficient ranging accuracy
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for swarm applications. In contrast, signal delay
based ranging offers both accurate distance and
time information. Depending on the synchronization
condition of the network, a variety of delay based
methods can be applied. Time of arrival (ToA)
measurement assumes a fully synchronized network.
The impact of clock on ranging is neglected in ToA,
which simplifies the theoretical investigation [7]. In
a partially synchronized network, time difference
of arrival (TDoA) measurements can be obtained,
which are used in hyperbolic localization of an
asynchronized agent. TDoA is widely applied in
infrastructure based localization like GNSS and
cellular localization. For an asynchronized network,
round trip time (RTT) measurements assume a sim-
plified clock model and combine the signals on both
directions of a link to eliminate the clock offsets.
Traditionally, unicast communication schemes are
employed for RTT like in the IEEE 802.11mc
standard [12]. Hence, the reply signal is directly
transmitted upon reception of the initiation signal.
With a short reply time, e.g., in the order of mi-
croseconds, the impact of clock frequency offset
and stability of clocks are insignificant. This scheme
performs well for small networks and for anchor-
based localization. However, for an asynchronized
large meshed network like a swarm, the unicast
scheme results in low update rates in localization.
We extend the idea of RTT to a broadcast commu-
nication scheme, where, for example, agents trans-
mit signals sequentially with a self-organized time-
division multiple access (TDMA) frame structure.
In this scheme, we benefit from higher update rates
at the cost of a longer reply time, where the clock
impacts cannot be neglected. Thus, the clock param-
eters are continuously tracked with a realistic clock
model, alongside the distance. As a comparison,
with unicast, N(N − 1) transmissions (quadratic to
the number of agents N) are required to compose
a fully connected network, whereas with broadcast
only N transmissions (linear to the number of agents
N) are required.

We have developed a distributed particle filter
(DPF) in [4], which is proved in experiments partic-
ularly suitable for swarm self-localization. In [1] we
have demonstrated algorithm design for simultane-
ous swarm self-localization, synchronization, sens-
ing and information seeking control. To gain better
insights in the relation between localization and
clock, we investigate a simplified, yet instructive
example in this article. We model the range between
agents as a second order process with a white
noise acceleration model with standard deviation of
1 m/s2. Channel access for ranging measurements
with 10 dB signal to noise ratio (SNR) is realized
via TDMA with a slot length of 1 ms. Localization
performance is, in general, jointly determined by the
ranging quality and network geometry. In order to
focus on the clock and channel access aspects, we

Figure 4: Swarm self-localization and sensing are closely
linked: The x-y-plane contains the expected agent position root
mean square errors (RMSEs) for a fully connected network of
variable size given different clock types and channel access
schemes, whereas the source position RMSEs are plotted for
two different swarm formations on the y-z-plane.

exploit a theorem from [7]: For a fully connected
network of N agents, the position RMSE is expected
to be of the same order of magnitude as the ranging
RMSE scaled by

√
2/N. The result is shown in Fig-

ure 4, where we focus on the x-y-plane, i.e. number
of agents vs. expected agent position RMSE. The y-
z-plane refers to sensing and is discussed in the next
section. No clock tracking is applied for the unicast
scheme as well as for the broadcast scheme, and we
want to compare it with the broadcast scheme with
clock tracking. Let us have a look at the TCXO first.
For two agents, unicast and broadcast without clock
tracking are identical. When the number of agents
is increased, first unicast has an advantage due to
shorter RTTs, and thus less error from the fractional
clock frequency offset. For a large number of agents,
unicast becomes worse due to long update intervals
scaling quadratically with the number of agents and
the assumed white noise acceleration model for
swarm mobility. Broadcast with appropriate clock
tracking always performs better and shows position
RMSE improvements in the order of magnitudes,
since the fractional clock frequency is estimated and
compensated. The stability of OCXOs is roughly
two orders of magnitude better than for TCXOs,
see Figure 3. OCXO unicast starts at a lower RMSE
for two agents than TCXO unicast, but for a large
number of agents the curves unite. This performance
gap between the two clock types depends on the slot
length; for shorter slots TCXO unicast performance
approaches OCXO unicast. For OCXO broadcast
without clock tracking we obtain a similar position
accuracy compared to TCXO broadcast with clock
tracking.
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For RTT based swarm self-localization we can
conclude that unicast schemes are not well suited for
a larger number of agents, and broadcast schemes
are preferable for large robotic swarms if the
real clock is appropriately taken into account. The
TDMA slot length, number of agents, and the used
clock need to be considered jointly. One can select
more stable clocks which come with increased cost
in terms of pricing, weight, and power demands.

