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Signal Detection for Molecular Communication:

Model-Based vs. Data-Driven Methods

Yu Huang, Fei Ji, Zhuangkun Wei, Miaowen Wen, and Weisi Guo

Abstract—Multi-scale molecular communication (MC) employs
the characteristics of information molecules for information
exchange. The received signal in MC inevitably encounters severe
inter-symbol interference and signal-dependent noise due to the
stochastic diffusion mechanism. Focusing on the critical signal
detection in MC, first this article reviews the commonly used
model-based detectors, and exposes their limitations in practical
implementation. Then, the emerging data-driven detectors that
can make up for some deficiencies of the model-based detectors
are presented. Despite the black-box nature of the data-driven
detectors, the explainable artificial intelligence can be further
investigated for the performance improvement of transparency
and trust.

I. INTRODUCTION

Molecular communication (MC) is an emerging multi-scale

communication paradigm that conveys messages via the pat-

terns of molecules [1]. MC has been regarded as an alternative

for conventional communication techniques in virtue of its

unique transmission mechanism.

For the nano-scale and micro-scale channels in vivo, the im-

plementation of the conventional communication techniques is

hindered for the following reasons. The electromagnetic (EM)

wave based wireless communication has its constraint in wave

generation. As the wavelength in operation is proportional to

the antenna size, nanomachine requires the Tera-hertz band

for communications, which is, however, still in its research

infancy, let alone the micro-scale implementation. Besides,

optical communication is not an appropriate choice due to

complex cell/tissue obstacles in the channel. Finally, acoustic

communication has an energy issue on such an extremely

tiny scale. In addition to the implementation restrictions, the

bio-compatibility issue of the above schemes has not been

verified in the open literature. As for the macro-scale chan-

nels, the EM wave based communication has the propagation

problem in metal and aqueous environments. Inspired by the

biological systems, MC can remedy the flaws in the existing

communication systems. For micro-scale channels, MC via

diffusion (MCvD) is an energy-efficient signal transmission

mechanism that uses information molecules from the commu-

nication environments, and no extra energy is required for the
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Fig. 1. MC block diagram under different scales.

carrier propagation thanks to the Brownian motion. During

the coronavirus disease pandemic, MC has been recognized

as a potential model for the viral aerosol transmission and

detection process [2], providing a deeper understanding of the

virus study.

II. SYSTEM MODEL AND SIGNAL CHARACTERISTICS

Typically, an MC system model consists of three fundamen-

tal blocks, i.e., transmitter, channel, and receiver. The trans-

mitter first modulates the digital signal into molecular forms.

The information molecules then enter the channel, undergoing

the mechanisms of diffusion, advection, or reaction, etc. The

receiver senses molecular concentration or particle number

as the received signal. Figure 1 depicts both the macro-scale

and micro-scale MC systems, where the environments can be

nonlinear and turbulent in practice. The macro-scale virus-

laden aerosol detection is shown in the upper part of Fig. 1,

where the infected/uninfected human is treated as the trans-

mitter, and the breath, cough, and sneeze processes can emit

virus into the air (channel) through the aerosol transmission

mechanism. A specific receiver with viral detection capability

is placed within a certain distance to decide whether the source

has the infection or not based on the received signal [2].

Alternatively, the lower part of Fig. 1 demonstrates the micro-

scale neurotransmission mechanism at the synapse. In this

process, the axon terminal acts as the transmitter, releasing the

neurotransmitters into the synaptic cleft channel. After a given
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Fig. 2. CIRs in response to different conditions of the diffusive channels,
where the propagation distance, spherical receiver radius, and diffusion
coefficient are 30µm, 0.5µm, and 2.2 × 10

−9m/s2, respectively. The flow
velocity is 100µm/s, and the reaction rate constant is 5 s−1.

period, some of the neurotransmitters bind to and activate the

receptors of the postsynaptic membrane.