As an outlook, other impacts of time on localiza-
tion performance are worth further investigation. In
decentralized localization algorithms, the amount of
exchanged data and the number of algorithm itera-
tions till convergence result in additional latency [3],
[4]. In [10], passive agents localization with TDoA
besides of RTT is also discussed, which potentially
increases the localization update rate.

V. TIME INFORMATION IN SWARM SENSING

The swarm sensing strategies should be designed
according to the dynamics of the spatio-temporal
processes, which are continuous functions of posi-
tion and time. To get an intuition of the dynamics
of different processes, let us take an example of
two agents which are located 10m apart. A ra-
dio or light signal can propagate across the two
agents in 33.3ns. For acoustic or seismic waves, it
will take 3ms ∼ 30ms. Considering fluid dynamics,
e.g., airflow or ocean currents, the propagation time
across the two agents will be 0.3s ∼ 3s. The perfor-
mance of the spatio-temporal process reconstruction
is jointly determined by 1) the spatial and tempo-
ral sensing density, 2) the uncertainties in sensing
value, sensing time and sensor position, and 3) the
position and time of sensing.

1) Observations have to be taken sufficiently
dense with respect to space and time according to
the Nyquist theorem to reconstruct these continuous
functions. Hence, agents must be placed densely
enough to capture the spatial variation of these
functions. Similarly, the sampling rate at each agent
has to be sufficiently high to capture the tempo-
ral dynamics of these functions. Particularly for a
process describing a propagation phenomenon like
radio wave propagation, spatio-temporal correlation
can be exploited. In this case, the process can be
reconstructed with coherent spatial sampling only.

2) The exact position and time at which an
agent observes physical quantities are unknown and
thus have to be estimated. As illustrated in Fig-
ure 1, the performance of spatio-temporal process
reconstruction is jointly determined not only by
the uncertainty of the sensed value, but also by
the agent’s uncertainties in position and time. The
necessary accuracy of swarm self-localization and
time synchronization are determined by the dynam-
ics of the spatio-temporal process, similarly as for
the sampling density.

3) The actual sensing position and time can be

optimized to achieve high sensing accuracy, which
leads to the topic of swarm control. Information
seeking control can be considered, where a swarm’s
formation is optimized to improve swarm self- and
source localization performance [1].

A practical challenging example is low frequency
radio frequency (RF) source localization, see Fig-
ure 2. Let us assume a swarm shall localize an RF
source, which is located 100m away from the swarm
center. The RF source emits a periodic carrier signal
with a wavelength of λ = 16m. We compare two
swarm formations, a 40m×40m square formation
with 121 agents and a 160m × 10m rectangular
formation with 124 agents, where the longer edge
is perpendicular to the source direction. Agents are
spatially separated from each other by a quarter-
wavelength λ/4 = 4m. With a spherical-wave model,
the source angle of arrival (AoA) and distance,
and thus, position can be estimated by observing
the first and second spatial derivative of the signal
carrier phase [13]. To highlight the link between
self-localization and sensing, we have included the
sensing performance in Figure 4. Now, we focus
on the z-y-plane of Figure 4, which shows the
source position estimation performance of a max-
imum likelihood (ML) estimator over swarm self-
localization and time synchronization accuracy. The
self-localization accuracy for a certain clock and
ranging scheme corresponds to a specific sensing
accuracy for the source position. With a low-cost
TCXO, only the broadcast ranging scheme with
clock tracking can achieve centimeter level source
position RMSE. A similar source localization accu-
racy can be achieved with a more stable OCXO by
broadcast ranging schemes without clock tracking.
The rectangular swarm formation results in a more
precise source localization due to a larger effective
aperture perpendicular to the source direction. This
highlights the potential improvement by optimizing
the swarm formation taking the control aspect into
account [1].

It can be seen that the time information decisively
affects the swarm sensing, both directly through
the update rate and time synchronization, and indi-
rectly through swarm self-localization. By employ-
ing broadcast schemes with appropriate clock track-
ing, low-cost clocks like TCXOs can be sufficient
for precise swarm sensing applications.

As an outlook, a joint view on swarm localiza-
tion, synchronization and control is worth further
investigation. Distributed sensing algorithms, like
consensus or diffusion based ones, are particularly
of interest for robotic swarm systems [14]. These
algorithms require additional iterations with data
exchange among agents to reach convergence.
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VI. PAVING THE WAY TO A REAL-WORLD
SWARM MISSION

A. Innovation and Development
We have been developing a series of swarm proto-
types with our mission-specific wireless communi-
cation system concept and a multi-agent eco-system.
The system is optimized for swarm communication,
localization, timing, sensing and control, particu-
larly suitable for future planetary surface explo-
ration missions. Our design is driven by the follow-
ing aspects: The expected radio channel on martian
or lunar surface, mobility of agents, spatio-temporal
characteristics of the sensed process, properties of
available light-weight and low-cost software-defined
radios (SDRs), robustness against agent failures, and
simplified interfacing in the swarm eco-system.