A. Time-Domain Signal

Different effects in the channel are reflected by the variation

of the channel gains and the noise model [1]. Moreover,

the corresponding channel impulse response (CIR) shares

common transient feature [3]. Figure 2 demonstrates the CIRs

and the CIR rate with normalized amplitude associated with

various channel/receiver models. Intuitively, they all have an

increasing trend initially, and a following the downturn with

different rates after passing the peak value. Therefore, for the

consecutive transmission with a given symbol duration, the

received signals in response to different transmit symbols can

overlap with each other, known as the inter-symbol interfer-

ence (ISI) phenomenon [1]. This article focuses on the MC via

diffusion (MCvD) system with the three-dimensional channel,

which is typically considered in the literature. From the

observations of Fig. 2, the received signal in the free diffusion

channel is more sensitive to ISI compared with the other

channel conditions. Besides, the received signal in the free

diffusion channel encounters the signal-dependent counting

noise, which is different from the conventional communication

systems, where the signal and noise are usually independent

[1].

B. Frequency-Domain Analysis

As the time-domain study provides an intuitive expression,

the research of MC had focused on the time-domain signal pro-

cessing, while the frequency-domain analysis was neglected,

which can bring new insights into the MC system design. The

CIR in the frequency domain manifests its low-pass nature

as the amplitude components monotonically decrease along

the frequency axis. However, just like the time-domain CIR

that lasts for infinite time, the frequency-domain CIR occupies
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Fig. 3. Frequency response of the one-shot modulated signal with the
impulsive release (CIR) and rectangular pulse in the free diffusion MC
channels, where D = 2.2× 10

−9m/s2.

the whole frequency range. The frequency response for the

modulated signals in the free diffusion channel is shown in

Fig. 3, where the receiver radius is assumed to be far less

than the transmission distance. Explicitly, the amplitude of the

frequency response monotonically decays with the increasing

angular frequency. Besides, the longer transmission distance

leads to a more rapid decline rate of the amplitude component.

III. MODEL-BASED DETECTION SCHEMES

Signal detection plays an important role in MC for informa-

tion recovery. This section reviews some fundamental model-

based detection schemes. Generally, the transmitter is modeled

by a point source that can emit the information molecules

impulsively, and a passive spherical receiver can perfectly

sense the received signal. Also, perfect channel estimation is

assumed to be available in coherent detection schemes. More

details about some of the mentioned signal detection schemes

are provided by a recent survey for MC in [4].

A. Maximum Likelihood Sequence Detection

Due to the existence of ISI, the sequence-wise detector

outperforms its symbol-wise counterparts as the information

of previously transmitted symbols are taken into account. The

MLSD can achieve desirable detection performance, while the

complexity of its brute-force search grows exponentially with

the sequence length. The Viterbi can reduce search complexity

by discarding the unlikely sequences, while complexity is still

exponentially dependent on the number of channel taps, which

is unrealistic when the transmission rate is high [5]. The MLS-

D metric in MC can be different when the signal-dependent

counting noise is considered. Despite its impracticality in

implementation, MLSD can be used as the benchmark for

evaluating the existing detection schemes in terms of the error

performance bound. Alternatively, the reduced-state sequence

estimation (RSSE) for MC was mentioned in [6] by means of

numerical simulation. When the perfect knowledge of channel
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gains is unavailable at the receiver, the RSSE with the hard

decision of the previously transmitted symbol can counter-

intuitively outperform the MLSD.

B. Time-Domain and Frequency-Domain Equalizers

Time-domain equalization (TDE) shows lower complexity

and attains a sub-optimal detection performance compared

with MLSD, while it has the following limitations. On the

one hand, TDE is inherently infeasible for the high transmis-

sion rate scenario as its computational complexity of TDE

is proportional to the ISI length. On the other hand, the

non-stationary noise further complicates the TDE with the

minimum mean square error (MMSE) criterion. First, the

tap coefficients vary symbol by symbol due to the signal-

dependent noise feature [5], and such computational complex-

ity is prohibitively large for the nanomachine receiver. Second,

the calculation of tap coefficients depends on the previously

detected bits. Hence, the error propagation problem may exist,

deteriorating the error performance. For the consistency issue,

the current symbol to be detected is unknown at the receiver.

However, as the noise power of the current symbol is required,

the current symbol may be estimated according to the statis-

tical distribution of the input symbol. Analogously, the noise

power of the received signal after the symbol to be detected is

unavailable, hindering the collection of its multipath copies.

Inspired by the previous frequency-domain analysis, the

signal detection, pulse shaping, and channel estimation tech-

niques can be studied from a new perspective. Against this

background, frequency-domain equalization (FDE), recog-

nized for its low-complexity implementation, can be deployed

in MC to solve the implementation complexity problem of

some time-domain detectors when the number of channel taps

is large. MC can fully use the whole bandwidth without any

division, as there is no limitation or regulation. Against this

background, the transmission of MC in the frequency domain

is the single-carrier system. Correspondingly, the FDE in MC

is inherently a single-carrier FDE that has been widely studied

in conventional wireless communication systems. The princi-

ple of FDE in MC is illustrated as follows. The transmitter

side first packs the symbols for transmission in one block and

inserts redundant guard interval with a proper length at the end

of the block. The new data block can eliminate the inter-block

interference (IBI), and it is converted into the molecular form

according to the modulation scheme. The receiver senses the

continuous-time molecular signal, sampled as the form of the

discrete-time digital signal. After removing the guard interval

signal, the receiver deploys the discrete Fourier transform

(DFT) operation, converting the time-domain signal to the

frequency domain. Then, the FDE, dealing with the complex

signal, is implemented to combat the ISI effect based on

specific criteria. In response to the FDE output, the inverse

DFT operation transforms it back to the time domain. Finally,

the detection techniques recover the data stream according to

the equalized signal, which preserves its original property, i.e.,

being real and positive.

In the MC over free diffusion channels, zero-forcing (ZF)

FDE has the same form as in previous research as the noise

components are neglected. Unlike the ZF-FDE, the design of

MMSE-FDE depends on the power of counting noise, while

its signal-dependent feature indicates the variation of noise

power in each block. In this case, the noise power estimation

becomes a critical issue in MMSE-FDE. A statistical approach

based on the distribution of input symbols can easily estimate

the noise power. Furthermore, the output signal in response

to this statistical estimation can be used as either the output

directly or the feedback for advanced noise power estimation

in an iterative manner for detection performance enhancement.

In light of this, the MMSE-FDE can determine the iteration

times concerning the application requirement and the device

capability. Despite its advantages, FDE requires additional

calculation for the DFT and its inverse operation. Besides, the

guard interval also decreases the transmission efficiency. Final-

ly, the whole sequence is decoded after the block transmission

in FDE due to its block-wise detection procedure, hindering

the real-time applications.

C. Non-Coherent Detectors

The fixed threshold detector is one of the simplest detection

methods in MC, and it is effective only when a sufficiently

long symbol duration is provided. For high transmission rate,

the severe ISI exacerbates the detection. Alternatively, the

detector with the optimal threshold can enhance the error

performance, while it requires the knowledge of previously

transmitted symbols, which can be impractical due to the error

propagation phenomenon [7].

However, whether the threshold is fixed or optimal, the CIR

knowledge is indispensable for both schemes. Alternatively,

some model-based detectors avoid this requirement by using

the features of the received signal. Note that they are referred

to as the non-coherent detectors, dispensing with the CIR

knowledge. An adaptive threshold detector was proposed in

[6], which exploits the ISI effect for signal detection, and

determines the threshold with previously sensed signal. Thus,

the decision rule is simply the comparison between the cur-

rently sensed signal and the threshold. The characteristics of

the MC signal can be further elaborated as follows. When

the symbol duration is properly set in MCvD (greater than

the peak concentration time), the received signal in response

to the bit-1 transmission leads to a conspicuous rising edge,

and its sampled mean is greater than the expectation of

the previously transmitted signal. On the contrary, the bit-

0 transmission shows the opposite trend. In this case, the

channel estimation process can be avoided, which enhances

the communication efficiency. Except for the rising edge, the

MC signal also exhibits features like the inflexion and energy

difference. These metrics constitute a high-dimensional form

of the received signal, which converts the original signal into

the new domain insensitive to the ISI. Nevertheless, such a

high-dimensional signal detector requires multiple samplings

in each symbol duration for signal construction [8].