For the communication system, on PHY we
use orthogonal frequency-division multiplexing
(OFDM) with 25 MHz bandwidth, 1024 subcarriers
and a cyclic-prefix of 2 µs. On MAC we implement
a collision-free self-synchronized TDMA broadcast
scheme, which avoids single-point of failure and
results in a controllable update rate. The update
rate is driven by the distributed algorithms for
localization and sensing, the mobility of the swarm
in conjunction with spatio-temporal correlation of
process parameters, and the used clocks. Distributed
algorithms often require iterations among agents
to converge, and hence, the radio channel must
be accessed frequently. We design for a network
update rate of 100 Hz for 20 agents resulting in slot
lengths of 500 µs and 11 OFDM symbols per agent.
An agent-specific preamble based on Zadoff-Chu
codes is used for frame-synchronization, channel
estimation, agent-identification, and precise estima-
tion of a frame’s arrival time for ranging and clock
tracking. This preamble is designed for differential
correlation resulting in low processing effort to
maintain the TDMA frame structure. The remaining
10 OFDM symbols can be flexibly exploited for
inter-agent communications. Each agent tracks the
dynamics of its clock and the clocks of its neighbor-
ing agents with Kalman filters (KFs) to compensate
fractional frequency offsets. The KF employs the
transition model parameters of the clocks [6], like
the TCXOs embedded in SDRs, obtained from RF
calibration. One SDR is connected to an external
Rubidium clock as a stable frequency reference.
As an outcome of the laboratory calibration, the
OADEV of the TCXO can be found in Figure 3.
We make use of SDRs comprising various types of
universal software radio peripherals (USRPs) and a
custom PHY and MAC realized in the open-source
framework Gnuradio. Different types of USRPs
have different clocks, for example the light-weight
B200mini uses an embedded TCXO, and a multi-
channel N310 uses either the embedded OCXO or
an external clock. Our design enables the usage
of heterogeneous hardware and takes properties of
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Figure 5: Architecture of our swarm eco-system based on
SDRs and the ROS.

individual clocks into account.
A challenge besides the design of PHY and MAC

is the interfacing into the other swarm subsystems.
We utilize the robot operating system (ROS), which
is commonly used in robotics, to tackle this chal-
lenge. A DPF is implemented on each agent for real-
time self-localization, exploiting the ranging infor-
mation or direct radio waveform from the SDR [4],
and potentially other sensor outputs in ROS. The
DPF provides the estimated position and time with
their uncertainties to the other subsystems in ROS,
such as swarm sensing and control. The overall
architecture of our swarm eco-system is shown in
Figure 5.

B. Experiment Highlights
Figure 6 shows the evolution of hardware develop-
ment at German Aerospace Center (DLR). Our first
version in 2015 was based on a dedicated field-
programmable gate array (FPGA) design, and we
focused on unicast based RTT with an amplify-and-
forward scheme, which leads to short processing
delays. For a six-agent swarm with low dynamics,
decimeter-level localization accuracy is achieved
with our DPF by directly exploiting the radio wave-
form [4]. Since 2017 we realize the concept from
Figure 5 and demonstrated real-time submeter-level
localization accuracy with eight agents for a highly
dynamic gas source exploration. In 2018 we demon-
strated swarm self-localization at the International
Astronautical Congress (IAC) [15]. In June 2021 a
distributed LOFAR demonstration with our swarm
eco-system is planned within a moon-analogue ex-
ploration mission taking place on Mt. Etna in Sicily,
Italy [15]. As a preparation, the mission-specific
communication system has been preliminarily tested
on Mt. Etna during a scouting mission in 2019.

VII. CONCLUSION
Time is key for a swarm mission, and the inclusion
of realistic clock modeling is of high importance.
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Figure 6: Generations of our swarm radio system developed,
tested in field and demonstrated at the IAC. The latest gener-
ation will be part of a moon-analogue mission on Mt. Etna,
Italy, in 2021.

The design of a mission-specific wireless commu-
nication system is jointly driven by the clock model,
swarm dynamics, localization requirements and the
properties of the spatio-temporal process.

Particularly the MAC design and the stability of
the oscillator, from which time is derived from, are
strongly coupled. The update rate of clock obser-
vations determines time synchronization accuracy,
which has a decisive impact on self-localization,
and consequently, on the sensing accuracy in both
position and time domains.

Regarding a real robotic swarm system, joining
effort in technology demonstration across research
domains of wireless communication and robotics
within a unified eco-system is promising and should
be fostered.
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