D. Comparison between Coherent and Non-Coherent Detec-

tors

Table I summarizes the features of the aforementioned

detection techniques. The performance comparison between
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TABLE I
COMPARISON ANALYSIS BETWEEN DIFFERENT DETECTORS

Detector Type Detection Performance Complexity Memory Requirement Guard Interval/Transformation Channel Information

Adaptive Threshold Low Low Only One Not Required Not Required
TDE Medium Relatively High ISI Length Not Required Required
FDE Medium Medium Block Length Required Required

MLSD with Viterbi algorithm High High ISI Length Not Required Required
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Fig. 4. Comparison of BER performance between the time-domain and
frequency-domain detectors, where Tb denotes the symbol duration and tp is
the arrival time of the peak concentration signal. The propagation distance,
spherical receiver radius, and diffusion coefficient are 20µm, 0.1µm, and 2.2×

10
−9m/s2, respectively.

the aforementioned detectors is demonstrated in Fig. 4, where

low and high transmission rates are considered according

to the relationship between the symbol duration Ts and the

peak concentration time tp. Note that all the detectors have

the perfect channel knowledge at the receiver side. In both

cases, the adaptive threshold detector, whose performance

is comparable to that of the fixed threshold detector [6],

demonstrates the worst performance due to its low complexity

implementation, while the MLSD prevails among all the

schemes with its involved search complexity, which grows

exponentially with the number of the channel taps. In the low

transmission rate scenario, the TDE has a better performance

than the FDE, while the FDE, in turn, outperforms TDE

when the transmission rate is high. Therefore, one may choose

between them according to the transmission rate for attaining

a satisfactory detection performance.

E. Problems in Model-Based Detectors

On the one hand, the coherent model-based detectors highly

depend on the CIR knowledge. Though MLSD reaches the

near-optimal performance with perfect CIR knowledge, a

slight estimation error can lead to severe error performance

degradation, which is demonstrated in [9]. Besides, both FDE

and TDE face the same problem. The CIR can be theoretically

calculated only within some specific conditions with the

known system parameters to derive the corresponding analyt-

ical performance; for practical implementations, the channel

model may not be analytically available, whereas the time-

varying property further complicates the CIR calculation issue.

Thus, the channel estimation procedure is required to track

and provide the estimation CIR, typically the channel gains,

regardless of the channel models or the system parameters.

For instance, the training sequence known by the transceivers

can be used for channel estimation, which occupies the extra

overhead, while such estimated CIR is usually imperfect,

deteriorating the detection performance [10].

On the other hand, the non-coherent model-based detectors

have undesirable error performance, especially in the high

transmission rate case, which lays the foundation for useful

MC applications. They become unreliable as either the differ-

ence between the consecutive transmission diminishes [6], or

the detection metrics are lost [8]. Besides, the non-coherent

schemes generally have worse performance than the coherent

detection schemes.

IV. DATA-DRIVEN DETECTORS

Obviously, the model-based detectors have either the CIR

knowledge or the detection performance problems. Against

this background, the data-driven detectors have been presented

to overcome the limitations in the model-based detector. Typ-

ically, the machine learning based algorithms are adopted by

the data-driven detectors. Depending on the learning methods,

machine learning has three fundamental categories, namely,

supervised learning, unsupervised learning, and reinforcement

learning.

A. Channel Model Issues

The channel model is critical for both analytical and

practical MC systems. The analytical performance evaluation

provides insights for the model-based detectors in MC, which

usually considers perfect CIR knowledge with simple ini-

tial/boundary conditions, such as the impulsive emission, open

space, or perfectly transparent/absorbing behaviors. These

assumptions are unique in MC. The complex boundaries and

environments in realistic MC channels make the analytical

models intractable. For instance, the multiple-input multiple-

output (MIMO) MC is one example that exploits the spatial

domain to achieve diversity or multiplexing, while its channel

model becomes elusive when multiple absorbing receivers are

deployed at the receiver side. To obtain a channel model in

MIMO-MC, the analytical channel model in the single-input

single-output (SISO) MC is treated as the empirical form of

the MIMO-MC channel model, whereas certain parameters are

further introduced for the adjustment purpose. Based on the

potential model knowledge, the artificial neural network (NN)
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is trained to find the input-output relationship, revealing the

approximated form of the corresponding channel model [11].

Alternatively, the channel of realistic MC prototype is gen-

erally far from that in the analytical study. On the one hand, the

channel changes due to the change of channel parameters (e.g.,

temperature fluctuation), transceiver movement, or the effect of

stochastic turbulence. On the other hand, the quantification of

the boundary conditions can be difficult for certain channels,

such as the in-vessel environment. The data-driven detectors

are useful to deal with the MC system with unknown CIR as

they can learn to detect the received signals regardless of the

channel model and its parameters.

B. Comparison with Model-Based Schemes

Two data-driven detectors were proposed for the vessel-

like prototype in [12] with unknown channel model. First,

the support vector machine performs the symbol-by-symbol

detection, which is trained with current received signal and

transmitted symbols, regardless of the ISI. Second, the recur-

rent NN (RNN) takes the ISI into account, acting like the

sequence detection. Additionally, inspired by the signal feature

from human observation, the model-based slope detector has

been proposed, which possesses the non-coherent property.

From the bit error rate (BER) of the experimental results,

the RNN prevails among these detectors, while the model-

based slope detector exhibits the worst performance. The

RNN is inherently feed-forward, which means that it only

uses the currently and previously received signal for sequence

detection. Nevertheless, the received signal after the detection

symbol slot may carry its information in the form of ISI. In

light of this, the bidirectional RNN (BRNN) introduces the

feed-backward architecture, considering more useful signals

to improve the detection performance. The BRNN, however,

suffers from the IBI that affects the sequence detection perfor-

mance. While the insertion of guard interval accounts for the

extra overhead, a sliding window in the BRNN can circumvent

this problem, enhancing the detection performance through a

soft decision manner [9]. Though the sliding BRNN is inferior

to the MLSD with perfect CIR knowledge, it outperforms the

MLSD with imperfect knowledge (2.5% and 5% deviation) in

terms of the error performance.

The comparative studies of the error performance between

the model-based detectors and the data-driven detectors have

been also presented concerning the analytical channel models,

where different learning strategies are used. First, an Artificial

NN architecture is trained by the supervised learning method

with labeled inputs and outputs. After the training process, it

acts as the receiver with BER minimization regardless of the

CIR knowledge. On the contrary, the model-based detector

finds the optimal threshold with perfect CIR knowledge. Both

detectors exploit the prior estimated symbol, and one can

observe a good agreement between them [7]. Another research

uses the unsupervised method to classify different transmitted

symbols according to the characteristics of the received sig-

nals [13]. Note that it surpasses conventional model-based

schemes in terms of error performance, except for the MLSD

with perfect CIR knowledge. Besides, it requires much lower

computational complexity than the MLSD, and neither the

CIR knowledge nor the labeling is needed. While the previous

studies merely focus on the detector design at the receiver side,

the transmitter can also be considered for the joint transceiver

optimization. In this case, the transmitter and receiver can

be trained by the deep reinforcement learning and supervised

learning, respectively [14]. Finally, the results based on the

joint optimization display a better BER performance than the

model-based threshold detection.

The training phase is essential and vital for the data-

driven detectors with supervised learning, which determines

the performance of the NN. Despite its similarity to the

pilot sequence, the training phase can be done in an offline

manner, which has three remarkable advantages below [9].

First, it avoids the periodical channel estimation process,

which accounts for the extra overhead. Second, when the

big data, i.e., the input-output training sequences over many

channel scenarios, is provided, the trained receiver acquires

the resistance capability to the time-varying channels. Finally,

the macro-scale devices can be used to facilitate the complex

offline training, and then transplant it into the micro-scale MC

systems with less computing power.

C. A Pathway Towards Explainable Artificial Intelligence

Unlike the model-based detectors that have intuitive block-

s, the data-driven detector typically lacks the transparency

and trust due to its black-box nature, which is obscure for

human. This loss of explainability suggests an increasing

vulnerability to noisy and even malicious inputs. To overcome

this, several definitions and methods to measure and improve

the explainability are proposed, known as the explainable

artificial intelligence (XAI). These include but are not limited

to intuitive visualization, symbolic representations, and Neural

Network compression.

Visualization is referred to as an intuitive evaluation

(watch) of a neuron’s features. In the context of MC (as

is shown by Fig. 5), we highlight one neuron’s output that

resembles the rising-edge shape of the molecular signal (when

corresponds to a ’1’ bit), and this indicates an intuitive

explainability of this trained neuron. One difficulty lies in

that with the increasing depth of the hidden layers, the non-

linearity increases and will prevent the intuitive features from

being noticed.

Symbolic representation is to find a rigorous equation

for the representation of the Deep NN (or locally one neu-

ron). Current approaches focused on using the general hyper-

geometric function (e.g., the Meijer-G functions and Gaus-

sian process approximations). In the example of Fig. 5, one

neuron’s output is verified by the finding of a corresponding

hyper-geometric function. As such, the outputs are to some

extent guaranteed, as no malicious outputs will be generated

out of the range of the representation function.

An NN compression can be pursued by removing the

neurons with trivial weights and in-explainable results (shown

by Fig. 5). This will undoubtedly scarify the accuracy, but

help derive a more trustworthy and energy-efficient NN, which

is important for the nano-scale system with limited energy



6

Neuron's output

S
y
m

b
o
lic

 M
e
ije

r-
G

 o
u
tp

u
ts

= 1

= 0

Why the error occurs ?

Molecular Signal Inputs

(2) Symbolic representation

by hyper-geometric function

(3) Compressed with weight and

explainable (victualed &symbolic)

neurons selections

(b) Explainable AI

(a) Black-box DNN 

(1) Visualized rising-

edge feature from

neuron’s output

Binary signal detection

Fig. 5. XAI for the interpretation and refinement of black-box DNN for molecular signal detection.

and resources. Besides, the resulting decisions can be more

likely in the way that a human expert can understand, which

is vital for the MC applications in vivo, such as the target drug

delivery.

V. OPEN CHALLENGES AND FUTURE DIRECTIONS

There are still some open challenges for signal detection of

the MC receiver, which are discussed below. Meanwhile, some

future research directions are also elaborated in this section.

A. Signal Detection with Complex Channel Conditions

The model-based detectors usually avoid the channel varia-

tion issue by assuming perfect channel estimation or using

the static channel model. Nevertheless, the release manner

can be spatio-temporal, the channel can be highly dynamic,

and the reception mechanism can be nonlinear in practice.

Against this background, the feasibility of the model-based

detectors for practical MC systems requires further validation.

For instance, in the mobile environments, the training symbols

may occupy a longer time than the channel coherence time

due to its slowly diffusive manner. In this circumstance, the

detection scheme should be robust to the inaccuracy of the

estimated channel gain. The non-coherent detection scheme

without channel estimation is more appropriate [15], where

the signal feature is captured for threshold update.

Besides, the data-driven detectors can overcome this issue

through the offline training with sufficient data. However, the

access to big data remains challenging. Alternatively, current

data-driven detectors in MC are in the static state as once being

trained, the architecture and weights stay fixed during the

detection process. However, it cannot deal with the situation

when undergoing the new channel beyond the training sets.

Therefore, inspired by the channel estimation in the model-

based methods, the data-driven detectors should evolve with

an update mechanism.

B. Inspiration From Existing Communication Systems

MC has both similarities and differences with the conven-

tional communication techniques. Despite its macro-scale ap-

plications that can resort to the equipment with high computing

power like other communication systems. The nanomachine is

an exception in MC, which is deployed in the cellular biologi-

cal environments. Due to the size constraint, some communica-

tion techniques, such as data-driven detection algorithms, may

not be implanted into the nanomachine. Nevertheless, some

biological mechanism may kindle the detection scheme for

artificial MC systems. As a consequence, the nano-network

mimics the cell signaling network to realize the nano-scale or

micro-scale communication. The model-based adaptive thresh-

old detection [6] is one of the examples inspired by the short-

term synaptic plasticity of the neurotransmission. Besides, the

techniques developed in the mature communication system

also facilitate the design of signal detection schemes in MC,

where the model-based MLSD, TDE, and FDE are inspired

by those in wireless communications. Except for this, some

optical communication techniques may be easily transplanted

into the MC system as the signals in both systems are real and

positive [9].

VI. CONCLUSIONS

MC has versatile applications in multiple scales that require

specific demands. Therefore, multiple types of model-based

detectors were proposed with different error performance

and computational complexity. The data-driven detectors were

presented to overcome the high dependency on the CIR knowl-

edge of the coherent model-based detectors and the poor error

performance of the non-coherent model-based detectors. The

ideology of XAI was envisioned to combat the transparency

and trust issues in the data-driven detectors.
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